Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 生物機電工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/94574
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor林達德zh_TW
dc.contributor.advisorTa-Te Linen
dc.contributor.author廖晨宇zh_TW
dc.contributor.authorChen-Yu Liaoen
dc.date.accessioned2024-08-16T16:49:13Z-
dc.date.available2025-02-12-
dc.date.copyright2024-08-16-
dc.date.issued2024-
dc.date.submitted2024-08-12-
dc.identifier.citationAllen, J., Hall, L., Collier, R., & Smith, J. (2015). Effect of core body temperature, time of day, and climate conditions on behavioral patterns of lactating dairy cows experiencing mild to moderate heat stress. Journal of dairy science, 98(1), 118-127.
Ammer, S., Lambertz, C., & Gauly, M. (2016). Comparison of different measuring methods for body temperature in lactating cows under different climatic conditions. Journal of Dairy Research, 83(2), 165-172.
Bochkovskiy, A., Wang, C.-Y., & Liao, H.-Y. M. (2020). Yolov4: Optimal speed and accuracy of object detection. arXiv preprint arXiv:2004.10934.
Caldara, F. R., Dos Santos, L. S., Machado, S. T., Moi, M., de Alencar Nääs, I., Foppa, L., Garcia, R. G., & Dos Santos, R. d. K. S. (2014). Piglets’ surface temperature change at different weights at birth. Asian-Australasian journal of animal sciences, 27(3), 431.
Chellapilla, K., Puri, S., & Simard, P. (2006). High performance convolutional neural networks for document processing. Tenth international workshop on frontiers in handwriting recognition,
Collier, R. J., Baumgard, L. H., Zimbelman, R. B., & Xiao, Y. (2019). Heat stress: physiology of acclimation and adaptation. Animal Frontiers, 9(1), 12-19. https://doi.org/10.1093/af/vfy031
Deng, J., Guo, J., Xue, N., & Zafeiriou, S. (2019). Arcface: Additive angular margin loss for deep face recognition. Proceedings of the IEEE/CVF conference on computer vision and pattern recognition,
Fleischer, P., Metzner, M., Beyerbach, M., Hoedemaker, M., & Klee, W. (2001). The relationship between milk yield and the incidence of some diseases in dairy cows. Journal of dairy science, 84(9), 2025-2035.
Fourichon, C., Seegers, H., Bareille, N., & Beaudeau, F. (1999). Effects of disease on milk production in the dairy cow: a review. Preventive veterinary medicine, 41(1), 1-35.
Gade, R., & Moeslund, T. B. (2014). Thermal cameras and applications: a survey. Machine vision and applications, 25, 245-262.
Giro, A., de Campos Bernardi, A. C., Junior, W. B., Lemes, A. P., Botta, D., Romanello, N., do Nascimento Barreto, A., & Garcia, A. R. (2019). Application of microchip and infrared thermography for monitoring body temperature of beef cattle kept on pasture. Journal of Thermal Biology, 84, 121-128.
Giuliodori, M. J., Magnasco, R., Becu-Villalobos, D., Lacau-Mengido, I., Risco, C., & de la Sota, R. L. (2013). Metritis in dairy cows: Risk factors and reproductive performance. Journal of dairy science, 96(6), 3621-3631.
Godyń, D., Herbut, P., & Angrecka, S. (2019). Measurements of peripheral and deep body temperature in cattle–A review. Journal of Thermal Biology, 79, 42-49.
Guillaumin, M., Verbeek, J., & Schmid, C. (2009). Is that you? Metric learning approaches for face identification. 2009 IEEE 12th international conference on computer vision,
Gunther, M., Cruz, S., Rudd, E. M., & Boult, T. E. (2017). Toward open-set face recognition. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops,
Hicks, L., Hicks, W., Bucklin, R., Shearer, J., Bray, D., Soto, P., & Carvalho, V. (2001). Comparison of methods of measuring deep body temperatures of dairy cows. Livestock Environment VI, Proceedings of the 6th International Symposium 2001,
Hoffmann, G., Schmidt, M., Ammon, C., Rose-Meierhöfer, S., Burfeind, O., Heuwieser, W., & Berg, W. (2013). Monitoring the body temperature of cows and calves using video recordings from an infrared thermography camera. Veterinary research communications, 37, 91-99. https://doi.org/10.1007/s11259-012-9549-3
Howard, A. G., Zhu, M., Chen, B., Kalenichenko, D., Wang, W., Weyand, T., Andreetto, M., & Adam, H. (2017). Mobilenets: Efficient convolutional neural networks for mobile vision applications. arXiv preprint arXiv:1704.04861.
Hu, J., Lu, J., & Tan, Y.-P. (2014). Discriminative deep metric learning for face verification in the wild. Proceedings of the IEEE conference on computer vision and pattern recognition,
Jiang, P., Ergu, D., Liu, F., Cai, Y., & Ma, B. (2022). A Review of Yolo algorithm developments. Procedia computer science, 199, 1066-1073.
Jin, X., & Tan, X. (2017). Face alignment in-the-wild: A survey. Computer Vision and Image Understanding, 162, 1-22.
Kaya, M., & Bilge, H. Ş. (2019). Deep metric learning: A survey. Symmetry, 11(9), 1066.
Koonce, B., & Koonce, B. (2021). ResNet 50. Convolutional neural networks with swift for tensorflow: image recognition and dataset categorization, 63-72.
Kryszkiewicz, M. (2014). The cosine similarity in terms of the euclidean distance. In Encyclopedia of Business Analytics and Optimization (pp. 2498-2508). IGI Global.
Li, L., Mu, X., Li, S., & Peng, H. (2020). A review of face recognition technology. IEEE access, 8, 139110-139120.
Liang, D., Arnold, L., Stowe, C., Harmon, R., & Bewley, J. (2017). Estimating US dairy clinical disease costs with a stochastic simulation model. Journal of dairy science, 100(2), 1472-1486.
Liu, J., Li, L., Chen, X., Lu, Y., & Wang, D. (2019). Effects of heat stress on body temperature, milk production, and reproduction in dairy cows: A novel idea for monitoring and evaluation of heat stress—A review. Asian-Australasian journal of animal sciences, 32(9), 1332.
Ma, S., Yao, Q., Masuda, T., Higaki, S., Yoshioka, K., Arai, S., Takamatsu, S., & Itoh, T. (2020). Development of an Anomaly Detection System for Cattle Using Infrared Image and Machine Learning. Sensors & Materials, 32. https://doi.org/10.18494/SAM.2020.2913
Marsot, M., Mei, J., Shan, X., Ye, L., Feng, P., Yan, X., Li, C., & Zhao, Y. (2020). An adaptive pig face recognition approach using Convolutional Neural Networks. Computers and Electronics in Agriculture, 173, 105386.
Minaee, S., Boykov, Y., Porikli, F., Plaza, A., Kehtarnavaz, N., & Terzopoulos, D. (2021). Image segmentation using deep learning: A survey. IEEE transactions on pattern analysis and machine intelligence, 44(7), 3523-3542.
Nguyen, H. V., & Bai, L. (2010). Cosine similarity metric learning for face verification. Asian conference on computer vision,
Nikkhah, A., RezaGholivand, A., & Khabbazan, M. (2021). Milk yield depression and its economic loss due to production diseases: Iran’s large dairy herds. Iranian Journal of Veterinary Research, 22(2), 136.
Peng, D., Chen, S., Li, G., Chen, J., Wang, J., & Gu, X. (2019). Infrared thermography measured body surface temperature and its relationship with rectal temperature in dairy cows under different temperature-humidity indexes. International Journal of Biometeorology, 63, 327-336. https://doi.org/10.1007/s00484-018-01666-x
Pereira, R., Carvalho, G., Garrote, L., & Nunes, U. J. (2022). Sort and deep-SORT based multi-object tracking for mobile robotics: Evaluation with new data association metrics. Applied Sciences, 12(3), 1319.
Piccione, G., Caola, G., & Refinetti, R. (2003). Daily and estrous rhythmicity of body temperature in domestic cattle. BMC physiology, 3, 1-8.
Qian, G., Sural, S., Gu, Y., & Pramanik, S. (2004). Similarity between Euclidean and cosine angle distance for nearest neighbor queries. Proceedings of the 2004 ACM symposium on Applied computing,
Rasmussen, P., Barkema, H. W., Osei, P. P., Taylor, J., Shaw, A. P., Conrady, B., Chaters, G., Muñoz, V., Hall, D. C., & Apenteng, O. O. (2024). Global losses due to dairy cattle diseases: A comorbidity-adjusted economic analysis. Journal of dairy science.
Samaria, F. S., & Harter, A. C. (1994). Parameterisation of a stochastic model for human face identification. Proceedings of 1994 IEEE workshop on applications of computer vision,
Seegers, H., Fourichon, C., & Beaudeau, F. (2003). Production effects related to mastitis and mastitis economics in dairy cattle herds. Veterinary research, 34(5), 475-491.
Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., & Wojna, Z. (2016). Rethinking the inception architecture for computer vision. Proceedings of the IEEE conference on computer vision and pattern recognition,
Targ, S., Almeida, D., & Lyman, K. (2016). Resnet in resnet: Generalizing residual architectures. arXiv preprint arXiv:1603.08029.
Uddin, J., McNeill, D. M., Lisle, A. T., & Phillips, C. J. (2020). A sampling strategy for the determination of infrared temperature of relevant external body surfaces of dairy cows. International Journal of Biometeorology, 64, 1583-1592. https://doi.org/10.1007/s00484-020-01939-4
Wang, C.-Y., Bochkovskiy, A., & Liao, H.-Y. M. (2023). YOLOv7: Trainable bag-of-freebies sets new state-of-the-art for real-time object detectors. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 7464-7475. https://doi.org/10.6919/ICJE.202212_8(12).0015
Wang, F.-K., Shih, J.-Y., Juan, P.-H., Su, Y.-C., & Wang, Y.-C. (2021). Non-invasive cattle body temperature measurement using infrared thermography and auxiliary sensors. Sensors, 21(7), 2425.
Wang, H., Wang, Y., Zhou, Z., Ji, X., Gong, D., Zhou, J., Li, Z., & Liu, W. (2018). Cosface: Large margin cosine loss for deep face recognition. Proceedings of the IEEE conference on computer vision and pattern recognition,
Wang, J., Zhou, F., Wen, S., Liu, X., & Lin, Y. (2017). Deep metric learning with angular loss. Proceedings of the IEEE international conference on computer vision,
Wang, X., Peng, J., Zhang, S., Chen, B., Wang, Y., & Guo, Y. (2022). A survey of face recognition. arXiv preprint arXiv:2212.13038.
Wang, X., Wang, S., Chi, C., Zhang, S., & Mei, T. (2020). Loss function search for face recognition. International Conference on Machine Learning,
Wheelock, J. B., Rhoads, R. P., VanBaale, M. J., Sanders, S. R., & Baumgard, L. H. (2010). Effects of heat stress on energetic metabolism in lactating Holstein cows. Journal of dairy science, 93(2), 644-655.
Xudong, Z., Xi, K., Ningning, F., & Gang, L. (2020). Automatic recognition of dairy cow mastitis from thermal images by a deep learning detector. Computers and Electronics in Agriculture, 178, 105754.
Yilmaz, A., Javed, O., & Shah, M. (2006). Object tracking: A survey. ACM computing surveys (csur), 38(4), 13-es.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/94574-
dc.description.abstract本研究提出了一個基於牛臉辨識與熱影像技術的自動化乳牛體溫監測系統,旨在提升乳牛疾病的早期檢測與管理效率。系統分為三個主要部分:首先,使用熱成像網絡攝像機結合YOLOv4 牛眼偵測模型實時測量牛眼溫度,該模型有著0.9的準確度;其次,通過Resnet50 CNN 骨架結合Arcface 損失函數採用度量學習的策略進行牛臉辨識;最後,將溫度數據與牛的身份結合起來。該系統能自動記錄每頭牛的每日體溫數據,並分析這些長期數據以估計每頭牛的日常體溫是否在合理範圍內,從而實現異常體溫的早期預警 。系統使用了YOLOv8模型進行牛臉偵測(mAP@50 = 0.987),並引入了YOLOv8實例分割技術 (mAP@50 = 0.992) 以及SORT (Simple Online and Realtime Tracking) 物件追蹤演算法來提高圖像質量和辨識精度,以克服系統實際部署至場域中遇到的辨識問題。通過這些技術的結合,系統能夠在現實場景中有效應對圖像遮擋和質量不佳的問題,最終在現實場景的應用中達到了0.82的準確度。我們分別在台大實驗牧場及豐樂牧場進行為期兩個月的溫度監測,台大實驗牧場的平均眼溫為35.35 ± 0.75°C,而豐樂牧場的平均眼溫為35.25 ± 1.19°C 。這些結果表明,系統能夠有效監測乳牛的眼溫,紀錄個體牛隻每日眼溫並且根據統計資料找出當日眼溫異常的牛隻。同時我們也觀察到使用熱影像攝影機為乳牛測溫時THI指數與量測到的溫度有著高達0.84的相關係數。此外,系統也分析了牛眼移動速度和不同觀測區域對溫度測量結果的影響,發現這些因素對溫度分佈的影響並不顯著。結果顯示本研究所開發的系統能夠為成功監測個體乳牛眼溫為牧場經營提供一個可靠的工具,有助於提高乳牛健康管理的效率和準確性。zh_TW
dc.description.abstractThis study presents an automated dairy cow temperature monitoring system based on cow face recognition and thermal imaging technology, aiming to enhance the efficiency of early disease detection and management in dairy cows. The system comprises three main components: first, it uses a thermal imaging network camera combined with the YOLOv4 cow eye detection model to measure cow eye temperatures in real-time, achieving an accuracy of 0.9; second, cow face recognition is performed using a ResNet50 CNN architecture combined with the ArcFace loss function, employing a metric learning strategy; finally, it integrates temperature data with cow identities. The system can automatically record each cow's daily temperature data and analyze these long-term data to estimate whether the daily temperatures of each cow fall within a reasonable range, thereby enabling early warning of abnormal temperatures.
The system employs the YOLOv8 model for cow face detection (mAP@50 = 0.987) and incorporates YOLOv8 instance segmentation (mAP@50 = 0.992) along with the SORT (Simple Online and Realtime Tracking) object tracking algorithm to enhance image quality and recognition accuracy, addressing the identification challenges encountered during real-world deployment. Through the combination of these technologies, the system effectively handles image occlusion and poor quality issues, ultimately achieving an accuracy of 0.82 in real-world applications.
We conducted two-month eye temperature monitoring at the NTU Experimental Farm and Home Love Farm. The average eye temperatures recorded were 35.35 ± 0.75°C at the NTU farm and 35.25 ± 1.19°C at Home Love farm. These results indicate that the system can effectively monitor cow eye temperatures, record daily eye temperatures for individual cows, and identify cows with abnormal eye temperatures based on statistical data. Additionally, we observed a high correlation coefficient of 0.84 between the Temperature-Humidity Index (THI) and the measured eye temperatures when using thermal imaging cameras for cow temperature monitoring.
Moreover, the system analyzed the impact of cow eye position movement speed and different observation areas on eye temperature measurement results, finding that these factors did not significantly affect eye temperature distribution. The results demonstrate that the developed system provides a reliable tool for successfully monitoring individual cow eye temperatures, contributing to improved efficiency and accuracy in dairy cow health management.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-08-16T16:49:13Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2024-08-16T16:49:13Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents誌謝 i
摘要 ii
Abstract iii
Table of Contents v
List of Figures ix
List of Tables xiv
Chapter 1 Introduction 1
1.1 General Background Information 1
1.2 Research Objectives 6
Chapter 2 Literature Review 8
2.1 Temperature Anomaly of Dairy Cow 8
2.1.1. Clinical mastitis and subclinical mastitis 9
2.1.2. Metritis 10
2.1.3. Milk Fever 11
2.1.4. Retained Placenta 11
2.1.5. Heat Stress 12
2.2 Dairy Cow Body Temperature Monitoring 13
2.2.1. Rectal Temperature Measurement 15
2.2.2. Ear Canal Temperature Measurement 15
2.2.3. Oral Temperature Measurement 15
2.2.4. Rumen Temperature Measurement 16
2.2.5. Contactless temperature monitoring 17
2.3 Thermal Imaging 18
2.3.1. Principles of Thermal Imaging 18
2.3.2. Thermal imaging applies to cow temperature monitoring 19
2.4 Object Detection Based on Deep Learning 22
2.5 Face Recognition 25
Chapter 3 Materials and Methods 29
3.1 Experimental Animals and Sites 29
3.1.1. Experimental Animals 29
3.1.2. Experimental Sites 30
3.2 Dairy Cow Eye Temperature Monitoring System 32
3.2.1. Thermal Camera 34
3.2.2. System Hardware Architecture 38
3.2.3. System Software Architecture 39
3.2.3.1. Eye Temperature Monitoring Program 40
3.2.3.2. Cow Facial Recognition Program 41
3.2.3.3. Daily Body Temperature Calculation 42
3.3 Training Data Collection 42
3.3.1. Cow Eye Detection Dataset 43
3.3.2. Cow Face Detection Dataset 44
3.3.3. Cow Face Instance Segmentation Dataset 44
3.3.4. Cow Face Recognition Dataset 45
3.4 Cow Eye Detection Algorithm 47
3.5 Cow Face Recognition Algorithm 49
3.5.1. Cow Face Detection 49
3.5.2. Cow Face Instance Segmentation 52
3.5.3. Cow Face Feature Extraction 54
3.5.4. Cow Face Identification 56
3.6 Dairy Cow Identification and Temperature Matching Algorithm 59
3.6.1. Cow Face Recognition Strategy for Video Clips 59
3.6.2. Cow Face Tracking Algorithm 60
3.6.3. Qualified Temperature Data Determination 61
3.6.4. Cow Identification and Temperature Matching 62
Chapter 4 Results and Discussion 65
4.1 Cow Face Detection 65
4.2 Cow Face Segmentation 69
4.3 Cow Face Recognition 75
4.3.1. Feature Extraction 75
4.3.2. Cow Face Identification 79
4.3.3. Identification and Temperature Matching Algorithm 83
4.4 Cow Eye Temperature Monitoring 91
4.5 Temperature Data Analysis 94
4.5.1. Individual cow eye temperature analysis 97
4.5.2. Temperature measurement analysis 107
4.5.3. Correlation between cow eye temperature and environment 113
4.6 Temperature Anomaly Detection 117
Chapter 5 Conclusions and Suggestions 126
5.1 Conclusions 126
5.2 Suggestions 128
Reference 130
Appendix 134
-
dc.language.isoen-
dc.title基於牛臉辨識與熱影像技術之自動化乳牛眼溫監測系統zh_TW
dc.titleAutomated Dairy Cow Identification and Eye Temperature Monitoring System Using Deep Learning and Thermal Imagingen
dc.typeThesis-
dc.date.schoolyear112-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee郭彥甫;徐濟泰zh_TW
dc.contributor.oralexamcommitteeYan-Fu Kuo;Jih-Tay Hsuen
dc.subject.keyword牛臉辨識,Arcface Loss,深度學習,乳牛眼溫監測,熱影像測溫,zh_TW
dc.subject.keywordcow face recognition,Arcface Loss,deep learning,cow eye temperature monitoring,infrared temperature measurement,en
dc.relation.page155-
dc.identifier.doi10.6342/NTU202404219-
dc.rights.note未授權-
dc.date.accepted2024-08-13-
dc.contributor.author-college生物資源暨農學院-
dc.contributor.author-dept生物機電工程學系-
dc.date.embargo-liftN/A-
顯示於系所單位:生物機電工程學系

文件中的檔案:
檔案 大小格式 
ntu-112-2.pdf
  目前未授權公開取用
34.37 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved