Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 資訊網路與多媒體研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/94559
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor蔡欣穆zh_TW
dc.contributor.advisorHsin-Mu Tsaien
dc.contributor.author李昱廷zh_TW
dc.contributor.authorYu-Ting Lien
dc.date.accessioned2024-08-16T16:44:13Z-
dc.date.available2024-08-17-
dc.date.copyright2024-08-16-
dc.date.issued2024-
dc.date.submitted2024-08-14-
dc.identifier.citationReferences
[1] World Health Organization, “Road traffic injuries.” [Online]. Available: https://www.who.int/news-room/fact-sheets/detail/road-traffic-injuries
[2] m. lu, k. Wevers, and R. Heijden, “Technical feasibility of advanced driver assistance systems (ADAS) for road safety,” Transportation Planning and Technology, vol. 28, pp. 167–181, Jan. 2005.
[3] J. B. Cicchino, “Effects of blind spot monitoring systems on police-reported lane-change crashes,” Traffic Injury Prevention, vol. 19, no. 6, pp. 615–622, Aug. 2018.
[4] G. Liu, L. Wang, and S. Zou, “A radar-based blind spot detection and warning system for driver assistance,” in 2017 IEEE 2nd Advanced Information Technology, Electronic and Automation Control Conference (IAEAC), Mar. 2017, pp. 2204–2208.
[5] B.-F. Wu, H.-Y. Huang, C.-J. Chen, Y.-H. Chen, C.-W. Chang, and Y.-L. Chen, “A vision-based blind spot warning system for daytime and nighttime driver assistance,” Computers & Electrical Engineering, vol. 39, no. 3, pp. 846–862, Apr. 2013.
[6] Volvo Car Corporation, “V60 Limitations for camera and radar units | Volvo Support EN-TH.” [Online]. Available: https://www.volvocars.com/en-th/support/car/v60/article/0de55a93bacde9b3c0a801514681db50
[7] S. Chadwick, W. Maddern, and P. Newman, “Distant Vehicle Detection Using Radar and Vision,” in 2019 International Conference on Robotics and Automation (ICRA), May 2019, pp. 8311–8317.
[8] B. Xu, O. Wolfson, and H. J. Cho, “Monitoring neighboring vehicles for safety via V2V communication,” in Proceedings of 2011 IEEE International Conference on Vehicular Electronics and Safety, Jul. 2011, pp. 280–285.
[9] V. Vibin, P. Sivraj, and V. Vanitha, “Implementation of In-Vehicle and V2V Communication with Basic Safety Message Format,” in 2018 International Conference on Inventive Research in Computing Applications (ICIRCA), Jul. 2018, pp. 637–642.
[10] Z. Yang, Z. Zhou, and Y. Liu, “From RSSI to CSI: Indoor localization via channel response,” ACM Computing Surveys, vol. 46, no. 2, pp. 25:1–25:32, Dec. 2013.
[11] Y. Ma, G. Zhou, and S. Wang, “WiFi Sensing with Channel State Information: A Survey,” ACM Computing Surveys, vol. 52, no. 3, pp. 46:1–46:36, Jun. 2019.
[12] M. Kotaru, K. Joshi, D. Bharadia, and S. Katti, “SpotFi: Decimeter Level Localization Using WiFi,” ACM SIGCOMM Computer Communication Review, vol. 45, no. 4, pp. 269–282, Aug. 2015.
[13] R. Zhou, X. Lu, P. Zhao, and J. Chen, “Device-Free Presence Detection and Localization With SVM and CSI Fingerprinting,” IEEE Sensors Journal, vol. 17, no. 23, pp. 7990–7999, Dec. 2017.
[14] K. Qian, C. Wu, Y. Zhang, G. Zhang, Z. Yang, and Y. Liu, “Widar2.0: Passive Human Tracking with a Single Wi-Fi Link,” in Proceedings of the 16th Annual International Conference on Mobile Systems, Applications, and Services, ser. MobiSys ’18. New York, NY, USA: Association for Computing Machinery, Jun. 2018, pp. 350–361.
[15] K. Qian, C. Wu, Z. Zhou, Y. Zheng, Z. Yang, and Y. Liu, “Inferring Motion Direction using Commodity Wi-Fi for Interactive Exergames,” in Proceedings of the 2017 CHI Conference on Human Factors in Computing Systems, ser. CHI ’17. New York, NY, USA: Association for Computing Machinery, May 2017, pp. 1961–1972.
[16] D. Vasisht, S. Kumar, and D. Katabi, “Decimeter-level localization with a single WiFi access point,” in Proceedings of the 13th Usenix Conference on Networked Systems Design and Implementation, ser. NSDI’16. USA: USENIX Association, Mar. 2016, pp. 165–178.
[17] Y. Xie, Z. Li, and M. Li, “Precise Power Delay Profiling with Commodity Wi-Fi,” IEEE Transactions on Mobile Computing, vol. 18, no. 6, pp. 1342–1355, Jun. 2019.
[18] K. Wu, J. Xiao, Y. Yi, D. Chen, X. Luo, and L. M. Ni, “CSI-Based Indoor Localization,” IEEE Transactions on Parallel and Distributed Systems, vol. 24, no. 7, pp. 1300–1309, Jul. 2013.
[19] R. Schmidt, “Multiple emitter location and signal parameter estimation,” IEEE Transactions on Antennas and Propagation, vol. 34, no. 3, pp. 276–280, Mar. 1986.
[20] W. Gong and J. Liu, “SiFi: Pushing the Limit of Time-Based WiFi Localization Using a Single Commodity Access Point,” Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies, vol. 2, no. 1, pp. 10:1–10:21, Mar. 2018.
[21] Y. Hu, M. Z. Ozturk, F. Zhang, B. Wang, and K. J. Ray Liu, “Robust Device-Free Proximity Detection Using Wifi,” in ICASSP 2021 - 2021 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Jun. 2021, pp. 7918–7922.
[22] S. Kaul, K. Ramachandran, P. Shankar, S. Oh, M. Gruteser, I. Seskar, and T. Nadeem, “Effect of Antenna Placement and Diversity on Vehicular Network Communications,” in 2007 4th Annual IEEE Communications Society Conference on Sensor, Mesh and Ad Hoc Communications and Networks, Jun. 2007, pp. 112–121.
[23] S. Munir, H. Chen, S. Fang, M. Monjur, S. Lin, and S. Nirjon, “CarFi: Rider Localization Using Wi-Fi CSI,” Dec. 2022.
[24] Y. Zhu, Y. Cai, H. Zhu, and S. Chang, “DeepAoA: Online Vehicular Direction Finding Based on a Deep Learning Method,” in 2019 IEEE 25th International Conference on Parallel and Distributed Systems (ICPADS), Dec. 2019, pp. 782–789.
[25] D. Halperin, W. Hu, A. Sheth, and D. Wetherall, “Tool release: Gathering 802.11n traces with channel state information,” ACM SIGCOMM Computer Communication Review, vol. 41, no. 1, p. 53, Jan. 2011.
[26] B. Wei, H. Song, J. Katto, and T. Kikkawa, “RSSI–CSI Measurement and Variation Mitigation With Commodity Wi-Fi Device,” IEEE Internet of Things Journal, vol. 10, no. 7, pp. 6249–6258, Apr. 2023.
[27] Z. Yang, K. Qian, C. Wu, and Y. Zhang, “Understanding of Channel State Information,” in Smart Wireless Sensing: From IoT to AIoT, Z. Yang, K. Qian, C. Wu, and Y. Zhang, Eds. Singapore: Springer, 2021, pp. 11–21.
[28] D. Zhang, Y. Hu, Y. Chen, and B. Zeng, “Calibrating Phase Offsets for Commodity WiFi,” IEEE Systems Journal, vol. 14, no. 1, pp. 661–664, Mar. 2020.
[29] “豐 田 TOYOTA 盲 點 偵 測 | 銓 宏 汽 車 多 媒 體 科 技.” [Online]. Available: http://www.car-tv.com.tw/products/toyota-blind-spot-monitor
[30] A. Bozkurt, “Analytical models and performance evaluation of vehicular-to-infrastructure networks with optimal retransmission number,” Aug. 2020.
[31] I. Elmanaa, M. A. Sabri, Y. Abouch, and A. Aarab, “Efficient Roundabout Supervision: Real-Time Vehicle Detection and Tracking on Nvidia Jetson Nano,” Applied Sciences, vol. 13, no. 13, p. 7416, Jan. 2023.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/94559-
dc.description.abstract隨著道路環境日益複雜、擁擠,盲點偵測已成為現今車輛普遍會配備有的駕駛輔助系統。然而,它們在實作上大多仍採用昂貴的感測器,如攝影機、光達、雷達等。基於車聯網系統模型,本研究提出結合無線網路感測技術,以 Wi-Fi 通訊時所產生的通道狀態資訊 (Channel State Information) 來實現盲點偵測系統的功能,以期達到降低成本、資源有效再利用的目標。
為驗證此方法的可行性,我們將 Wi-Fi 通訊設備及光達佈署於車輛,利用它們於實際行駛過程中所收集的感測資料來建構資料集、實行特徵工程、訓練深度學習模型。模型設計以固定時間間隔進行二元分類,判斷當下訊號源是否位於盲點區域內,並對照實際情況來計算預測的正確率。最終的結果顯示,此系統可以在有限的頻寬及運算資源條件下達到超過 0.9 的 F1-score,足以應付正常使用情境。
zh_TW
dc.description.abstractAs traffic environments get increasingly complex and congested, Blind Spot Warning (BSW) system has become a common feature in modern vehicles. However, its implementation typically relies on expensive sensors such as cameras, LiDAR, and radar. Based on Vehicle-to-Vehicle (V2V) communication system model, this study proposes a more cost-effective approach that incorporates Wi-Fi sensing techniques to realize its safety functionalities. The main objective is to efficiently reuse existing communication resources by leveraging Channel State Information (CSI) from signals.
To verify the feasibility of this design, we conducted real-world experiments with Wi-Fi communication devices and LiDAR deployed on vehicles. The collected measurements were then utilized to construct CSI datasets, conduct feature engineering, and train a deep neural network (DNN). We designed the model to perform binary classification at fixed time intervals, predicting whether the signal source is currently located within the blind spot area. Ultimately, the evaluation results showed that the proposed system can achieve an F1-score of over 0.9 under limited bandwidth and computational power, which is sufficient in general use cases.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-08-16T16:44:13Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2024-08-16T16:44:13Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents誌謝 i
摘要 ii
Abstract iii
Contents v
List of Figures vii
List of Tables ix
Chapter 1 Introduction 1
Chapter 2 Related Work 6
2.1 Indoor Localization . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.2 Vehicle Positioning . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
Chapter 3 Preliminary 10
3.1 CSI Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3.2 Measurement Distortions . . . . . . . . . . . . . . . . . . . . . . . . 11
Chapter 4 System Design 14
4.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
4.2 Data Preprocessing . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
4.2.1 Data Segmentation . . . . . . . . . . . . . . . . . . . . . . . . . . 15
4.2.2 AGC Effect Removal . . . . . . . . . . . . . . . . . . . . . . . . . 16
4.3 Feature Extraction . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
4.3.1 Amplitude Correlation . . . . . . . . . . . . . . . . . . . . . . . . 17
4.3.2 Phase Difference . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
4.3.3 Power Delay Profile . . . . . . . . . . . . . . . . . . . . . . . . . . 21
4.4 Feature Postprocessing . . . . . . . . . . . . . . . . . . . . . . . . . 24
4.4.1 PLL Initial Phase Removal . . . . . . . . . . . . . . . . . . . . . . 24
4.5 Classification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
Chapter 5 Implementation 29
5.1 System Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
5.2 Data Collection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
Chapter 6 Evaluation 35
6.1 Evaluation Metric . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
6.2 Overall Performance . . . . . . . . . . . . . . . . . . . . . . . . . . 36
6.3 Feature Ablation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
6.4 Data Segmentation Effectiveness . . . . . . . . . . . . . . . . . . . 39
6.5 Channel Utilization Efficiency . . . . . . . . . . . . . . . . . . . . . 40
6.6 Bursty Traffic and Contention Issues . . . . . . . . . . . . . . . . . . 42
6.7 System Response Time . . . . . . . . . . . . . . . . . . . . . . . . . 43
6.8 Case Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
Chapter 7 Conclusion 47
References 49
-
dc.language.isoen-
dc.subject通道狀態資訊zh_TW
dc.subject無線網路感測zh_TW
dc.subject道路安全zh_TW
dc.subject無線網路通訊zh_TW
dc.subject盲點偵測zh_TW
dc.subjectWi-Fi Sensingen
dc.subjectWi-Fi Communicationen
dc.subjectBlind Spot Warningen
dc.subjectChannel State Informationen
dc.subjectRoad Safetyen
dc.title基於Wi-Fi通道狀態資訊之車輛盲點偵測系統zh_TW
dc.titleVehicular Blind Spot Warning System based on Channel State Informationen
dc.typeThesis-
dc.date.schoolyear112-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee林忠緯;巫芳璟;林靖茹zh_TW
dc.contributor.oralexamcommitteeChung-Wei Lin;Fang-Jing Wu;Ching-Ju Linen
dc.subject.keyword無線網路感測,通道狀態資訊,盲點偵測,無線網路通訊,道路安全,zh_TW
dc.subject.keywordWi-Fi Sensing,Channel State Information,Blind Spot Warning,Wi-Fi Communication,Road Safety,en
dc.relation.page53-
dc.identifier.doi10.6342/NTU202403580-
dc.rights.note未授權-
dc.date.accepted2024-08-14-
dc.contributor.author-college電機資訊學院-
dc.contributor.author-dept資訊網路與多媒體研究所-
顯示於系所單位:資訊網路與多媒體研究所

文件中的檔案:
檔案 大小格式 
ntu-112-2.pdf
  未授權公開取用
18.51 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved