Please use this identifier to cite or link to this item:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/94556Full metadata record
| ???org.dspace.app.webui.jsptag.ItemTag.dcfield??? | Value | Language |
|---|---|---|
| dc.contributor.advisor | 單秋成 | zh_TW |
| dc.contributor.advisor | Chow-Shing Shin | en |
| dc.contributor.author | 陳品豫 | zh_TW |
| dc.contributor.author | Pin-Yu Chen | en |
| dc.date.accessioned | 2024-08-16T16:43:11Z | - |
| dc.date.available | 2024-08-22 | - |
| dc.date.copyright | 2024-08-16 | - |
| dc.date.issued | 2024 | - |
| dc.date.submitted | 2024-08-13 | - |
| dc.identifier.citation | 1. Morampudi, P., et al., Review on glass fiber reinforced polymer composites. Materials Today: Proceedings, 2021. 43(1): p. 314-319.
2. Hull,D. and T.W. Clyne, An Introduction to Composite Materials. Cambridge Solid State Science Series. Cambridge University Press, 1996(12): p. 295-310. 3. https://www.lihsi.com/adhesives/epoxy-resin-adhesive/, 2024. 4. Yuan, H., et al., Graphene Oxide Decorated with Titanium Nanoparticles to Reinforce the Anti-Corrosion Performance of Epoxy Coating. Coatings, 2020. 10(2): p. 129. 5. Prusty, R.K., D.K. Rathore, and B.C. Ray, Water-induced degradations in MWCNT embedded glass fiber/epoxy composites: An emphasis on aging temperature. 1. Journal of Applied Polymer Science, 2018. 135(11): p. 45987. 6. https://www.thermolysis-asia.com/carbon-fiber-paper, 2024 7. Tyler N Tallman and Danny J Smyl, Structural health and condition monitoring via electrical impedance tomography in self-sensing materials: a review. 2. Smart Mater. Struct, 2020. 29(12). 8. Daniel Balageas, Claus-Peter Fritzen,and Alfredo Güemes, Structural Health Monitoring. John Wiley & Sons, 2010. p. 225-284./p. 379-405 9. Peter Cawley, Guided waves in long range nondestructive testing and structural health monitoring: Principles, history of applications and prospects, NDT & E International, 2024. 142. 10. Christina Buggisch, Strain sensing in GFRP via fully integrated carbon nanotube epoxy film sensors. Composites Part C: Open Access, 2021. 6. 11. 黃康祐, 以導電性與布拉格光柵監測玻纖複材的濕熱老化, in 機械工程研究所. 2023, 國立台灣大學. P. 1-141. 12. K. Schulte, and Ch. Baron, Load and failure analyses of CFRP laminates by means of electrical resistivity measurements. Composites Science and Technology, 1989. 36(1): p. 63-76. 13. Marco Monti., et al., Impact damage sensing in glass fiber reinforced composites based on carbon nanotubes by electrical resistance measurements. Journal of Applied Polymer Science, 2011. 122(4): p. 2167-2836. 14. David G. Meehan, Shoukai Wang, and D.D.L. Chung, Electrical-resistance-based Sensing of Impact Damage in Carbon Fiber Reinforced Cement-based Materials. Journal of Intelligent Material Systems and Structures, 2009. 21(1): p. 83-105. 15. O. Ceysson, M. Salvia, and L. Vincent, Damage mechanisms characterisation of carbon fibre/epoxy composite laminates by both electrical resistance measurements and acoustic emission analysis. Scripta Materialia, 1996. 34(8): p. 1273-1280. 16. Lars Böger, Malte., et al., Load and health monitoring in glass fibre reinforced composites with an electrically conductive nanocomposite epoxy matrix. Composites Science and Technology, 2008. 68(7-8): p. 1886-1894. 17. Yu Kuronuma., et al., Electrical resistance-based strain sensing in carbon nanotube/polymer composites under tension: Analytical modeling and experiments. Composites Science and Technology, 2012. 72(14): p. 1678-1682. 18. B.C. Ray, Temperature effect during humid ageing on interfaces of glass and carbon fibers reinforced epoxy composites. Journal of Colloid and Interface Science, 2006. 298(1): p. 111-117. 19. Osman, Ekhlas., et al., Water absorption behavior and its effect on the mechanical properties of kenaf natural fiber unsaturated polyester composites. ICCM International Conferences on Composite Materials, 2011. 20. Shettar, Manjunath., et al., Hygrothermal Studies on GFRP Composites: A Review. MATEC Web of Conferences, 2018. 144(02626). 21. Robert, Mathieu, and Brahim Benmokrane., Behavior of GFRP Reinforcing Bars Subjected to Extreme Temperatures. Journal of Composites for Construction, 2010. (14): p. 353-360. 22. Fatih Mehmet Özkal., et al., Mechanical properties and bond strength degradation of GFRP and steel rebars at elevated temperatures. Construction and Building Materials, 2018. 184: p. 45-57. 23. Seyed Mohammad Hosseini, et al., Using four-point flexure test to investigate effects of temperature and bar size on the tensile properties of GFRP bars. Polymer Testing, 2022. 112(107627). 24. Rami A. Hawileh., et al., Temperature effect on the mechanical properties of carbon, glass and carbon–glass FRP laminates. Construction and Building Materials, 2015. 75: p. 342-348. 25. Saleh Alsayed., et al., Performance of glass fiber reinforced polymer bars under elevated temperatures. Composites Part B: Engineering, 2012. 43(5): p. 2265-2271. 26. Thomas W. Ebbesen., Carbon Nanotubes. Physics Today,1996. 49(6): p. 26–32. 27. Ganesh, E.N., Single Walled and Multi Walled Carbon Nanotube Structure, Synthesis and Applications. International Journal of Innovative Technology and Exploring Engineering, 2013. 2(4): p. 311-320. 28. T. Belin, and F. Epron, Characterization methods of carbon nanotubes: a review. Materials Science and Engineering: B, 2005. 119(2): p. 105-118. 29. Farzad Ebrahimi., and Ali Dabbagh., A brief review on the influences of nanotubes' entanglement and waviness on the mechanical behaviors of CNTR polymer nanocomposites. Journal of Computational Applied Mechanics, 2020. 51(1): p. 247-252. 30. Safa Jamali, Maria C. Paiva, José A. Covas, Dispersion and re-agglomeration phenomena during melt mixing of polypropylene with multi-wall carbon nanotubes. Polymer Testing, 2013. 32(4): p. 701-707. 31. Naveed A., et al., Tensile strength of glass fibres with carbon nanotube–epoxy nanocomposite coating: Effects of CNT morphology and dispersion state. Composites Part A: Applied Science and Manufacturing, 2010. 41(4): p. 539-548. 32. Chunyu Li, Erik T. Thostenson, and Tsu-Wei Chou., Dominant role of tunneling resistance in the electrical conductivity of carbon nanotube–based composites. Appl. Phys. Lett.26, 2007. 91(22): 223114. 33. Balberg, Isaac., Tunneling and nonuniversal conductivity in composite materials. Physical review letters, 1987. 59(12): p. 1305-1308. 34. Yasser Zare, Kyong Yop Rhee, Formulation of tunneling resistance between neighboring carbon nanotubes in polymer nanocomposites. Engineering Science and Technology, an International Journal, 2021. 24(3): p. 605-610. 35. Ning Hu, Yoshifumi Karube, Cheng Yan, Zen Masuda, Hisao Fukunaga, Tunneling effect in a polymer/carbon nanotube nanocomposite strain sensor. Acta Materialia, 2008. 56(13): p. 2929-2936. 36. Han Du, Chao Fang, et al., Segregated carbon nanotube networks in CNT-polymer nanocomposites for higher electrical conductivity and dielectric permittivity, and lower percolation threshold. International Journal of Engineering Science, 2022. 173:10365. 37. C.F. Deng, et al., Thermal expansion behaviors of aluminum composite reinforced with carbon nanotubes. Materials Letters, 2008. 62(15): p. 2301-2303. 38. Manjula Sharma and Vimal Sharma., Chemical, mechanical, and thermal expansion properties of a carbon nanotube-reinforced aluminum nanocomposite. International Journal of Minerals Metallurgy and Materials, 2016. 23(2): p. 222. 39. Kamarian, S., et al., Influence of carbon nanotubes on thermal expansion coefficient and thermal buckling of polymer composite plates: experimental and numerical investigations. Mechanics Based Design of Structures and Machines, 2019. 49(2): p. 217–232. 40. Rodney S. Ruoff, Donald C. Lorents, Mechanical and thermal properties of carbon nanotubes, Carbon, 1995. 33(7): p. 925-930. 41. Y. Lee, et al., Humidity Effects According to the Type of Carbon Nanotubes, IEEE Access. 2021. 9: p. 6810-6816. 42. Pil Sun Na, et al., Investigation of the humidity effect on the electrical properties of single-walled carbon nanotube transistors, Appl. Phys. Lett. 2005. 87(9): 093101. 43. Sohel Rana, et al., A review on smart self-sensing composite materials for civil engineering applications, AIMS Materials Science. 2016. 3(2): p. 357-379. 44. Obitayo, Waris, Liu, Tao, A Review: Carbon Nanotube-Based Piezoresistive Strain Sensors, Journal of Sensors. 2012. 12(1): 652438. 45. Lekawa-Raus, A., Koziol, K.K., & Windle, A.H., Piezoresistive effect in carbon nanotube fibers. ACS nano, 2014. 8(11): p. 11214-11224 . 46. J. Sebastian, et al., Health monitoring of structural composites with embedded carbon nanotube coated glass fiber sensors, Carbon. 2014. 66: p. 191-200. 47. R. Balaji and M. Sasikumar., Structural Health Monitoring (SHM) System for Polymer Composites: A Review, Indian Journal of Science and Technology. 2016. 9(41): 48. Qian Gao, et al., Characterization and prediction of tensile properties of carbon fiber-reinforced thermoplastics composed of hybrid short carbon fiber/PA6 fiber nonwoven mats, Composite Structures. 2024. 334: 117996. 49. Géraldine Oliveux, Luke O. Dandy, Gary A. Leeke, Current status of recycling of fibre reinforced polymers: Review of technologies, reuse and resulting properties, Progress in Materials Science. 2015. 72:,p. 61-99. 50. Mark Holmes, Recycled carbon fiber composites become a reality, Reinforced Plastics. 2018. 62(3): p. 148-153. 51. E Armstrong-Carroll, and R Cochran., Improvement of Delamination Resistance with Carbon Nonwoven Mat Interleaves, Composite Materials: Fatigue and Fracture. 1995. 5: p.376-383. 52. Kamil Dydek, et al., Carbon Fiber Reinforced Polymers modified with thermoplastic nonwovens containing multi-walled carbon nanotubes,Composites Science and Technology. 2019. 173: p.110-117. 53. H.Rahmani, et al.,“Mechanical properties of carbon fibre/epoxy composites: effect of number of plies, fibercontents, and angle-ply layer”, Polymer Engineering and Science, vol. 54, no. 11,pp.2676-2682, 2014. 54. Z. Shamsudin. et al., Mechanical properties of wet-laid nonwoven mat reclaimed carbon fibre in polymer composite. Journal of Advanced Manufacturing Technology. 2020.14(2): p.149-159. 55. Lee S, et al., Preparation and Properties of Carbon Fiber/Carbon Nanotube Wet-Laid Composites, Polymers. 2019. 11(10): p.1597. 56. Dong Quan, et al., Recycled carbon fibre mats for interlayer toughening of carbon fibre/epoxy composites, Materials & Design. 2022. 218: 110671. 57. Jie Wen, Zhenhai Xia, Fred Choy, Damage detection of carbon fiber reinforced polymer composites via electrical resistance measurement, Composites Part B: Engineering. 2011. 42(1): p. 77-86. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/94556 | - |
| dc.description.abstract | 玻璃纖維因為高強度及良好的耐化學性,常常被拿來製作複合材料。本研究主要探討再加入回收碳纖維紙後,機械性質在拉伸及疲勞中有何異同。與環氧樹脂混合後的奈米碳管作為基材可以利用其導電的特性作為監測的方式,在高溫低濕,高溫高濕兩種不同的環境中,分析濕熱老化對複合材料的影響程度,並且與未處理過的試片進行比較。
研究發現加入碳纖維紙後拉伸強度上升5%,疲勞壽命則是延長了96%,並且高溫高濕下降的強度從原本46%降低成36%,進而證實其對機械性質有增強的效果。除了在疲勞方面純玻璃纖維電壓變化較顯著外,其餘在拉伸實驗或是高溫高濕45天電阻監測期間也都發現碳纖維紙將破壞情形反映在電壓上的能力比較優秀。值得一提的是在拉伸及疲勞中大部分加入回收碳纖維紙的試片電壓都會有先下降再上升的趨勢,推測先是純玻纖卸載時受內部壓應力電壓才下降,後來主導電壓的碳纖維紙開始受損造成後續的上升。未來可以朝不同的天數及濕熱老化後疲勞這兩個方向去努力,最終目標能清楚了解加入回收碳纖維紙的優劣。 | zh_TW |
| dc.description.abstract | Due to the high tensile strength and the excellent ability to resist the chemistry, glass fiber is usually used to fabricate composites. This research aims to investigate mechanical similarities and differences between both kind of material in tensile and fatigue test, after adding the recycled carbon fiber paper(RCFP). Utilizing the electrical method to monitor the damage of composites after mixing up epoxy resin and carbon nanotubes, which enable the material to be conductive. Under the high temperature low humidity and high temperature with high humidity, these two different circumstances. We are trying to analyze the extent of influences caused by hygrothermal aging and compare the properties with virginal ones.
Research found the tensile strength with recycled carbon fiber paper increase by 5%, fatigue life extend 96% and the tensile strength drop from 46% to 36% after immersed for 45 days, this result confirms the strengthen effect on mechanical properties when adding RCFP.Apart from the fact voltage change of original composites(without RCFP added) are more apparent on the fatigue test, the added ones exhibit better behaviors no matter on the tensile test or in the 45 days-electrical resistance-monitoring under the immersing condition. That is to say, RCFP perform well on the aspect of representing the damage to the voltage change. Interestingly, we can observe a phenomenon that voltage of specimen with RCFP added drop first then increase up, it occurs both on tensile and fatigue test. It is suggested initial voltage drop is due to the internal stress of glass-fiber when unloaded, then damage of RCFP(dominate voltage in composites) cause the voltage increment afterward. In the future follower can work on two ways, different duration and fatigue test after hygrothermal aging. The ultimate goal is to appreciate more clearly on the pros and cons about RCFP added to the GFRP. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-08-16T16:43:11Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2024-08-16T16:43:11Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 致謝 i
摘要 ii Abstract iii 目次 iv 圖次 vii 表次 xi 1 緒論 1 1.1 前言 1 1.2 研究動機 1 2 文獻回顧 2 2.1 奈米碳管複合材料 2 2.1.1 奈米碳管介紹 2 2.1.2 奈米碳管複合材料導電機制 2 2.1.3 溫度及濕度對奈米碳管影響 3 2.1.4 奈米碳管用於複合材料監測結構安全 4 2.2 回收碳纖維紙 4 2.3 導電性監測 5 2.4 濕熱老化作用機制 7 3 實驗材料與設備 9 3.1 試片材料 9 3.2 試片製程相關設備 11 3.3 實驗及量測設備 15 4 實驗方法與流程 19 4.1 試片製作方式 19 4.1.1 試片纖維部分製作 19 4.1.2 真空輔助轉注管路布置 20 4.1.3 環氧樹酯混和奈米碳管 21 4.1.4 轉注後續作業 22 4.2 試片實驗代號 23 4.3 拉伸試驗 25 4.4 疲勞試驗 26 4.5 濕熱老化實驗 26 4.5.1 高溫高濕(浸泡熱水)處理 26 4.5.2 高溫低濕處理 26 4.6 實驗架構 27 4.6.1 拉伸試驗 27 4.6.2 疲勞試驗 27 4.6.3 高溫低濕後拉伸實驗 27 4.6.4 浸泡熱水後拉伸實驗 28 5 實驗結果與討論 29 5.1 拉伸試驗 29 5.1.1 機械性質 29 5.1.2 電性性質 29 5.1.3 拉伸試驗總結 33 5.2 疲勞試驗 33 5.2.1 機械性質 33 5.2.2 電性性質 34 5.2.3 疲勞試驗總結 38 5.3 高溫低濕的影響 38 5.3.1 監測期間電阻變化 38 5.3.2 拉伸測試結果 39 5.3.3 高溫低濕總結 44 5.4 浸泡熱水(高溫高濕)的影響 44 5.4.1 監測期間電阻變化 44 5.4.2 拉伸測試結果 45 5.4.3 浸泡熱水(高溫高濕)總結 50 5.5 微觀特徵 50 6 結論與未來展望 70 7 參考文獻 71 附錄 77 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 濕熱老化 | zh_TW |
| dc.subject | 回收碳纖維紙 | zh_TW |
| dc.subject | 電阻量測 | zh_TW |
| dc.subject | 玻璃纖維複合材料 | zh_TW |
| dc.subject | 結構安全監測 | zh_TW |
| dc.subject | structural health monitoring(SHM) | en |
| dc.subject | glass fiber reinforced composites(GFRP) | en |
| dc.subject | glass fiber reinforced composites(GFRP) | en |
| dc.subject | hygrothermal aging | en |
| dc.subject | recycled carbon fiber paper(RCFP) | en |
| dc.title | 內埋回收碳纖維紙於玻纖複材效果之分析 | zh_TW |
| dc.title | Analysis of effect about glass fiber reinforced composites with recycled carbon fiber paper interleaved | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 112-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 吳文方;林志郎 | zh_TW |
| dc.contributor.oralexamcommittee | Wen-Fang Wu;Chih-Lang LIN | en |
| dc.subject.keyword | 回收碳纖維紙,濕熱老化,結構安全監測,玻璃纖維複合材料,電阻量測, | zh_TW |
| dc.subject.keyword | recycled carbon fiber paper(RCFP),hygrothermal aging,structural health monitoring(SHM),glass fiber reinforced composites(GFRP),glass fiber reinforced composites(GFRP), | en |
| dc.relation.page | 108 | - |
| dc.identifier.doi | 10.6342/NTU202404184 | - |
| dc.rights.note | 同意授權(全球公開) | - |
| dc.date.accepted | 2024-08-14 | - |
| dc.contributor.author-college | 工學院 | - |
| dc.contributor.author-dept | 機械工程學系 | - |
| Appears in Collections: | 機械工程學系 | |
Files in This Item:
| File | Size | Format | |
|---|---|---|---|
| ntu-112-2.pdf | 42.67 MB | Adobe PDF | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.
