請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/94550完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 周中哲 | zh_TW |
| dc.contributor.advisor | Chung-Che Chou | en |
| dc.contributor.author | 黃立宇 | zh_TW |
| dc.contributor.author | Li-Yu Huang | en |
| dc.date.accessioned | 2024-08-16T16:41:05Z | - |
| dc.date.available | 2024-08-17 | - |
| dc.date.copyright | 2024-08-16 | - |
| dc.date.issued | 2024 | - |
| dc.date.submitted | 2024-08-12 | - |
| dc.identifier.citation | 1. Chou C-C and Chen Y-C. (2012). “Development and seismic performance of steel dual-core self-centering braces.” The 15th World Conference on Earthquake Engineering, Lisbon, Portugal. (Paper No. 1648)
2. Chou C-C and Chen Y-C. (2012). “Development of steel dual-core self-centering braces with E-Glass FRP composite tendons: cyclic tests and finite element analyses.” The International Workshop on Advances in Seismic Experiments and Computations, Nagoya, Japan. 3. Chou C-C and Chen Y-C. (2013). “Development of steel dual-core self-centering braces: quasi-static cyclic tests and finite element analyses.” Earthquake Spectra. (Available online September 6, 2013). 4. Chou C-C, Sun P-F, and Chen Y-C. (2014). “Structural Testing of Dual-Core Self-Centering Braces with FRP Bars and FRP Wide-Flange Beams.” Proceedings of American Society for Composites 29th Technical Conference, 16th US-Japan Conference on Composite Materials and ASTM D30 meeting, San Diego, CA, USA. 5. Chou C-C, Chung P-T, and Cheng Y-T. (2014). “Seismic tests of large-scale energy dissipating braces: dual-core self-centering brace and sandwiched buckling-restrained brace.” The 5th Asia Conference on Earthquake Earthquake Engineering, October 16-18, Taipei, Taiwan. 6. Chou C-C and Chung P-T. (2014). “Development of cross-anchored dual-core self-centering braces for seismic resistance.” J. Constructional Steel Research, 101, 19-32. 7. Chou C-C, Chung P-T, Cheng Y-T. (2016). “Experimental Evaluation of Large-Scale Dual-Core Self-Centering Braces and Sandwiched Buckling-Restrained Braces.” Engineering Structures, 111, 435-450. 8. Chou C-C, Wu T-H, Beato Ovall R.A., Chung P-T, and Chen Y-C. (2016). “Seismic Design and Tests of a Full-Scale One-Story One-Bay Steel Frame with a Dual-Core Self-Centering Brace,” Engineering Structures, 111,435-450. 9. Chou C-C, Hsiao C-H, Chen Z-B, Chung P-T, Pham D-H. (2019). “Seismic Loading Tests of Full-scale Two-story Steel Building Frames with Self-centering Braces and Buckling-restrained Braces.” Thin-Walled Structures, 140, 168-181. 10. Soda S. (2004). “Origin-restoring dampers for seismic response control of building structures.” Proc., 10th JSSI Symp. on Performance of Response Controlled Buildings, Yokohama, Japan, Paper No. 56. 11. Xu L-H, Fan X-W, Li Z-X. (2016). “Cyclic behavior and failure mechanism of self-centering energy dissipation braces with pre-pressed combination disc springs.” Earthquake Eng Struct Dyn, 2016;46(7):1065–80. 12. Xu L-H, Fan X-W, Li Z-X. (2016). “Development and experimental verification of a pre-pressed spring self-centering energy dissipation brace.” Engineering Structures, 127 49-61. 13. Almen JO, Laszlo A. (1936). “The uniform-section disk spring.” Transactions of ASME. 58(4):305–314. 14. Schnorr Corporation., Handbook for Disc Springs, 2003. 15. DIN 2093 (2013), Tellerfedern, Qualitätsanforderungen, Maße, Beuth Verlag GmbH, Berlin 2013-02 16. Ozaki, Shingo & Tsuda, K. & Tominaga, J.. (2012). “Analyses of static and dynamic behavior of coned disk springs: Effects of friction boundaries.” Thin-Walled Structures, 59. 132-143. 10.1016/j.tws.2012.06.001. 17. Zhang, Z., Fleischman, R. B., Restrepo, J. I., Guerrini, G., Nema, A., Zhang, D., Ulina, S., Tsampras, G., Sause, R., (2018). “Shake‐table test performance of an inertial force‐limiting floor anchorage system.” Earthquake Eng Struct Dyn, 47(10), 1987-2011. 18. Chou, C. C., Huang, L. Y. (2023) “Mechanics and validation tests of a post-tensioned self-centering brace with adjusted stiffness and deformation capacities using disc springs.” Thin-Walled Structures, 195, 111430. 19. Chou, C. C., Hon, J. F., & Bai, B. Y. (2024). Development of a Compression-Only Self-Centering Brace with Buckling-Restrained Bars for Energy Dissipation. Journal of Structural Engineering, 150(9), 04024124. 20. 周中哲、陳映全(2012)「鋼造雙核心自復位斜撐發展與耐震實驗:應用複合纖維材料棒為預力構件」,土木工程學報,第45卷第2期,第202-206頁。 21. 周中哲、陳映全(2012)「預力雙核心自復位斜撐發展與耐震實驗」,結構工程,第27卷第3期,第108-126頁。 22. 周中哲、鍾秉庭(2014)「交錨型雙核心自復位斜撐發展驗證:耐震試驗及有限元素分析」,結構工程,第29卷第2期,第80-103頁。 23. 周中哲、鍾秉庭(2014)「新型鋼造雙核心自復位斜撐發展及耐震試驗」,鋼結構工程,第53期,第73-91頁。 24. 周中哲、吳宗翰、Alexis Rafael Ovalle Beato、鍾秉庭、陳澤邦、陳映全(2015)「創新鋼造雙核心自復位斜撐抗震構架於臺灣的發展:由斜撐至實尺寸構架實驗驗證」,鋼結構工程,第55期,第54-76頁。 25. 周中哲、蕭佳宏、陳澤邦、 鍾秉庭、Pham Dinh-Hai (2017)「全尺寸二層樓雙核心自復位斜撐構架與夾型挫屈束制斜撐構架之耐震試驗與非線性動力歷時分析」,結構工程,第32卷第2期,第35-64頁。 26. 陳映全(2011)「雙核心自復位消能斜撐之發展與驗證」,碩士論文指導教授:周中哲,國立臺灣大學土木工程學系。 27. 鍾秉庭(2012)「交錨型雙核心自復位斜撐及核心更換型挫屈束制斜撐之耐震行為」,碩士論文指導教授:周中哲,國立臺灣大學土木工程學系。 28. 吳宗翰(2014)「新型鋼造雙核心自復位斜撐構架設計與耐震試驗行為」,碩士論文指導教授:周中哲,國立臺灣大學土木工程學系。 29. 歐陽烈(2014)「新型鋼造一層樓雙核心自復位斜撐構架實驗與分析:含梁柱構架及斜撐軸向效應影響之接合板設計」,碩士論文指導教授:周中哲,國立臺灣大學土木工程學系。 30. 陳澤邦(2015)「鋼造實尺寸二層樓雙核心自復位斜撐構架耐震試驗與有限元素分析」,碩士論文指導教授:周中哲,國立臺灣大學土木工程學系。 31. 蕭佳宏(2015)「雙核心自復位斜撐與夾型挫屈束制斜撐對構架影響:耐震實驗與動力分析」,碩士論文指導教授:周中哲,國立臺灣大學土木工程學系。 32. 萬家汶(2018)「含消能鋼筋之自復位斜撐發展及試驗驗證」,碩士論文指導教授:周中哲,國立臺灣大學土木工程學系。 33. 洪經富(2019)「應用於鋼筋混凝土建築物之純壓雙核心自復位斜撐發展與驗證」,碩士論文指導教授:周中哲,國立臺灣大學土木工程學系。 34. 覃文康(2022)「實尺寸兩層樓夾型挫屈束制斜撐鋼構架在變軸力下之中等韌性構件箱型鋼柱耐震實驗」,碩士論文指導教授:周中哲,國立臺灣大學土木工程學系。 35. 林皇佐(2023)「實尺寸三層樓鋼構架二元系統於2022池上地震下之振動台試驗:中等韌性箱型鋼柱、全鋼型夾型挫屈束制斜撐及滑動樓版之耐震性能」,碩士論文指導教授:周中哲,國立臺灣大學土木工程學系。 36. 吳其錚(2024)「實尺寸三層樓自復位斜撐構架含滑動消能樓版之振動台試驗」,碩士論文指導教授:周中哲,國立臺灣大學土木工程學系。 | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/94550 | - |
| dc.description.abstract | 本研究共有二個研究重點。首先,許多研究皆指出自復位斜撐構架在地震後有較低的殘餘變形,且遠小於挫屈束制斜撐構架,然而自復位斜撐構架相較於挫屈束制斜撐構架有著較高的初始彈性勁度,導致輸入的地震力增加。為了解決此問題,發展一可調整軸向勁度並增加軸向變形能力的自復位斜撐即為本研究的第一個重點,其中使用碟型彈簧以降低自復位斜撐的初始彈性勁度為本研究所提出的方法。另外,近年來許多學者皆提出預鑄滑動樓板系統的概念,亦有相關實驗證實其能有效地減低結構物受地震力之下的樓板慣性力,然而常見使用來連接樓板與構架的挫屈束制支撐或摩擦耗能裝置儘管能提供飽滿的遲滯消能行為,但在地震發生後樓板與構架間不可避免的殘餘相對位移將導致災後結構物修復的困難,對此本研究的第二個重點即為使滑動樓板系統具有自復位性能,因此提出一新型自復位元件,同樣採用具自復位性能的碟型彈簧來達成此一目的。
本研究提出一新型可變勁度自復位斜撐(AS-SCB)及一樓板自復位碟型彈簧裝置(SCSD),透過將二者首先進行元件測試以驗證預測模型及評估試驗結果之後,將此二裝置安裝於實尺寸三層樓鋼構架系統之中進行振動台試驗,以探討裝置在地震下之真實反應,並分析其耐震性能、消能能力、遲滯穩定性和整體構架系統的行為表現。本振動台試驗分為二個階段,第一階段進行滑動樓板試驗,以SCSD連接預鑄樓板與鋼構架,在MCE等級地震下,其屋頂層之樓板最大滑動量達59.7 mm,而樓板與構架間的殘餘相對位移僅1.9 mm,且有效降低樓板與構架的受力,顯示自復位滑動樓板系統之可行性;第二階段試驗則以足夠剛性之桿件取代SCSD以模擬可變勁度自復位斜撐構架,結果顯示在1.9倍MCE等級地震下,構架屋頂層之殘餘側位移僅14 mm,具有良好的自復位性能,並且斜撐行為與預測模型相符,顯示使用碟型彈簧可以有效降低自復位斜撐之軸向勁度。 | zh_TW |
| dc.description.abstract | This study aims at two main objectives. First, buckling-restrained braces (BRBs) have been verified to provide a stable hysteretic response in steel braced frames, but their residual deformation occurs whenever providing large energy dissipation to frames at large lateral drifts. Self-centering braces (SCBs) have been developed to reduce the residual deformation of frames based on a flag-shaped hysteretic response, but have a much higher initial axial stiffness before the activation, which may result in a higher design base shear when compared to a frame with BRBs. Therefore, this work was aimed to develop a new self-centering brace with adjusted axial stiffnesses and deformation capacity such that the brace response could be designed based on specified yield and ultimate drifts of a frame. Assembling disc springs in the original SCB could achieve a new response characteristic, providing an alternative to tune the SCB structural property. In addition, the concept of precast sliding slab system has been proposed by many scholars in recent years, and some experiments have proved that it can effectively reduce the inertia force of the floor slab under earthquakes. However, even though the common use of BRBs or friction devices to connect the slab with the frame can provide full hysteresis dissipation, the inevitable residual displacement between the slab and the frame will lead to difficulties in repairing the structure after an earthquake. Therefore, the second aim of this study is to provide the sliding slab system with self-centering property; therefore, a new self-centering device is proposed, which also uses disc springs to attain this aim.
In this study, a novel adjusted-stiffness self-centering brace (AS-SCB) and a self-centering disc spring device (SCSD) are proposed. The two devices were firstly subjected to component tests to validate the prediction model and to evaluate the test results, and subsequently installed in a full-scale three-story steel frame system for a shaking table test in order to investigate the actual response of the devices under earthquakes and to analyze the seismic performance, energy dissipation capacity, hysteretic stability, and behavior of the overall structural system. The shaking table test is composed of two phases. Phase 1 is the sliding slab testing, which utilized SCSD to connect the precast slab and the steel frame. Under the MCE level earthquake, the maximum sliding in the roof floor reached 59.7 mm, while the residual relative displacement between the slab and the frame was only 1.9 mm. Also, the mechanism effectively reduced the seismic force of the structure, demonstrating the viability of the self-centering sliding slab system. In the phase 2 test, the SCSD was replaced by rigid members to simulate the adjusted-stiffness self-centering brace frame. Test results showed that the residual drift of the roof floor was only 14 mm under 1.9 times MCE level earthquake, which exhibited good self-centering property. The AS-SCB response was also align with the prediction model, indicating that the use of disc springs effectively reduced the axial stiffness of the self-centering brace. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-08-16T16:41:05Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2024-08-16T16:41:05Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 口試委員審定書 i
致謝 ii 摘要 iv ABSTRACT v 目次 vii 表次 x 圖次 xi 照片次 xv 第一章 緒論 1 1.1 前言 1 1.2 文獻回顧 2 1.2.1 自復位系統 2 1.2.2 滑動樓板系統 4 1.3 研究動機 5 1.4 研究目的 5 1.5 研究內容 6 第二章 碟型彈簧與可變勁度自復位斜撐分析與設計 7 2.1 碟型彈簧之力學行為 7 2.2 碟型彈簧材料試驗 8 2.3 可變勁度自復位斜撐之力學行為 9 2.4 可變勁度自復位斜撐之行為預測方法 12 2.4.1 碟型彈簧行為 12 2.4.2 可變勁度自復位斜撐行為 12 2.5 可變勁度自復位斜撐之彈簧配置參數研究 15 2.6 可變勁度自復位斜撐之試驗規劃與試體設計 16 2.7 可變勁度自復位斜撐試體安裝與製造 19 2.7.1 斜撐試體組裝 19 2.7.2 拉力構件施拉預力 20 2.8 斜撐試體配置與載重歷時 21 2.9 斜撐試驗量測規劃 22 2.10 斜撐試驗結果分析與比較 23 2.10.1 試體一試驗結果分析 23 2.10.2 試體二試驗結果分析 25 2.10.3 試驗結果比較 26 第三章 自復位碟型彈簧抗震裝置分析與設計 28 3.1 滑動樓板彈簧材料試驗 28 3.2 自復位碟型彈簧抗震裝置之力學行為與預測方法 29 3.3 自復位碟型彈簧抗震裝置試驗設計與規劃 31 3.3.1 試體設計 31 3.3.2 試體安裝與製造 31 3.4 自復位碟型彈簧抗震裝置元件試驗 32 3.4.1 試驗規劃 32 3.4.2 結果分析 33 第四章 可變勁度自復位斜撐構架振動台試驗 34 4.1 構架試體設計 34 4.1.1 斜撐構架配置 35 4.1.2 試驗規劃 36 4.1.3 量測儀器配置 38 4.2 構架試體整體反應 39 4.2.1 預鑄樓板整體行為 41 4.2.2 自復位彈簧裝置行為 42 4.2.3 斜撐裝置行為 42 4.2.4 結果與比較 45 4.3 可變勁度自復位斜撐之動、靜態元件試驗 45 4.3.1 動、靜態元件試驗規劃 46 4.3.2 動、靜態元件試驗結果 46 第五章 結論 48 參考文獻 51 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 勁度調整 | zh_TW |
| dc.subject | 自復位斜撐 | zh_TW |
| dc.subject | 振動台試驗 | zh_TW |
| dc.subject | 滑動樓板 | zh_TW |
| dc.subject | 碟型彈簧 | zh_TW |
| dc.subject | Disc Springs | en |
| dc.subject | Sliding Slab | en |
| dc.subject | Shaking Table Test | en |
| dc.subject | Stiffness Adjustment | en |
| dc.subject | Self-Centering Brace | en |
| dc.title | 可變勁度自復位斜撐與樓板自復位碟型彈簧裝置研究 | zh_TW |
| dc.title | Research on an Adjusted-Stiffness Self-Centering Brace and a Slab Self-Centering Disc Spring Device | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 112-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 蔡克銓;許協隆;蕭博謙 | zh_TW |
| dc.contributor.oralexamcommittee | Keh-Chyuan Tsai ;Hsieh-Lung Hsu;Po-Chien Hsiao | en |
| dc.subject.keyword | 自復位斜撐,勁度調整,碟型彈簧,滑動樓板,振動台試驗, | zh_TW |
| dc.subject.keyword | Self-Centering Brace,Stiffness Adjustment,Disc Springs,Sliding Slab,Shaking Table Test, | en |
| dc.relation.page | 134 | - |
| dc.identifier.doi | 10.6342/NTU202404251 | - |
| dc.rights.note | 同意授權(全球公開) | - |
| dc.date.accepted | 2024-08-13 | - |
| dc.contributor.author-college | 工學院 | - |
| dc.contributor.author-dept | 土木工程學系 | - |
| 顯示於系所單位: | 土木工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-112-2.pdf | 21.61 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
