請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/94558
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 江昭皚 | zh_TW |
dc.contributor.advisor | Joe-Air Jiang | en |
dc.contributor.author | 蕭家泓 | zh_TW |
dc.contributor.author | Chia-Hong Hsiao | en |
dc.date.accessioned | 2024-08-16T16:43:52Z | - |
dc.date.available | 2024-08-17 | - |
dc.date.copyright | 2024-08-16 | - |
dc.date.issued | 2024 | - |
dc.date.submitted | 2024-08-09 | - |
dc.identifier.citation | 朱耀沂, 歐陽, & 盛芝. (1990). 斜紋夜蛾 (Spodoptera litura F.)) 之生物學 III. 成蟲配對密度對交尾能力的影響. 中華昆蟲, 10(3), ap5+ 271-277.
林俊義. (2005). 永續農業之理念與發展策略. 行政院農業委員會農業試驗所 段淑人, 高穗生, & 鄭朵智. (1994). 台灣甜菜夜蛾核多角體病毒形態與致病力之研究. 中華昆蟲, 14(1), iii+33-45. 高穗生. (2005). 生物農藥產業之現況及應用. 農業生技產業季刊, 4, 34-39. 陳琦, 侯艷紅, 段云, 范志業, 沈海龍, 陳莉, 劉迪, 師興凱, & 李世民. (2019). 黏蟲蛹性別的快速鑑別方法. 植物保護, 2. 靳子蓉, 高穗生, 陳瀅如, & 吳宗遠. (2007). 甜菜夜蛾核多角體病毒噴霧感染甜 菜夜蛾之效果評估. 台灣昆蟲, 27(3), 183-193. 羅禮智, 曹雅忠, & 江幸福. (2000). 甜菜夜蛾发生危害特点及其趋势分析 Alzubaidi, L., Zhang, J., Humaidi, A. J., Al-Dujaili, A., Duan, Y., Al-Shamma, O., Santamaría, J., Fadhel, M. A., Al-Amidie, M., & Farhan, L. (2021). Review of deep learning: Concepts, CNN architectures, challenges, applications, future directions. Journal of big Data, 8, 1-74. Bailey, K., Boyetchko, S., & Längle, T. (2010). Social and economic drivers shaping the future of biological control: a Canadian perspective on the factors affecting the development and use of microbial biopesticides. Biological Control, 52(3), 221-229. Carion, N., Massa, F., Synnaeve, G., Usunier, N., Kirillov, A., & Zagoruyko, S. (2020). End-to-end object detection with transformers. European conference on computer vision, Carvalho, F. P. (2006). Agriculture, pesticides, food security and food safety. Environmental science & policy, 9(7-8), 685-692. de Andrade Porto, J. V., Rezende, F. P. C., Nucci, H. H. P., Roel, A. R., Astolfi, G., & Pistori, H. (2023). Deep neural networks with attention mechanisms for Spodoptera frugiperda pupae sexing. Smart Agricultural Technology, 4, 100200. Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner, T., Dehghani, M., Minderer, M., Heigold, G., & Gelly, S. (2020). An image is worth 16x16 words: Transformers for image recognition at scale. arXiv preprint arXiv:2010.11929. Georghiou, G. P. (2012). Pest resistance to pesticides. Springer Science & Business Media. Girshick, R. (2015). Fast r-cnn. Proceedings of the IEEE international conference on computer vision, Girshick, R., Donahue, J., Darrell, T., & Malik, J. (2014). Rich feature hierarchies for accurate object detection and semantic segmentation. Proceedings of the IEEE conference on computer vision and pattern recognition, Gu, J., Wang, Z., Kuen, J., Ma, L., Shahroudy, A., Shuai, B., Liu, T., Wang, X., Wang, G., & Cai, J. (2018). Recent advances in convolutional neural networks. Pattern recognition, 77, 354-377. Ignoffo, C. (1973). Development of a viral insecticide: concept to commercialization. Experimental Parasitology, 33(2), 380-406. Jin, X., Tang, L., Li, R., Zhao, B., Ji, J., & Ma, Y. (2022). Edge recognition and reduced transplantation loss of leafy vegetable seedlings with Intel RealsSense D415 depth camera. Computers and Electronics in Agriculture, 198, 107030. Kamtongdee, C., Sumriddetchkajorn, S., & Sa-Ngiamsak, C. (2013). Feasibility study of silkworm pupa sex identification with pattern matching. Computers and electronics in agriculture, 95, 31-37. Lin, T.-Y., Goyal, P., Girshick, R., He, K., & Dollár, P. (2017). Focal loss for dense object detection. Proceedings of the IEEE international conference on computer vision, Lizhi, L., Weiju, C., Kun, Q., & Yi, H. (2003). Mating behavior and capacity of the beet armyworm, Spodoptera exigua (Lepidoptera: Noctuidae). Kun Chong xue bao. Acta Entomologica Sinica, 46(4), 494-499. Odhiambo, D., & Ondasi, S. (2020). Identification of Male and Female pupae of Spodoptera frugiperda at icipe, Thomas Odhiambo Campus. Ouyang, D., He, S., Zhang, G., Luo, M., Guo, H., Zhan, J., & Huang, Z. (2023). Efficient multi-scale attention module with cross-spatial learning. ICASSP 2023-2023 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Ren, S., He, K., Girshick, R., & Sun, J. (2015). Faster r-cnn: Towards real-time object detection with region proposal networks. Advances in neural information processing systems, 28. Sapkota, R., Ahmed, D., & Karkee, M. (2023). Comparing YOLOv8 and Mask RCNN for object segmentation in complex orchard environments. arXiv preprint arXiv:2312.07935. Tian, Z., Shen, C., Chen, H., & He, T. (2019). Fcos: Fully convolutional one-stage object detection. Proceedings of the IEEE/CVF international conference on computer vision, Tuan ShuJen, T. S., Kao SueySheng, K. S., & Cheng DorJih, C. D. (1994). Histopathology and pathogenicity of Spodoptera exigua nuclear polyhedrosis virus isolated in Taiwan. Tudi, M., Daniel Ruan, H., Wang, L., Lyu, J., Sadler, R., Connell, D., Chu, C., & Phung, D. T. (2021). Agriculture development, pesticide application and its impact on the environment. International journal of environmental research and public health, 18(3), 1112. Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser, Ł., & Polosukhin, I. (2017). Attention is all you need. Advances in neural information processing systems, 30. Wang, C.-Y., Bochkovskiy, A., & Liao, H.-Y. M. (2022). YOLOv7: Trainable bag-of-freebies sets new state-of-the-art for real-time object detectors. arXiv preprint arXiv:2207.02696. Williams, T., Virto, C., Murillo, R., & Caballero, P. (2017). Covert infection of insects by baculoviruses. Frontiers in microbiology, 8, 1337. Xiong, Y., Ge, Y., & From, P. J. (2021). An improved obstacle separation method using deep learning for object detection and tracking in a hybrid visual control loop for fruit picking in clusters. Computers and Electronics in Agriculture, 191, 106508. Xu, D., Xiong, H., Liao, Y., Wang, H., Yuan, Z., & Yin, H. (2024). EMA-YOLO: A Novel Target-Detection Algorithm for Immature Yellow Peach Based on YOLOv8. Sensors, 24(12), 3783. Yang, G., Wang, J., Nie, Z., Yang, H., & Yu, S. (2023). A lightweight YOLOv8 tomato detection algorithm combining feature enhancement and attention. Agronomy, 13(7), 1824. Zhu, X., Su, W., Lu, L., Li, B., Wang, X., & Dai, J. (2020). Deformable detr: Deformable transformers for end-to-end object detection. arXiv preprint arXiv:2010.04159. | - |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/94558 | - |
dc.description.abstract | 為了防範害蟲,化學農藥的過度使用已經導致環境污染、食品安全問題以及害蟲對農藥的抗藥性增加。因此,生物防治方法逐漸備受關注,生物防治利用天然生態平衡中的生物來對抗害蟲,符合永續農業原則。在台灣,甜菜夜蛾是一個重要的害蟲,對多種作物造成了嚴重損害,並且在氣候變遷和農藥濫用的情況下,其繁殖能力以及抗藥性提升,使得防治作業變得更加困難,過去曾研究發現SeNPV生物製劑對防治甜菜夜蛾極其有效,但是SeNPV的生產需要依靠大量甜菜夜蛾幼蟲作為載體,因此若要推廣SeNPV的使用並使其商品化,就必須建立一套甜菜夜蛾養殖系統提供大量且穩定的蟲源。本研究為了減少飼養成本並協助擴大飼養規模,針對飼養流程中人力與時間成本相對較高的流程進行優化和改良,建立一套自動化甜菜夜蛾蟲蛹性別辨識系統。此系統利用影像偵測系統,檢測和辨識蟲蛹的位置,配合三軸機台裝置收集蟲蛹,接著再次利用影像系統進行蟲蛹的性別分類,並根據結果使用負壓系統對蟲蛹進行分類。結果顯示上,在蟲蛹偵測的準確度為100%,而在吸取點的定位平均誤差為0.16 mm,蟲蛹性別辨識的準確度達95.33%,且各流程的成功率達95%以上,此外實驗測試蟲蛹經過各流程後的羽化率為100%,表示此系統不會傷害到蟲蛹。執行時間上相較於傳統的方法可節省1/3的時間,後續可利用此系統進行飼養規模的擴增,也可再整合其他養殖流程,使整套繁雜的甜菜夜蛾養殖流程成本降低,進而降低SeNPV病毒的生產成本。 | zh_TW |
dc.description.abstract | Excessive use of chemical pesticides to eliminate pests has led to environmental pollution, food safety concerns, and pesticide resistance increases among pests. Biological control methods, which utilize natural ecological balances to deal with pest issues, are gaining attention when considering sustainable agriculture principles. In Taiwan, the beet armyworm is a significant pest causing severe damage to various crops. Its reproductive capacity and pesticide resistance have increased due to climate change and pesticide overuse, making control efforts more challenging. Previous studies have found that seNPV, a biopesticides, is highly effective in controlling the beet armyworm. However, the production of seNPV relies on a large number of beet armyworm larvae as carriers. To promote the use and commercialization of seNPV, a system must be established to provide a large and stable source of beet armyworm larvae. This study therefore aims to reduce the rearing costs of beet armyworm larvae and assist in expanding rearing scales by optimizing the rearing process, which was often labor and time-intensive in the past. An automated beet armyworm pupa gender identification system is developed, which uses an image detection system to detect and identify the location of a pupa, and a three-axis machine device to collect the pupa. Subsequently, the gender of the pupa is classified by the image system, and a vacuum system is employed to sort the pupae based on the gender classification results. The research results show a 100% accuracy in pupa detection, an average location error of 0.16 mm at the extraction points, a 95.33% accuracy in pupae gender identification, and a success rate of over 95% for each process. Additionally, a 100% emergence rate of pupae is found after each process is complete, indicating that the system does not harm the pupae. Compared to traditional methods, the execution time is reduced by one-third. This system can be used to expand rearing scales in the future and integrate other rearing processes, thereby lowering the cost of the complex beet armyworm rearing workflow and subsequently reducing the production cost of the seNPV virus. | en |
dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-08-16T16:43:52Z No. of bitstreams: 0 | en |
dc.description.provenance | Made available in DSpace on 2024-08-16T16:43:52Z (GMT). No. of bitstreams: 0 | en |
dc.description.tableofcontents | 摘要 i
Abstract ii 圖次 vii 表次 x 第一章 前言 1 1.1研究背景 1 1.2研究目的 8 第二章 文獻探討 9 2.1 甜菜夜蛾核多角體病毒 ( SeNPV ) 量產方式 9 2.2 甜菜夜蛾飼養系統 9 2.3 鱗翅目成蟲配對重要性 11 2.3.1配對密度和性別比對交尾能力之影響 11 2.3.2鱗翅目昆蟲蟲蛹性別特徵 12 2.4電腦視覺應用於昆蟲飼養 12 2.4.1傳統影像處理影用於昆蟲養殖 13 2.4.2卷積神經網路模型 ( CNN ) 應用於昆蟲養殖 15 2.4.4其他機器視覺模型的應用(Transformer model) 21 2.5 整合電腦視覺系統之自動化機台開發 26 第三章 材料與方法 28 3.1 整體系統架構 28 3.2蟲蛹偵測系統 31 3.2.1系統硬體規格 31 3.2.2化蛹盒改良 32 3.2.3蟲蛹偵測以及定位 35 3.2.4吸取點座標轉換 42 3.2.5中央吸取裝置 48 3.3甜菜夜蛾蟲蛹性別辨識系統 49 3.3.1 底部單向拍攝系統 50 3.3.2 雙向側面拍攝 51 3.3.3 蟲蛹性別辨識模型優化 56 3.3.4 模型比較 63 4.1系統前置實驗結果 65 4.2蟲蛹辨識以及定位 68 4.2.1蟲蛹影像分割結果比較 68 4.2.2蟲蛹頭部偵測 69 4.3蟲蛹性別辨識系統拍攝機構比較 74 4.3.1單向拍攝初步測試結果 74 4.3.2雙向拍攝初步測試結果 75 4.3.3小結 75 4.4蟲蛹性別辨識模型優化 76 4.4.1 模型骨幹 ( Backbone ) 結構修改結果比較 76 4.4.2 添加注意力模塊 ( Attention module ) 訓練結果比較 78 4.4.3 模型比較 79 4.5 機台作動與蟲蛹生長實驗結果 80 4-4 自動化機台與人工操作比較 81 第五章 總結 83 參考文獻 84 | - |
dc.language.iso | zh_TW | - |
dc.title | 智慧化甜菜夜蛾蟲蛹性別辨識系統之開發 | zh_TW |
dc.title | Development of an Intelligent System for Sex Identification of Beet Armyworm Pupae | en |
dc.type | Thesis | - |
dc.date.schoolyear | 112-2 | - |
dc.description.degree | 碩士 | - |
dc.contributor.oralexamcommittee | 楊恩誠;曾傳蘆;丁健芳;李建興 | zh_TW |
dc.contributor.oralexamcommittee | En-Cheng Yang;Chwan-Lu Tseng;Chien-Fang Ding;Chien-Hsing Lee | en |
dc.subject.keyword | 甜菜夜蛾,自動化養殖系統,機器視覺, | zh_TW |
dc.subject.keyword | Beet armyworm,Automated Cultivation System,Computer Vision, | en |
dc.relation.page | 86 | - |
dc.identifier.doi | 10.6342/NTU202403507 | - |
dc.rights.note | 同意授權(限校園內公開) | - |
dc.date.accepted | 2024-08-12 | - |
dc.contributor.author-college | 生物資源暨農學院 | - |
dc.contributor.author-dept | 生物機電工程學系 | - |
顯示於系所單位: | 生物機電工程學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-112-2.pdf 授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務) | 4.83 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。