請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/94587
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 丁肇隆 | zh_TW |
dc.contributor.advisor | Chao-Lung Ting | en |
dc.contributor.author | 游子霆 | zh_TW |
dc.contributor.author | Tsu-Ting Yu | en |
dc.date.accessioned | 2024-08-16T16:53:42Z | - |
dc.date.available | 2024-08-17 | - |
dc.date.copyright | 2024-08-16 | - |
dc.date.issued | 2024 | - |
dc.date.submitted | 2024-08-10 | - |
dc.identifier.citation | 1. Department of Information Services, Executive Yuan (Ed.). (2019). Four-Year Wind Power Promotion Plan. Department of Information Services, Executive Yuan.
2. Jocher, G., Chaurasia, A., & Qiu, J. (2023). Ultralytics YOLO (Version 8.0.0) [Computer software]. Retrieved from https://github.com/ultralytics/ultralytics 3. Oswald, J. N., Rankin, S., & Barlow, J. (2008). To whistle or not to whistle? Geographic variation in the whistling behavior of small odontocetes. Aquatic Mammals, 34, 288-302. [CrossRef] 4. Hung, C.-T., Chu, W.-Y., Li, W.-L., Huang, Y.-H., Hu, W.-C., & Chen, C.-F. (2021). A case study of whistle detection and localization for humpback dolphins in Taiwan. Journal of Marine Science and Engineering, 9(7), 725. https://doi.org/10.3390/jmse9070725 5. 周蓮香, 林幸助, 孫建平. (2017). 中華白海豚族群生態與河口棲地監測. 行 政院農業委員會林務局. 6. 周蓮香, 魏瑞昌. (2010). 中華白海豚族群生態與棲地環境噪音監測計畫. 行 政院農業委員會林務局. 7. T.-H. Lin, (2013). 應用被動式聲學監測台灣西海岸中華白海豚行為生態與 棲地利用 (碩士論文). 台灣大學生態學與演化生物學研究所. 8. Janik, V. M., Todt, D., & Dehnhardt, G. (1994). Signature whistle variations in a bottlenosed dolphin, Tursiops truncatus. Behavioral Ecology and Sociobiology, 35(4), 243-248. https://doi.org/10.1007/BF00170704 9. Griffin, D., & Lim, J. (1984). Signal estimation from modified short-time Fourier transform. IEEE Transactions on Acoustics, Speech, and Signal Processing, 32(2), 236-243. 10. Cohen, L. (1995). Time-Frequency Analysis. Prentice Hall. 11. Gillespie, D. M., Gordon, J., McHugh, R., Mclaren, D., Mellinger, D., Redmond, P., Thode, A., Trinder, P., & Deng, X. Y. (2008). PAMGUARD: Semiautomated, open source software for real-time acoustic detection and localisation of cetaceans. 12. Chan, R. H., Ho, C.-W., & Nikolova, M. (2005). Salt-and-pepper noise removal by median-type noise detectors and detail-preserving regularization. IEEE Transactions on Image Processing, 14, 1479-1485. [CrossRef] [PubMed] 13. Steinley, D. (2006). K-means clustering: A half-century synthesis. British (Placeholder1) (Placeholder1)Journal of Mathematical and Statistical Psychology, 59, 1-34. [CrossRef] [PubMed] 14. Ren, S., He, K., Girshick, R., & Sun, J. (2016). Faster R-CNN: Towards real-time object detection with region proposal networks. arXiv. https://arxiv.org/abs/1506.01497 15. He, K., Zhang, X., Ren, S., & Sun, J. (2015). Spatial pyramid pooling in deep convolutional networks for visual recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence, 37(9), 1904-1916. [CrossRef] 16. Lin, T.-Y., Dollár, P., Girshick, R., He, K., Hariharan, B., & Belongie, S. (2017). Feature pyramid networks for object detection. In Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA (pp. 936-944). [CrossRef] 17. Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., ... & Polosukhin, I. (2017). Attention is all you need. In Advances in neural information processing systems (pp. 5998-6008). 18. Solawetz, J., & Nelson, J. (2020, August 3). PP-YOLO surpasses YOLOv4 - State of the art object detection techniques. Roboflow Blog. Retrieved from https://blog.roboflow.com/pp-yolo-beats-yolov4-object-detection/ 19. Kaune, R. (2012, July). Accuracy studies for TDOA and TOA localization. In Proceedings of the 2012 15th International Conference on Information Fusion, Singapore (pp. 408-415). IEEE. 20. Petkova, L., & Draganov, I. (2020). Noise adaptive Wiener filtering of images. In 2020 55th International Scientific Conference on Information, Communication and Energy Systems and Technologies (ICEST) (pp. 177-180). Niš, Serbia. https://doi.org/10.1109/ICEST49890.2020.9232887 21. Zheng, Z., Wang, P., Ren, D., Liu, W., Ye, R., Hu, Q., & Zuo, W. (2021). Enhancing geometric factors in model learning and inference for object detection 60 and instance segmentation. arXiv. https://arxiv.org/abs/2005.03572 22. Li, X., Wang, W., Wu, L., Chen, S., Hu, X., Li, J., Tang, J., & Yang, J. (2020). Generalized focal loss: Learning qualified and distributed bounding boxes for dense object detection. arXiv. https://arxiv.org/abs/2006.04388 | - |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/94587 | - |
dc.description.abstract | 近年來,台灣政府對於離岸風場及周邊的台灣白海豚棲息地的保護策略逐漸引起社會的關注,因此鯨豚觀測研究的重要性相對提升。過往,精確辨識鯨豚哨叫聲需要以人工方式進行,而此過程極度耗時且效率通常不如人意。雖然目前已經出現某些基於影像處理的電腦視覺方法,但這些方法在環境背景音訊變化大的情況下,無法有效調整辨識閾值,因而限制了其泛用性,且嚴重影響其在不同環境下的辨識能力。為了進行有效觀測,本研究嘗試以深度學習訓練物件偵測模型於經過短時傅立葉轉換(Short-Time Fourier Transform, STFT)產生的頻譜圖中自動識別鯨豚的哨叫聲。方法的核心是使用以YOLO (You Only Look Once) 為基礎的影像物件偵測模型,藉由組合多種前處理技術,包括影像處理和哨叫聲的特徵提取,來確定鯨豚的哨叫聲的發生時間和頻率範圍。本研究利用了多個水下麥克風錄製的音訊資料,對類神經網路模型進行訓練,以其偵測音訊頻譜圖中的哨叫聲,並與其他偵測方法如 NTU_PAM 和 PAMGuard 進行比較。與以往偵測方法相比,本研究提出的方法不需設定固定的閾值如 SNR 閾值、頻譜能量閾值、頻寬閾值和持續時長閾值,即可在不同噪音大小的環境中進行偵測,並且不只在高 SNR (Signal-to-Noise Ratio)值的環境中具有極高的召回率,在中低SNR值的環境依舊能有穩定的偵測表現。此外,本研究以實驗確定最佳之偵測模型參數量,進而實現最佳的模型效果,並且以多通道將不同頻譜圖資訊融合,輸入偵測模型,實驗也確認此資料前處理方式,能有效提升模型的偵測性能。除此之外,本研究亦以多種窗口大小解析度之頻譜圖影像擴增資料的多樣性,並驗證此擴增方法能顯著地提高模型的偵測性能。據此,本研究將可以對鯨豚遷徙觀測及族群變化的監控,提供重要的技術支援。 | zh_TW |
dc.description.abstract | In recent years, Taiwanese government strategies for protecting the habitats of Taiwanese white dolphins near offshore wind farms have gained societal attention, emphasizing the importance of cetacean observation studies. Traditionally, cetacean whistle identification required manual effort, which is time-consuming and inefficient. Existing computer vision methods struggle with threshold adjustments in varying noise environments. This study employs deep learning to train a YOLO-based object detection model for automatically identifying cetacean whistle sounds in spectrograms. Combining image processing and whistle feature extraction, the model determines the occurrence time and frequency range of whistles and uses TDOA for sound source localization. This study uses audio data from multiple underwater microphones to train a neural network model and compares it with NTU_PAM and PAMGuard. Unlike previous methods, our approach does not require fixed thresholds (e.g., SNR, spectral energy, bandwidth, duration) and achieves high recall rates in high SNR environments while maintaining stable performance in medium and low SNR settings. Extensive experiments were conducted to optimize model parameters. A multi-channel data fusion preprocessing method and a dataset augmentation technique using multiple window sizes were developed and validated, significantly enhancing detection performance. This study provides crucial technical support for monitoring cetacean migration and population changes. | en |
dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-08-16T16:53:42Z No. of bitstreams: 0 | en |
dc.description.provenance | Made available in DSpace on 2024-08-16T16:53:42Z (GMT). No. of bitstreams: 0 | en |
dc.description.tableofcontents | 口試委員會審定書 i
誌謝 ii 摘要 iii Abstract iv 目次 v 圖次 vii 表次 viii 第1章 緒論 1 1.1 研究背景及動機 1 1.2 研究目的 1 1.3 研究貢獻 2 1.4 論文架構 3 第2章 相關背景知識及文獻 4 2.1 鯨豚哨叫聲與資料集 4 2.2 中華白海豚 5 2.3 短時距傅立葉變換 5 2.4 PAMGuard 6 2.5 NTU_PAM 7 2.6 YOLO 8 2.7 TDOA 10 第3章 研究方法 11 3.1 資料集建立 11 3.2 模型訓練 18 3.3 哨叫聲匹配 21 第4章 研究結果與討論 24 4.1 實驗規劃及軟體開發環境 24 4.2 評估指標 24 4.3 模型種類 25 4.4 資料前處理 28 4.5 哨叫聲頻譜圖資料擴增 30 4.6 實驗結果與討論 33 第5章 結論 38 參考文獻 40 | - |
dc.language.iso | zh_TW | - |
dc.title | 基於深度學習之鯨豚哨叫聲自動辨識 | zh_TW |
dc.title | Automated Detection of Cetacean Whistles Based on Deep Learning | en |
dc.type | Thesis | - |
dc.date.schoolyear | 112-2 | - |
dc.description.degree | 碩士 | - |
dc.contributor.oralexamcommittee | 江明彰;張瑞益;張恆華;黃乾綱 | zh_TW |
dc.contributor.oralexamcommittee | Ming-Chang Chiang;Jui-Yi Chang ;Heng-Hwa Chang;Chien-Kang Huang | en |
dc.subject.keyword | 類神經網路,深度學習,物件偵測,鯨豚哨叫聲, | zh_TW |
dc.subject.keyword | neural networks,deep learning,object detection,cetacean whistle sounds, | en |
dc.relation.page | 42 | - |
dc.identifier.doi | 10.6342/NTU202403113 | - |
dc.rights.note | 未授權 | - |
dc.date.accepted | 2024-08-13 | - |
dc.contributor.author-college | 工學院 | - |
dc.contributor.author-dept | 工程科學及海洋工程學系 | - |
顯示於系所單位: | 工程科學及海洋工程學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-112-2.pdf 目前未授權公開取用 | 8.17 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。