Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 生物機電工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/94581
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor林達德zh_TW
dc.contributor.advisorTa-Te Linen
dc.contributor.author鄧喬尹zh_TW
dc.contributor.authorChiao-Yin Tengen
dc.date.accessioned2024-08-16T16:51:40Z-
dc.date.available2024-08-17-
dc.date.copyright2024-08-16-
dc.date.issued2024-
dc.date.submitted2024-08-13-
dc.identifier.citationAbd El-Ghany, N. M., Abd El-Aziz, S. E., & Marei, S. S. (2020). A review: application of remote sensing as a promising strategy for insect pests and diseases management. Environmental Science and Pollution Research, 27(27), 33503-33515. https://doi.org/10.1007/s11356-020-09517-2
Arsenovic, M., Karanovic, M., Sladojevic, S., Anderla, A., & Stefanovic, D. (2019). Solving current limitations of deep learning based approaches for plant disease detection. Symmetry, 11(7), 939. https://doi.org/10.3390/sym11070939
Atallah, R., & Al-Mousa, A. (2019). Heart disease detection using machine learning majority voting ensemble method. In 2019 2nd international conference on new trends in computing sciences. https://doi.org/10.1109/ICTCS.2019.8923053
Ballou, D., Wang, R., Pazer, H., & Tayi, G. K. (1998). Modeling information manufacturing systems to determine information product quality. Management Science, 44(4), 462-484. https://doi.org/10.1287/mnsc.44.4.462
Barzman, M., Bàrberi, P., Birch, A. N. E., Boonekamp, P., Dachbrodt-Saaydeh, S., Graf, B., Hommel, B., Jensen, J. E., Kiss, J., Kudsk, P., Lamichhane, J. R., Messéan, A., Moonen, A.-C., Ratnadass, A., Ricci, P., Sarah, J.-L., & Sattin, M. (2015). Eight principles of integrated pest management. Agronomy for Sustainable Development, 35(4), 1199-1215. https://doi.org/10.1007/s13593-015-0327-9
Batty, M. (2012). Smart cities, big data. Environment and Planning B: Planning and Design, 39(2), 191-193.
Boyd, D., & Crawford, K. (2012). Critical questions for big data: Provocations for a cultural, technological, and scholarly phenomenon. Information, Communication & Society, 15(5), 662-679. https://doi.org/10.1080/1369118X.2012.678878
Boyd, D., & Marwick, A. E. (2011). Social privacy in networked publics: Teens’ attitudes, practices, and strategies. In A decade in internet time: Symposium on the dynamics of the internet and society.
Cai, L., & Zhu, Y. (2015). The challenges of data quality and data quality assessment in the big data era. Data Science Journal, 14, 2-2. https://doi.org/10.5334/dsj-2015-002
Chen, H., Chen, J., & Ding, J. (2021). Data evaluation and enhancement for quality improvement of machine learning. IEEE Transactions on Reliability, 70(2), 831-847. https://doi.org/10.1109/TR.2021.3070863
Chodey, M. D., & Noorullah Shariff, C. (2022). Hybrid deep learning model for in-field pest detection on real-time field monitoring. Journal of Plant Diseases and Protection, 129(3), 635-650. https://doi.org/10.1007/s41348-022-00584-w
Dai, Q., Cheng, X., Qiao, Y., & Zhang, Y. (2020). Agricultural pest super-resolution and identification with attention enhanced residual and dense fusion generative and adversarial network. IEEE Access, 8, 81943-81959. https://doi.org/10.1109/ACCESS.2020.2991552
Dawei, W., Limiao, D., Jiangong, N., Jiyue, G., Hongfei, Z., & Zhongzhi, H. (2019). Recognition pest by image‐based transfer learning. Journal of the Science of Food and Agriculture, 99(10), 4524-4531. https://doi.org/10.1002/jsfa.9689
de Aquino, G. R. C., de Farias, C. M., & Pirmez, L. (2018). Data Quality Assessment and Enhancement on Social and Sensor Data. In BiDu-Posters@ VLDB.
Deng, L., Wang, Z., Wang, C., He, Y., Huang, T., Dong, Y., & Zhang, X. (2020). Application of agricultural insect pest detection and control map based on image processing analysis. Journal of Intelligent & Fuzzy Systems, 38(1), 379-389. https://doi.org/10.3233/JIFS-179413
Deng, L., & Yu, D. (2014). Deep learning: methods and applications. Foundations and trends® in signal processing, 7(3–4), 197-387. https://doi.org/10.1561/2000000039
Deswal, M., & Sharma, N. (2014). A simplified review on fast HSV image color and texture detection and image conversion algorithm. International Journal of Computer Science and Mobile Computing, 3(5), 1216-1222.
Dey, A., Bhoumik, D., & Dey, K. N. (2016). Automatic detection of whitefly pest using statistical feature extraction and image classification methods. Int. Res. J. Eng. Technol, 3(06), 1-10.
Ebrahimi, M., Khoshtaghaza, M. H., Minaei, S., & Jamshidi, B. (2017). Vision-based pest detection based on SVM classification method. Computers and Electronics in Agriculture, 137, 52-58. https://doi.org/10.1016/j.compag.2017.03.016
Espinoza, K., Valera, D. L., Torres, J. A., López, A., & Molina-Aiz, F. D. (2016). Combination of image processing and artificial neural networks as a novel approach for the identification of Bemisia tabaci and Frankliniella occidentalis on sticky traps in greenhouse agriculture. Computers and Electronics in Agriculture, 127, 495-505. https://doi.org/doi:10.3390/agriculture10050161
Gao, D., Sun, Q., Hu, B., & Zhang, S. (2020). A framework for agricultural pest and disease monitoring based on internet-of-things and unmanned aerial vehicles. Sensors, 20(5), 1487. https://doi.org/10.3390/s20051487
Gevrey, M., & Worner, S. (2006). Prediction of global distribution of insect pest species in relation to climate by using an ecological informatics method. Journal of Economic Entomology, 99(3), 979-986. https://doi.org/10.1603/0022-0493-99.3.979
He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep residual learning for image recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition. https://doi.org/10.1109/CVPR.2016.90
Howard, A. G., Zhu, M., Chen, B., Kalenichenko, D., Wang, W., Weyand, T., Andreetto, M., & Adam, H. (2017). Mobilenets: Efficient convolutional neural networks for mobile vision applications. arXiv preprint arXiv:1704.04861. https://doi.org/10.48550/arXiv.1704.04861
Huang, G., Liu, Z., Van Der Maaten, L., & Weinberger, K. Q. (2017). Densely connected convolutional networks. In Proceedings of the IEEE conference on computer vision and pattern recognition. https://doi.org/10.1109/CVPR.2017.243
Huddar, S. R., Gowri, S., Keerthana, K., Vasanthi, S., & Rupanagudi, S. R. (2012). Novel algorithm for segmentation and automatic identification of pests on plants using image processing. In 2012 Third International Conference on Computing, Communication and Networking Technologies (ICCCNT'12). https://doi.org/10.1109/ICCCNT.2012.6396012
Jiang, C. F., Peng, H. Y., & Yang, Y. K. (2016). Tail variance of portfolio under generalized Laplace distribution. Applied Mathematics and Computation, 282, 187-203. https://doi.org/10.1016/j.amc.2016.02.005
Kamilaris, A., & Prenafeta-Boldú, F. X. (2018). Deep learning in agriculture: A survey. Computers and Electronics in Agriculture, 147, 70-90. https://doi.org/10.1016/j.compag.2018.02.016
Karkouch, A., Mousannif, H., Al Moatassime, H., & Noel, T. (2016). Data quality in internet of things: A state-of-the-art survey. Journal of Network and Computer Applications, 73, 57-81. https://doi.org/10.1016/j.jnca.2016.08.002
Kasinathan, T., & Uyyala, S. R. (2021). Machine learning ensemble with image processing for pest identification and classification in field crops. Neural Computing and Applications, 33, 7491-7504. https://doi.org/10.1007/s00521-020-05497-z
Kaya, Y., & Kayci, L. (2014). Application of artificial neural network for automatic detection of butterfly species using color and texture features. The visual computer, 30, 71-79. https://doi.org/doi.org/10.1007/s00371-013-0782-8
Khan, S. M., Ali, S., Nawaz, A., Bukhari, S. A. H., Ejaz, S., & Ahmad, S. (2019). Integrated pest and disease management for better agronomic crop production. Agronomic Crops: Volume 2: Management Practices, 385-428. https://doi.org/10.1007/978-981-32-9783-8_19
Kogan, M. (1998). Integrated pest management: historical perspectives and contemporary developments. Annual Review of Entomology, 43(1), 243-270. https://doi.org/10.1146/annurev.ento.43.1.243
Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2012). Imagenet classification with deep convolutional neural networks. Advances in Neural Information Processing Systems, 25. https://doi.org/10.1145/3065386
Kumari, S., Kumar, D., & Mittal, M. (2021). An ensemble approach for classification and prediction of diabetes mellitus using soft voting classifier. International Journal of Cognitive Computing in Engineering, 2, 40-46. https://doi.org/10.1016/j.ijcce.2021.01.001
Lamichhane, J. R., Aubertot, J.-N., Begg, G., Birch, A. N. E., Boonekamp, P., Dachbrodt-Saaydeh, S., … & Messéan, A. (2016). Networking of integrated pest management: A powerful approach to address common challenges in agriculture. Crop Protection, 89, 139-151. https://doi.org/10.1016/j.cropro.2016.07.011
Lathey, A., & Atrey, P. K. (2015). Image enhancement in encrypted domain over cloud. ACM Transactions on Multimedia Computing, Communications, and Applications (TOMM), 11(3), 1-24. https://doi.org/10.1145/2656205
LeCun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning. Nature, 521(7553), 436-444. https://doi.org/10.1038/nature14539
LeCun, Y., Bottou, L., Bengio, Y., & Haffner, P. (1998). Gradient-based learning applied to document recognition. Proceedings of the IEEE, 86(11), 2278-2324. https://doi.org/10.1109/5.726791
Lewis, W. J., Van Lenteren, J., Phatak, S. C., & Tumlinson Iii, J. (1997). A total system approach to sustainable pest management. Proceedings of the National Academy of Sciences, 94(23), 12243-12248. https://doi.org/10.1073/pnas.94.23.12243
Li, F., & Xiong, Y. (2018). Automatic identification of butterfly species based on HoMSC and GLCMoIB. The visual computer, 34(11), 1525-1533. https://doi.org/10.1007/s00371-017-1426-1
Li, W., Huang, R., Li, J., Liao, Y., Chen, Z., He, G., Yan, R., & Gryllias, K. (2022). A perspective survey on deep transfer learning for fault diagnosis in industrial scenarios: Theories, applications and challenges. Mechanical Systems and Signal Processing, 167, 108487. https://doi.org/10.1016/j.ymssp.2021.108487
Lima, M. C. F., de Almeida Leandro, M. E. D., Valero, C., Coronel, L. C. P., & Bazzo, C. O. G. (2020). Automatic detection and monitoring of insect pests—A review. Agriculture, 10(5), 161. https://doi.org/10.3390/agriculture10050161
Lin, M., Chen, Q., & Yan, S. (2013). Network in network. arXiv preprint arXiv:1312.4400. https://doi.org/10.48550/arXiv.1312.4400
Liu, B., Hu, Z., Zhao, Y., Bai, Y., & Wang, Y. (2019). Recognition of pyralidae insects using intelligent monitoring autonomous robot vehicle in natural farm scene. arXiv preprint arXiv:1903.10827. https://doi.org/10.48550/arXiv.1903.10827
Liu, B., Zhang, Y., He, D., & Li, Y. (2017). Identification of apple leaf diseases based on deep convolutional neural networks. Symmetry, 10(1), 11. https://doi.org/10.3390/sym10010011
Liu, J., Li, J., Li, W., & Wu, J. (2016). Rethinking big data: A review on the data quality and usage issues. ISPRS journal of photogrammetry and remote sensing, 115, 134-142. https://doi.org/10.1016/j.isprsjprs.2015.11.006
Liu, J., & Wang, X. (2021). Plant diseases and pests detection based on deep learning: a review. Plant Methods, 17(1), 22. https://doi.org/10.1186/s13007-021-00722-9
Miranda, J. L., Gerardo, B. D., & Tanguilig III, B. T. (2014). Pest detection and extraction using image processing techniques. International Journal of Computer and Communication Engineering, 3(3), 189. https://doi.org/10.3390/agriculture10050161
Mohapatra, S., Patra, D., & Satpathy, S. (2014). An ensemble classifier system for early diagnosis of acute lymphoblastic leukemia in blood microscopic images. Neural Computing and Applications, 24, 1887-1904. https://doi.org/10.1007/s00521-013-1438-3
Nasri, M., Baratchi, M., Tsou, Y. T., Giest, S., Koutamanis, A., & Rieffe, C. (2023). A novel metric to measure spatio-temporal proximity: a case study analyzing children’s social network in schoolyards. Applied Network Science, 8(1), 50. https://doi.org/10.1007/s41109-023-00571-6
Oerke, E.-C. (2006). Crop losses to pests. The Journal of Agricultural Science, 144(1), 31-43. https://doi.org/10.1017/s0021859605005708
Otsu, N. (1979). A threshold selection method from gray-level histograms. Automatica, 11(285-296), 23-27.
Parsons, L., Ross, R., & Robert, K. (2019). A survey on wireless sensor network technologies in pest management applications. SN Applied Sciences, 2(1), 28. https://doi.org/10.1007/s42452-019-1834-0
Pipino, L. L., Lee, Y. W., & Wang, R. Y. (2002). Data quality assessment. Communications of the ACM, 45(4), 211-218.
Potamitis, I., Eliopoulos, P., & Rigakis, I. (2017). Automated remote insect surveillance at a global scale and the internet of things. Robotics, 6(3), 19. https://doi.org/10.3390/robotics6030019
Puljak, L. (2016). Using social media for knowledge translation, promotion of evidence‐based medicine and high‐quality information on health. Journal of Evidence‐Based Medicine, 9(1), 4-7. https://doi.org/10.1111/jebm.12175
Rustia, D. J. A., Lin, C. E., Chung, J.-Y., Zhuang, Y.-J., Hsu, J.-C., & Lin, T.-T. (2020). Application of an image and environmental sensor network for automated greenhouse insect pest monitoring. Journal of Asia-Pacific Entomology, 23(1), 17-28. https://doi.org/10.1016/j.aspen.2019.11.006
Rustia, D. J. A., Chiu, L. Y., Lu, C. Y., Wu, Y. F., Chen, S. K., Chung, J. Y., ... & Lin, T. T. (2022). Towards intelligent and integrated pest management through an AIoT‐based monitoring system. Pest Management Science, 78(10), 4288-4302. https://doi.org/10.1002/ps.7048
Sara, U., Akter, M., & Uddin, M. S. (2019). Image quality assessment through FSIM, SSIM, MSE and PSNR—a comparative study. Journal of Computer and Communications, 7(3), 8-18. https://doi.org/10.4236/jcc.2019.73002
Silveira, M., & Monteiro, A. (2009). Automatic recognition and measurement of butterfly eyespot patterns. Biosystems, 95(2), 130-136. https://doi.org/10.1016/j.biosystems.2008.09.004
Simonyan, K., & Zisserman, A. (2014). Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556. https://doi.org/10.48550/arXiv.1409.1556
Skendžić, S., Zovko, M., Živković, I. P., Lešić, V., & Lemić, D. (2021). The impact of climate change on agricultural insect pests. Insects, 12(5), 440. https://doi.org/10.3390/insects12050440
Susanto, A., Dewantoro, Z. H., Sari, C. A., Setiadi, D. R. I. M., Rachmawanto, E. H., & Mulyono, I. U. W. (2020, July). Shallot quality classification using HSV color models and size identification based on Naive Bayes classifier. In Journal of Physics: Conference Series (Vol. 1577, No. 1, p. 012020). IOP Publishing. https://doi.org/10.1088/1742-6596/1577/1/012020
Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., Erhan, D., Vanhoucke, V., & Rabinovich, A. (2015). Going deeper with convolutions. In Proceedings of the IEEE conference on computer vision and pattern recognition. https://doi.org/10.1109/CVPR.2015.7298594
Tan, C., Sun, F., Kong, T., Zhang, W., Yang, C., & Liu, C. (2018). A survey on deep transfer learning. Artificial Neural Networks and Machine Learning–ICANN 2018: 27th International Conference on Artificial Neural Networks, Rhodes, Greece, October 4-7, 2018, Proceedings, Part III 27.
Tan, M., & Le, Q. (2019). Efficientnet: Rethinking model scaling for convolutional neural networks. In International conference on machine learning.
Thenmozhi, K., & Reddy, U. S. (2019). Crop pest classification based on deep convolutional neural network and transfer learning. Computers and Electronics in Agriculture, 164, 104906. https://doi.org/10.1016/j.compag.2019.104906
Torrey, L., & Shavlik, J. (2010). Transfer learning. In Handbook of research on machine learning applications and trends: algorithms, methods, and techniques (pp. 242-264). IGI global. https://doi.org/10.4018/978-1-60566-766-9.ch011
Voulodimos, A., Doulamis, N., Doulamis, A., & Protopapadakis, E. (2018). Deep learning for computer vision: A brief review. Computational intelligence and neuroscience, 2018. https://doi.org/10.1155/2018/7068349
Wang, J., Lin, C., Ji, L., & Liang, A. (2012). A new automatic identification system of insect images at the order level. Knowledge-Based Systems, 33, 102-110. https://doi.org/10.1016/j.knosys.2012.03.014
Wang, X., Wang, C., Yao, J., Fan, H., Wang, Q., Ren, Y., & Gao, Q. (2022). Comparisons of deep learning and machine learning while using text mining methods to identify suicide attempts of patients with mood disorders. Journal of affective disorders, 317, 107-113. https://doi.org/10.1016/j.jad.2022.08.054
Wang, C. Y., Bochkovskiy, A., & Liao, H. Y. M. (2023). YOLOv7: Trainable bag-of-freebies sets new state-of-the-art for real-time object detectors. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition (pp. 7464-7475). https://doi.org/10.48550/arXiv.2207.02696
Wen, C., Wu, D., Hu, H., & Pan, W. (2015). Pose estimation-dependent identification method for field moth images using deep learning architecture. biosystems engineering, 136, 117-128. https://doi.org/10.1016/j.biosystemseng.2015.06.002
Xin, M., & Wang, Y. (2021). Image recognition of crop diseases and insect pests based on deep learning. Wireless Communications and Mobile Computing, 2021, 1-15. https://doi.org/10.1155/2021/5511676
Zamir, S. W., Arora, A., Khan, S., Hayat, M., Khan, F. S., & Yang, M.-H. (2022). Restormer: Efficient transformer for high-resolution image restoration. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition. https://doi.org/10.1109/CVPR52688.2022.00564
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/94581-
dc.description.abstract在農作物生產中,蟲害被認為是對農業生產的最大威脅之一。它們危害農作物的生長,降低作物產量,對農業經濟收益造成重大損失。精確獲取作物栽培環境中害蟲種類與數量的資訊對於蟲害整合管理(IPM)至關重要。在之前的研究中,我們開發出一套基於深度學習方法的AIoT影像設備,專門用於通過黏蟲紙獲取的影像,利用深度學習辨識害蟲種類與數量。儘管先前已取得初步研究成果,但在灰塵和水分干擾、光照條件變化及影像模糊等挑戰下,仍可能導致害蟲的錯誤分類和數量計算不準確。為確保蟲害整合管理的有效性,本研究的目標是開發一個整體框架,用於提升害蟲檢測、分類和數據分析。我們採用YOLOv7模型來替代之前的YOLOv3-Tiny模型,專門用於黏蟲紙影像的物體檢測。結果顯示,YOLOv7模型在各個實驗場域中均達到0.95以上的mAP@.5表現。後續使用ResNet-18模型進行害蟲分類,達到整體害蟲分類模型的F1-score為0.988。此外,利用時空間分析對一段時間內蒐集的黏蟲紙影像進行害蟲種類和數量的調整。創立一個動態的二維數組來記錄在黏蟲紙影像中檢測到害蟲的位置和時間。通過多數決投票算法與對應座標的時空間分析,修正每個時間點害蟲的種類與數量,從而最大限度地減少害蟲的錯誤分類和數量計算不準確。相比於人工統計的真實數據,MAPE誤差僅約為5%。分析結果顯示,本研究所提出的框架能有效提升害蟲辨識模型效能和整體資料品質。zh_TW
dc.description.abstractEffective integrated pest management (IPM) in crop production depends on precise information about the quantity and species of insect pests in the crop cultivation environment. In our prior work, we developed AIoT imaging devices employing a deep learning approach tailored for the automated counting and classification of insect pests through acquired images from sticky paper traps. Notwithstanding the previous progress achieved, challenges persist in mitigating issues such as interference from dust and water, variations in lighting conditions, and blurred images, ultimately resulting in the misclassification and miscounting of insect pests. To ensure the effectiveness of integrated pest management, securing accurate data on the types and quantities of insect pests present within the field is crucial. Thus, the objective of this research aims to develop a holistic framework for enhancement of insect pest detection, classification, and data analysis. This involves adopting the YOLOv7 model for object detection models specifically applied to images obtained from sticky paper traps, as a replacement for the prior approach employing the YOLOv3-tiny model. The results demonstrated that the proposed method achieved an average mAP exceeding 0.95, and employing ResNet-18 for insect pest classification, achieving an overall F1-score of 0.988. Additionally, subsequent method involves insect pest count modification using spatiotemporal analysis for a series of sticky paper trap images. A dynamic two-dimensional array was created to log the location and times at which insect pests were detected on the sticky paper trap images. Employing a voting algorithm can ascertain the definitive count of insect pests for each time interval, thereby minimizing the potential for miscounts, achieved a MAPE error of only about 5% compared to ground truth. The analysis results indicate that the proposed framework effectively enhances the insect pest recognition performance and the overall data quality.en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-08-16T16:51:40Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2024-08-16T16:51:40Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents誌謝 i
中文摘要 ii
英文摘要 iii
Table of Contents v
List of Figures viii
List of Tables xi
CHAPTER 1 Introduction 1
1.1 Background of the study 1
1.2 Objectives 3
CHAPTER 2 Literature Review 5
2.1 Image-based insect pest recognition techniques 5
2.1.1 Traditional image processing methods 5
2.1.2 Machine learning techniques 7
2.1.3 Deep learning techniques 9
2.2 Image quality assessment 12
2.2.1 Application in insect pest monitoring 12
2.2.2 Image curation 13
2.2.3 Image quality enhancement 14
2.2.4 Indexes of image quality assessment 15
2.3 Data quality assessment 17
2.3.1 Applications of enhancing data quality 17
2.3.2 Indexes of data quality assessment 18
2.4 Application of voting and spatiotemporal analysis 19
2.4.1 Feature extraction in machine learning 19
2.4.2 Ensemble voting mechanism 20
2.4.3 Spatiotemporal analysis 21
CHAPTER 3 Materials and Methods 23
3.1 System overview 23
3.2 System architecture 24
3.2.1 Image curation 24
3.2.2 Model training 25
3.2.3 Data analysis 29
3.3 Experimental sites 32
3.4 Data collection 38
3.4.1 Wireless sensor network module 38
3.4.2 Target insect pests 39
3.4.3 Data augmentation 40
3.5 Size feature extraction 41
3.6 Model evaluation 43
3.7 System status front-end 47
3.7.1 MQTT broker 47
3.7.2 Website 49
CHAPTER 4 Results and discussion 51
4.1 Sticky paper image curation method 51
4.1.1 Unsupervised k-means clustering 52
4.1.2 Image curation results on six experimental sites 54
4.2 Object detection model development 55
4.2.1 YOLOv3-Tiny vs. YOLOv7 56
4.2.2 YOLOv7 training results of six experimental sites 57
4.2.3 YOLOv7 training results of sites combination 59
4.2.4 YOLOv7 training results of different crop types 59
4.3 Insect pest classification model development 60
4.3.1 Classification model comparison 61
4.3.2 Results of data augmentation 64
4.3.3 Results of size feature extraction 66
4.4 Spatiotemporal algorithm analysis 67
4.4.1 Raw data analysis and ground truth 70
4.4.2 Spatiotemporal algorithm 71
4.4.3 Model evaluation and data analysis 72
4.5 Reduction of missing data 77
CHAPTER 5 Conclusions and Recommendations 79
5.1 Conclusions 79
5.2 Recommendations 80
References 81
-
dc.language.isoen-
dc.subject影像前處理zh_TW
dc.subject病蟲害整合管理zh_TW
dc.subject時空間分佈演算法分析zh_TW
dc.subject害蟲分類模型zh_TW
dc.subject物件偵測模型zh_TW
dc.subjectobject detectionen
dc.subjectinsect pest classificationen
dc.subjectspatiotemporal analysisen
dc.subjectimage curationen
dc.subjectintegrated pest managementen
dc.title應用影像庋用與機器學習於智慧害蟲監測系統資料品質之提升zh_TW
dc.titleEnhancing Data Quality in Intelligent Insect Pest Monitoring System with Image Curation and Machine Learningen
dc.typeThesis-
dc.date.schoolyear112-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee陳世芳;張仲良zh_TW
dc.contributor.oralexamcommitteeShih-Fang Chen;Chung-Liang Changen
dc.subject.keyword病蟲害整合管理,影像前處理,物件偵測模型,害蟲分類模型,時空間分佈演算法分析,zh_TW
dc.subject.keywordintegrated pest management,image curation,object detection,insect pest classification,spatiotemporal analysis,en
dc.relation.page91-
dc.identifier.doi10.6342/NTU202404155-
dc.rights.note同意授權(全球公開)-
dc.date.accepted2024-08-14-
dc.contributor.author-college生物資源暨農學院-
dc.contributor.author-dept生物機電工程學系-
顯示於系所單位:生物機電工程學系

文件中的檔案:
檔案 大小格式 
ntu-112-2.pdf4.94 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved