請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/94548
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 阮雪芬 | zh_TW |
dc.contributor.advisor | Hsueh-Fen Juan | en |
dc.contributor.author | 高翊竣 | zh_TW |
dc.contributor.author | Yi-Chun Kao | en |
dc.date.accessioned | 2024-08-16T16:40:28Z | - |
dc.date.available | 2024-08-17 | - |
dc.date.copyright | 2024-08-16 | - |
dc.date.issued | 2024 | - |
dc.date.submitted | 2024-08-12 | - |
dc.identifier.citation | 1. Pullman, M. E., Penefsky, H., & Racker, E. (1958). A soluble protein fraction required for coupling phosphorylation to oxidation in submitochondrial fragments of beef heart mitochondria. Archives of Biochemistry and Biophysics, 76, 227–230.
2. Pullman, M. E., Penefsky, H. S., Datta, A., & Racker, E. (1960). Partial resolution of the enzymes catalyzing oxidative phosphorylation. I. Purification and properties of soluble, dinitrophenol-stimulated adenosine triphosphatase. The Journal of Biological Chemistry, 235, 3322–3329. 3. Penefsky, H. S., Pullman, M. E., Datta, A., & Racker, E. (1960). Partial resolution of the enzymes catalyzing oxidative phosphorylation II. Participation of a soluble adenosine triphosphatase in oxidative phosphorylation. Journal of Biological Chemistry, 235, 3330–3336. 4. Gu, J., et al. (2019). Cryo-EM structure of the mammalian ATP synthase tetramer bound with inhibitory protein IF1. Science, 364, 1068-1075. 5. Junge, W., & Nelson, N. (2015). ATP Synthase. Annual Review of Biochemistry, 84, 631-657. 6. Walker, J. E. (2013). The ATP synthase: the understood, the uncertain and the unknown. Biochem Soc Trans, 41, 1-16. 7. Jonckheere, A. I., Smeitink, J. A. M., & Rodenburg, R. J. T. (2012). Mitochondrial ATP synthase: architecture, function and pathology. J Inherit Metab Dis, 35, 211-225. 8. Neupane, P., Bhuju, S., Thapa, N., & Bhattarai, H. K. (2019). ATP Synthase: Structure, Function and Inhibition. Biomol Concepts, 10(1), 1-10. 9. Mnatsakanyan, N., et al. (2022). Mitochondrial ATP synthase c-subunit leak channel triggers cell death upon loss of its F1 subcomplex. Cell Death Differ, 29(9), 1874-1887. 10. Galber, C., et al. (2023). The mitochondrial inhibitor IF1 binds to the ATP synthase OSCP subunit and protects cancer cells from apoptosis. Cell Death Dis, 14(1), 54. 11. Warnsmann, V., Marschall, L. M., & Osiewacz, H. D. (2021). Impaired F1Fo-ATP-Synthase Dimerization Leads to the Induction of Cyclophilin D-Mediated Autophagy-Dependent Cell Death and Accelerated Aging. Cells, 10(4), 757. 12. Yang, J., Zhou, R., & Ma, Z. (2019). Autophagy and Energy Metabolism. Adv Exp Med Biol, 1206, 329-357. 13. Galber, C., et al. (2021). The ATP Synthase Deficiency in Human Diseases. Life (Basel), 11(4), 325. 14. Prasun, P. (2020). Mitochondrial dysfunction in metabolic syndrome. Biochim Biophys Acta Mol Basis Dis, 1866(10), 165838. 15. Andreyev, A. Y., et al. (2024). Metabolic Bypass Rescues Aberrant S-nitrosylation-Induced TCA Cycle Inhibition and Synapse Loss in Alzheimer's Disease Human Neurons. Adv Sci (Weinh), 11(12), e2306469. 16. Casanova, A., Wevers, A., Navarro-Ledesma, S., & Pruimboom, L. (2023). Mitochondria: It is all about energy. Front Physiol, 14, 1114231. 17. Xie, J. H., Li, Y. Y., & Jin, J. (2020). The essential functions of mitochondrial dynamics in immune cells. Cell Mol Immunol, 17(7), 712-721. 18. Tilokani, L., Nagashima, S., Paupe, V., & Prudent, J. (2018). Mitochondrial dynamics: overview of molecular mechanisms. Essays in Biochemistry, 62(3), 341-360. 19. Wang, Y., Dai, X., Li, H., Jiang, H., Zhou, J., Zhang, S., Guo, J., Shen, L., Yang, H., Lin, J., & Yan, H. (2023). The role of mitochondrial dynamics in disease. MedComm, 4(6), e462. 20. Chen, W., Zhao, H., & Li, Y. (2023). Mitochondrial dynamics in health and disease: mechanisms and potential targets. Signal Transduct Target Ther, 8(1), 333. 21. Cagalinec, M., Liiv, M., Hodurova, Z., Hickey, M. A., Vaarmann, A., Mandel, M., Zeb, A., Choubey, V., Kuum, M., Safiulina, D., Vasar, E., Veksler, V., & Kaasik, A. (2016). Role of mitochondrial dynamics in neuronal development: Mechanism for Wolfram syndrome. PLoS Biology, 14(7), e1002511. 22. Payne, T., Burgess, T., Bradley, S., Roscoe, S., Sassani, M., Dunning, M. J., Hernandez, D., Scholz, S., McNeill, A., Taylor, R., Su, L., Wilkinson, I., Jenkins, T., Mortiboys, H., Bandmann, O. (2024). Multimodal assessment of mitochondrial function in Parkinson's disease. Brain, 147(1), 267-280. 23. Werbner B, Tavakoli-Rouzbehani OM, Fatahian AN, Boudina S. (2023) The dynamic interplay between cardiac mitochondrial health and myocardial structural remodeling in metabolic heart disease, aging, and heart failure. J Cardiovasc Aging, 3(1), 9. 24. Chang HY, et al. (2012) Ectopic ATP synthase blockade suppresses lung adenocarcinoma growth by activating the unfolded protein response. Cancer Res., 72, 4696-4706. 25. Arakaki N, et al. (2003) Possible Role of Cell Surface H+-ATP Synthase in the Extracellular ATP Synthesis and Proliferation of Human Umbilical Vein Endothelial Cells. Molecular Cancer Research, 1, 931-939. 26. Chi SL, Pizzo SV. (2006) Cell surface F1Fo ATP synthase: a new paradigm? Ann Med., 38, 429-438. 27. Houstek J, et al. (2006) Mitochondrial diseases and genetic defects of ATP synthase. Biochim Biophys Acta, 1757, 1400-1405. 28. Chang Y.W., Tony Yang T., Chen M.C., et al. (2023) Spatial and temporal dynamics of ATP synthase from mitochondria toward the cell surface. Commun Biol, 6, 427. 29. Song K, et al. (2014) ATP Synthase β-Chain Overexpression in SR-BI Knockout Mice Increases HDL Uptake and Reduces Plasma HDL Level. Int J Endocrinol, 356432. 30. González-Pecchi V, et al. (2015) Apolipoprotein A-I enhances proliferation of human endothelial progenitor cells and promotes angiogenesis through the cell surface ATP synthase. Microvasc Res, 98, 9-15. 31. Lyly A, et al. (2008) Deficiency of the INCL protein Ppt1 results in changes in ectopic F1-ATP synthase and altered cholesterol metabolism. Hum Mol Genet, 17, 1406-1417. 32. Wang WJ, et al. (2013) The mechanism underlying the effects of the cell surface ATP synthase on the regulation of intracellular acidification during acidosis. J Cell Biochem, 114, 1695-1703. 33. Alard JE, et al. (2011) Autoantibodies to endothelial cell surface ATP synthase, the endogenous receptor for hsp60, might play a pathogenic role in vasculitides. PLoS One, 6, e14654. 34. Fu Y, Zhu Y. (2010) Ectopic ATP synthase in endothelial cells: a novel cardiovascular therapeutic target. Curr Pharm Des, 16, 4074-4079. 35. Martinez LO, et al. (2003) Ectopic beta-chain of ATP synthase is an apolipoprotein A-I receptor in hepatic HDL endocytosis. Nature, 421, 75-79. 36. Chang HY, Huang TC, Chen NN, Huang HC, Juan HF. (2014) Combination therapy targeting ectopic ATP synthase and 26S proteasome induces ER stress in breast cancer cells. Cell Death & Disease, 5, e1540-e1540. 37. Wu YH, et al. (2013) Quantitative proteomic analysis of human lung tumor xenografts treated with the ectopic ATP synthase inhibitor citreoviridin. PLoS One, 8, e70642. 38. Colombo M, Raposo G, Théry C. (2014) Biogenesis, secretion, and intercellular interactions of exosomes and other extracellular vesicles. Annu Rev Cell Dev Biol, 30, 255-289. 39. Kowal J, et al. (2016) Proteomic comparison defines novel markers to characterize heterogeneous populations of extracellular vesicle subtypes. Proc Natl Acad Sci USA, 113, E968-E977. 40. Mathivanan S, Ji H, Simpson RJ. (2010) Exosomes: extracellular organelles important in intercellular communication. J Proteomics, 73, 1907-1920. 41. Yáñez-Mó M, et al. (2015) Biological properties of extracellular vesicles and their physiological functions. J Extracell Vesicles, 4, 27066. 42. van der Pol E, Böing AN, Harrison P, Sturk A, Nieuwland R. (2012) Classification, functions, and clinical relevance of extracellular vesicles. Pharmacol Rev, 64, 676-705. 43. Shifrin DA Jr, Demory Beckler M, Coffey RJ, Tyska MJ. (2013) Extracellular vesicles: communication, coercion, and conditioning. Mol Biol Cell, 24, 1253-1259. 44. Greening DW, Xu R, Gopal SK, Rai A, Simpson RJ. (2017) Proteomic insights into extracellular vesicle biology - defining exosomes and shed microvesicles. Expert Rev Proteomics, 14, 69-95. 45. Zaborowski MP, Balaj L, Breakefield XO, Lai CP. (2015) Extracellular Vesicles: Composition, Biological Relevance, and Methods of Study. Bioscience, 65, 783-797. 46. Mathieu M, Martin-Jaular L, Lavieu G, Théry C. (2019) Specificities of secretion and uptake of exosomes and other extracellular vesicles for cell-to-cell communication. Nat Cell Biol, 21, 9-17. 47. Bebelman MP, Smit MJ, Pegtel DM, Baglio SR. (2018) Biogenesis and function of extracellular vesicles in cancer. Pharmacol Ther, 188, 1-11. 48. Cho JA, Park H, Lim EH, Lee KW. (2012) Exosomes from breast cancer cells can convert adipose tissue-derived mesenchymal stem cells into myofibroblast-like cells. Int J Oncol, 40, 130-138. 49. Latifkar A, Hur YH, Sanchez JC, Cerione RA, Antonyak MA. (2019) New insights into extracellular vesicle biogenesis and function. J Cell Sci, 132. 50. Taylor J, Azimi I, Monteith G, Bebawy M. (2020) Ca(2+) mediates extracellular vesicle biogenesis through alternate pathways in malignancy. J Extracell Vesicles, 9, 1734326. 51. Bittel DC, Jaiswal JK. (2019) Contribution of Extracellular Vesicles in Rebuilding Injured Muscles. Front Physiol, 10, 828. 52. Cloos AS, et al. (2020) Interplay Between Plasma Membrane Lipid Alteration, Oxidative Stress and Calcium-Based Mechanism for Extracellular Vesicle Biogenesis from Erythrocytes During Blood Storage. Front Physiol, 11, 712. 53. Savina A, Furlán M, Vidal M, Colombo MI. (2003) Exosome release is regulated by a calcium-dependent mechanism in K562 cells. J Biol Chem, 278, 20083-20090. 54. Messenger SW, Woo SS, Sun Z, Martin TFJ. (2018) A Ca(2+)-stimulated exosome release pathway in cancer cells is regulated by Munc13-4. J Cell Biol, 217, 2877-2890. 55. Parkinson K, et al. (2014) Calcium-dependent regulation of Rab activation and vesicle fusion by an intracellular P2X ion channel. Nat Cell Biol, 16, 87-98. 56. Ruan Z, et al. (2020) P2RX7 inhibitor suppresses exosome secretion and disease phenotype in P301S tau transgenic mice. Mol Neurodegener, 15, 47. 57. Park M, et al. (2019) Involvement of the P2X7 receptor in the migration and metastasis of tamoxifen-resistant breast cancer: effects on small extracellular vesicles production. Sci Rep, 9, 11587. 58. Lara R, et al. (2020) P2X7 in Cancer: From Molecular Mechanisms to Therapeutics. Front Pharmacol, 11, 793. 59. Giannuzzo A, Pedersen SF, Novak I. (2015) The P2X7 receptor regulates cell survival, migration and invasion of pancreatic ductal adenocarcinoma cells. Mol Cancer, 14, 203. 60. Gilbert SM, et al. (2019) ATP in the tumour microenvironment drives expression of nfP2X(7), a key mediator of cancer cell survival. Oncogene, 38, 194-208. 61. Di Virgilio F, Sarti AC, Falzoni S, De Marchi E, Adinolfi E. (2018) Extracellular ATP and P2 purinergic signalling in the tumour microenvironment. Nat Rev Cancer, 18, 601-618. 62. Balkwill FR, Capasso M, Hagemann T. (2012) The tumor microenvironment at a glance. J Cell Sci, 125, 5591-5596. 63. Vultaggio-Poma V, Sarti AC, Di Virgilio F. (2020) Extracellular ATP: A Feasible Target for Cancer Therapy. Cells, 9, 2496. 64. Al-Nedawi K, et al. (2008) Intercellular transfer of the oncogenic receptor EGFRvIII by microvesicles derived from tumour cells. Nat Cell Biol, 10, 619-624. 65. Keller S, et al. (2009) Systemic presence and tumor-growth promoting effect of ovarian carcinoma released exosomes. Cancer Lett, 278, 73-81. 66. Skog J, et al. (2008) Glioblastoma microvesicles transport RNA and proteins that promote tumour growth and provide diagnostic biomarkers. Nat Cell Biol, 10, 1470-1476. 67. Wang SE. (2020) Extracellular Vesicles and Metastasis. Cold Spring Harb Perspect Med, 10. 68. Zhao H, et al. (2018) The key role of extracellular vesicles in the metastatic process. Biochim Biophys Acta Rev Cancer, 1869, 64-77. 69. Ko SY, et al. (2019) Cancer-derived small extracellular vesicles promote angiogenesis by heparin-bound, bevacizumab-insensitive VEGF, independent of vesicle uptake. Commun Biol, 2, 386. 70. Ciravolo V, et al. (2012) Potential role of HER2-overexpressing exosomes in countering trastuzumab-based therapy. J Cell Physiol, 227, 658-667. 71. Gong J, et al. (2012) Microparticles and their emerging role in cancer multidrug resistance. Cancer Treat Rev, 38, 226-234. 72. Properzi F, Logozzi M, Fais S. (2013) Exosomes: the future of biomarkers in medicine. Biomark Med, 7, 769-778. 73. Chi KR. (2016) The tumour trail left in blood. Nature, 532, 269-271. 74. Marar C, Starich B, Wirtz D. (2021) Extracellular vesicles in immunomodulation and tumor progression. Nat Immunol, 22, 560-570. 75. Tai YL, et al. (2019) Basics and applications of tumor-derived extracellular vesicles. J Biomed Sci, 26, 35. 76. Zitvogel L, et al. (1998) Eradication of established murine tumors using a novel cell-free vaccine: dendritic cell-derived exosomes. Nat Med, 4, 594-600. 77. Andre F, et al. (2002) Malignant effusions and immunogenic tumour-derived exosomes. Lancet, 360, 295-305. 78. Kosaka N, Yoshioka Y, Fujita Y, Ochiya T. (2016) Versatile roles of extracellular vesicles in cancer. J Clin Invest, 126, 1163-1172. 79. Yee NS, Zhang S, He HZ, Zheng SY. (2020) Extracellular Vesicles as Potential Biomarkers for Early Detection and Diagnosis of Pancreatic Cancer. Biomedicines, 8. 80. Fleming K, Kelley LA, Islam SA, MacCallum RM, Muller A, Pazos F, Sternberg MJ. (2006) The proteome: structure, function and evolution. Philos Trans R Soc Lond B Biol Sci., 361(1467), 441-451. 81. Keerthikumar S, Chisanga D, Ariyaratne D, Al Saffar H, Anand S, Zhao K, Samuel M, Pathan M, Jois M, Chilamkurti N, Gangoda L, Mathivanan S. (2016) ExoCarta: A Web-Based Compendium of Exosomal Cargo. J Mol Biol., 428(4), 6+-692. 82. Pathan M, Fonseka P, Chitti SV, Kang T, Sanwlani R, Van Deun J, Hendrix A, Mathivanan S. (2019) Vesiclepedia 2019: a compendium of RNA, proteins, lipids and metabolites in extracellular vesicles. Nucleic Acids Res., 47(D1), D516-D519. 83. Chitti SV, Gummadi S, Kang T, Shahi S, Marzan AL, Nedeva C, Sanwlani R, Bramich K, Stewart S, Petrovska M, Sen B, Ozkan A, Akinfenwa M, Fonseka P, Mathivanan S. (2024) Vesiclepedia 2024: an extracellular vesicles and extracellular particles repository. Nucleic Acids Res., 52(D1), D1694-D1698. 84. Bruschi M, Santucci L, Ravera S, et al. (2016) Human urinary exosome proteome unveils its aerobic respiratory ability. J Proteomics, 136, 25-34. 85. Jang, S. C., et al. (2019) Mitochondrial protein enriched extracellular vesicles discovered in human melanoma tissues can be detected in patient plasma. J. Extracell. Vesicles, 8, 1635420. 86. Kim DK, Lee J, Kim SR, Choi DS, Yoon YJ, Kim JH, Go G, Nhung D, Hong K, Jang SC, Kim SH, Park KS, Kim OY, Park HT, Seo JH, et al. (2015) EVpedia: a community web portal for extracellular vesicles research. Bioinformatics, 31(6), 933-939. 87. Arneth, B. (2020). Tumor Microenvironment. Medicina, 56(1), 15. 88. Brassart-Pasco, S., Brézillon, S., Brassart, B., Ramont, L., Oudart, J.-B., & Monboisse, J.-C. (2020). Tumor Microenvironment: Extracellular Matrix Alterations Influence Tumor Progression. Frontiers in Oncology, 10, 397. 89. Henke, E., Nandigama, R., & Ergün, S. (2020). Extracellular Matrix in the Tumor Microenvironment and Its Impact on Cancer Therapy. Frontiers in Molecular Biosciences, 6, 160. 90. Jiang, X., Wang, J., Deng, X., Xiong, F., Zhang, S., Gong, Z., Li, X., Cao, K., Deng, H., He, Y., Liao, Q., Xiang, B., Zhou, M., Guo, C., Zeng, Z., Li, G., Li, X., & Xiong, W. (2020). The Role of Microenvironment in Tumor Angiogenesis. Journal of Experimental & Clinical Cancer Research, 39(1), 204. 91. Lugano, R., Ramachandran, M., & Dimberg, A. (2020). Tumor Angiogenesis: Causes, Consequences, Challenges and Opportunities. Cellular and Molecular Life Sciences, 77(9), 1745-1770. 92. Martínez-Reyes, I., & Chandel, N. S. (2021). Cancer Metabolism: Looking Forward. Nature Reviews Cancer, 21, 669–680. 93. Shi, R., Tang, Y. Q., & Miao, H. (2020). Metabolism in Tumor Microenvironment: Implications for Cancer Immunotherapy. MedComm, 1(1), 47-68. 94. Schiliro, C., & Firestein, B. L. (2021). Mechanisms of Metabolic Reprogramming in Cancer Cells Supporting Enhanced Growth and Proliferation. Cells, 10, 1056. 95. Faubert, B., Solmonson, A., & DeBerardinis, R. J. (2020). Metabolic Reprogramming and Cancer Progression. Science, 368(6487), eaaw5473. 96. Russell, R. C., & Guan, K.-L. (2022). The Multifaceted Role of Autophagy in Cancer. The EMBO Journal, 41(13), e1110031. 97. Vultaggio-Poma, V., Sarti, A. C., & Di Virgilio, F. (2020). Extracellular ATP: A Feasible Target for Cancer Therapy. Cells, 9, 2496. 98. Alvarez, C. L., Troncoso, M. F., & Espelt, M. V. (2022). Extracellular ATP and Adenosine in Tumor Microenvironment: Roles in Epithelial-Mesenchymal Transition, Cell Migration, and Invasion. Journal of Cellular Physiology, 237(1), 389-400. 99. Sheta, M., Taha, E. A., Lu, Y., & Eguchi, T. (2023). Extracellular Vesicles: New Classification and Tumor Immunosuppression. Biology, 12, 110. 100. Xie, F., Zhou, X., Su, P., et al. (2022). Breast Cancer Cell-Derived Extracellular Vesicles Promote CD8+ T Cell Exhaustion via TGF-β Type II Receptor Signaling. Nature Communications, 13, 4461. 101. Pucci, M., Raimondo, S., Urzì, O., Moschetti, M., Di Bella, M. A., Conigliaro, A., Caccamo, N., La Manna, M. P., Fontana, S., & Alessandro, R. (2021). Tumor-Derived Small Extracellular Vesicles Induce Pro-Inflammatory Cytokine Expression and PD-L1 Regulation in M0 Macrophages via IL-6/STAT3 and TLR4 Signaling Pathways. International Journal of Molecular Sciences, 22, 12118. 102. Yu, Z. L., Liu, J. Y., & Chen, G. (2022). Small Extracellular Vesicle PD-L1 in Cancer: The Known and Unknowns. npj Precision Oncology, 6, 42. 103. Schöne, N., Kemper, M., Menck, K., Evers, G., Krekeler, C., Schulze, A. B., Lenz, G., Wardelmann, E., Binder, C., & Bleckmann, A. (2024). PD-L1 on Large Extracellular Vesicles Is a Predictive Biomarker for Therapy Response in Tissue PD-L1-Low and -Negative Patients with Non-Small Cell Lung Cancer. Journal of Extracellular Vesicles, 13(3), e12418. doi: 10.1002/jev2.12418. Erratum in: Journal of Extracellular Vesicles, 13(5), e12443. 104. Heras-Murillo, I., Adán-Barrientos, I., Galán, M., et al. (2024). Dendritic Cells as Orchestrators of Anticancer Immunity and Immunotherapy. Nature Reviews Clinical Oncology, 21, 257–277. 105. Marar, C., Starich, B., & Wirtz, D. (2021). Extracellular Vesicles in Immunomodulation and Tumor Progression. Nature Immunology, 22, 560–570. 106. Yang, S., Wei, S., & Wei, F. (2024). Extracellular Vesicles Mediated Gastric Cancer Immune Response: Tumor Cell Death or Immune Escape? Cell Death & Disease, 15, 377. 107. Mittal, S., Gupta, P., Chaluvally-Raghavan, P., & Pradeep, S. (2020). Emerging Role of Extracellular Vesicles in Immune Regulation and Cancer Progression. Cancers, 12, 3563. 108. Knox, M. C., Ni, J., Bece, A., Bucci, J., Chin, Y., Graham, P. H., & Li, Y. (2020). A Clinician's Guide to Cancer-Derived Exosomes: Immune Interactions and Therapeutic Implications. Frontiers in Immunology, 11, 1612. 109. Gao, J., Zhang, X., Jiang, L., Li, Y., & Zheng, Q. (2022). Tumor Endothelial Cell-Derived Extracellular Vesicles Contribute to Tumor Microenvironment Remodeling. Cell Communication and Signaling, 20(1), 97. 110. Eguchi, T., Sheta, M., Fujii, M., & Calderwood, S. K. (2022). Cancer Extracellular Vesicles, Tumoroid Models, and Tumor Microenvironment. Seminars in Cancer Biology, 86(Pt 1), 112-126. 111. Bao, Q., Huang, Q., Chen, Y., Wang, Q., Sang, R., Wang, L., Xie, Y., & Chen, W. (2022). Tumor-Derived Extracellular Vesicles Regulate Cancer Progression in the Tumor Microenvironment. Frontiers in Molecular Biosciences, 8, 796385. 112. Yue, M., Hu, S., Sun, H., Tuo, B., Jia, B., Chen, C., Wang, W., Liu, J., Liu, Y., Sun, Z., & Hu, J. (2023). Extracellular Vesicles Remodel Tumor Environment for Cancer Immunotherapy. Molecular Cancer, 22(1), 203. 113. Li, Q., Cai, S., Li, M., Salma, K. I., Zhou, X., Han, F., Chen, J., & Huyan, T. (2021). Tumor-Derived Extracellular Vesicles: Their Role in Immune Cells and Immunotherapy. International Journal of Nanomedicine, 16, 5395-5409. 114. Wallace, A. C., Laskowski, R. A. & Thornton, J. M. (1995) LIGPLOT: a program to generate schematic diagrams of protein-ligand interactions. Protein Eng, 8, 127-134. 115. Yin, X., Yang, J., Xiao, F., Yang, Y. & Shen, H. B. (2018) MemBrain: An Easy-to-Use Online Webserver for Transmembrane Protein Structure Prediction. Nanomicro Lett, 10, 2. 116. Ruiz, A., Alberdi, E., Matute, C. (2018) Mitochondrial Division Inhibitor 1 (mdivi-1) Protects Neurons against Excitotoxicity through the Modulation of Mitochondrial Function and Intracellular Ca(2+) Signaling. Front. Mol. Neurosci., 11, 3. 117. Bordt, E. A., Clerc, P., Roelofs, B. A., Saladino, A. J., Tretter, L., Adam-Vizi, V., Cherok, E., Khalil, A., Yadava, N., Ge, S. X., Francis, T. C., Polster, B. M. (2017) The Putative Drp1 Inhibitor mdivi-1 Is a Reversible Mitochondrial Complex I Inhibitor that Modulates Reactive Oxygen Species. Dev. Cell, 40, 583-594.e586. 118. Dubyak, G. R. (2012) P2X7 receptor regulation of non-classical secretion from immune effector cells. Cell Microbiol, 14, 1697-1706. 119. Di Virgilio, F., Dal Ben, D., Sarti, A. C., Giuliani, A. L., Falzoni, S. (2017) The P2X7 Receptor in Infection and Inflammation. Immunity, 47, 15-31. 120. Taurino, F. & Gnoni, A. (2018) Systematic review of plasma-membrane ecto-ATP synthase: A new player in health and disease. Exp Mol Pathol, 104, 59-70. 121. Kim, D. H. et al. (2019) Exosomal PD-L1 promotes tumor growth through immune escape in non-small cell lung cancer. Exp Mol Med, 51, 1-13. doi:10.1038/s12276-019-0295-2. 122. Greenberg, J. W. et al. (2022) Combination of Tipifarnib and Sunitinib Overcomes Renal Cell Carcinoma Resistance to Tyrosine Kinase Inhibitors via Tumor-Derived Exosome and T Cell Modulation. Cancers, 14, 903. 123. Abraham, R. T. & Weiss, A. (2004) Jurkat T cells and development of the T-cell receptor signalling paradigm. Nat Rev Immunol, 4, 301-308. 124. Gerbec, Z. J., Thakar, M. S. & Malarkannan, S. (2015) The Fyn-ADAP Axis: Cytotoxicity Versus Cytokine Production in Killer Cells. Front Immunol, 6, 472. 125. Krämer-Albers, E. M. & White, R. (2011) From axon-glial signalling to myelination: the integrating role of oligodendroglial Fyn kinase. Cell Mol Life Sci, 68, 2003-2012. 126. Matrone, C., Petrillo, F., Nasso, R. & Ferretti, G. (2020) Fyn Tyrosine Kinase as Harmonizing Factor in Neuronal Functions and Dysfunctions. Int J Mol Sci, 21. 127. Bobkov, D. et al. (2021) Lipid raft integrity is required for human leukemia Jurkat T-cell migratory activity. Biochim Biophys Acta Mol Cell Biol Lipids, 1866, 158917. 128. Waterhouse, A. et al. (2018) SWISS-MODEL: homology modelling of protein structures and complexes. Nucleic Acids Res, 46, W296-W303. 129. Kozakov, D. et al. (2017) The ClusPro web server for protein-protein docking. Nat Protoc, 12, 255-278. 130. Antonicka, H. et al. (2020) A High-Density Human Mitochondrial Proximity Interaction Network. Cell Metab, 32, 479-497 131. Goplen, N. P. et al. (2016) IL-12 Signals through the TCR To Support CD8 Innate Immune Responses. J Immunol, 197, 2434-2443. 132. Wu, L. et al. (2007) Global survey of human T leukemic cells by integrating proteomics and transcriptomics profiling. Mol Cell Proteomics, 6, 1343-1353. 133. Théry, C. et al. (2018) Minimal information for studies of extracellular vesicles 2018 (MISEV2018): a position statement of the International Society for Extracellular Vesicles and update of the MISEV2014 guidelines. J Extracell Vesicles, 7, 1535750. 134. Lai, C. P. et al. (2015) Visualization and tracking of tumour extracellular vesicle delivery and RNA translation using multiplexed reporters. Nat Commun, 6, 7029. 135. Giacomello, M., Pyakurel, A., Glytsou, C. & Scorrano, L. (2020) The cell biology of mitochondrial membrane dynamics. Nat Rev Mol Cell Biol, 21, 204-224. 136. Zemirli, N., Morel, E. & Molino, D. (2018) Mitochondrial Dynamics in Basal and Stressful Conditions. Int J Mol Sci, 19. 137. Chang, Y. W. et al. (2022) Quantitative phosphoproteomics reveals ectopic ATP synthase on mesenchymal stem cells to promote tumor progression via ERK/c-Fos pathway activation. Mol Cell Proteomics, 21, 100237. 138. Gerasimovskaya, E. V., et al. (2002) Extracellular ATP is an autocrine/paracrine regulator of hypoxia-induced adventitial fibroblast growth. Signaling through extracellular signal-regulated kinase-1/2 and the Egr-1 transcription factor. J. Biol. Chem., 277, 44638-44650. 139. Orriss, I. R., et al. (2009) Hypoxia stimulates vesicular ATP release from rat osteoblasts. J. Cell Physiol., 220, 155-162. 140. Moreno-Smith, M., Lutgendorf, S. K. & Sood, A. K. (2010) Impact of stress on cancer metastasis. Future Oncol, 6, 1863-1881. 141. Northcott, J. M., Dean, I. S., Mouw, J. K. & Weaver, V. M. (2018) Feeling Stress: The Mechanics of Cancer Progression and Aggression. Front Cell Dev Biol, 6, 17. 142. Kugeratski, F. G. & Kalluri, R. (2021) Exosomes as mediators of immune regulation and immunotherapy in cancer. Febs J, 288, 10-35. 143. Whiteside, T. L. (2016) Exosomes and tumor-mediated immune suppression. The Journal of Clinical Investigation, 126, 1216-1223. 144. Salmond, R. J., Filby, A., Qureshi, I., Caserta, S. & Zamoyska, R. (2009) T-cell receptor proximal signaling via the Src-family kinases, Lck and Fyn, influences T-cell activation, differentiation, and tolerance. Immunological Reviews, 228, 9-22. 145. Palacios, E. H. & Weiss, A. (2004) Function of the Src-family kinases, Lck and Fyn, in T-cell development and activation. Oncogene, 23, 7990-8000. 146. van der Donk, L. E. H. et al. (2021) Separate signaling events control TCR downregulation and T cell activation in primary human T cells. Immunity, Inflammation and Disease, 9, 223-238. 147. Gerbec, Z. J., Thakar, M. S. & Malarkannan, S. (2015) The Fyn–ADAP Axis: Cytotoxicity Versus Cytokine Production in Killer Cells. Frontiers in Immunology, 6. | - |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/94548 | - |
dc.description.abstract | 異位的ATP合酶(eATP合酶)是指位於細胞表面的血漿膜上、朝向外部的腺苷三磷酸合酶(ATP合酶),已在多種細胞類型中觀察到,並被視為癌症治療的潛在靶點。先前的研究指出,在A549、SK-N-BE(2)C和T47D細胞中,饑餓期後eATP合酶的表達增加。然而,在癌細胞在饑餓狀態下,細胞表面的eATP合酶的確切功能仍不清楚。
本研究利用定量蛋白質組學對飢餓狀態A549細胞進行分析,我們觀察到在305個已定量的蛋白質中具有56個顯著差異表達蛋白,進一步的基因本體論(Gene ontology)分析揭示在饑餓壓力下,癌細胞表現較高的eATP合成酶,並增強胞外囊泡(EVs)的產生。後續研究結果顯示,在A549、SK-N-BE(2)C和T47D細胞中,eATP合成酶生成胞外ATP,通過增強P2X7受體介導的Ca2+流入來刺激EVs的分泌。EVs在腫瘤微環境中是重要的調節因子為了更深入地研究增加EV釋放的作用,我們對饑餓A549細胞衍生的EV進行了定量蛋白體分析,令人驚訝的是,我們發現eATP合成酶也位於腫瘤分泌的EVs表面。人體蛋白質微陣列顯示T細胞的細胞膜上表達的蛋白質Fyn與ATP合酶亞單位beta具有相互作用,實驗證實,EVs表面的eATP合成酶通過與Fyn結合,增加了對Jurkat T細胞中腫瘤分泌的EVs的攝取。eATP合成酶包被的EVs攝取隨後抑制了Jurkat T細胞的增殖和細胞因子分泌。 總結而言,這項研究不僅闡明了eATP合酶與EV分泌之間的關係,還揭示了癌細胞利用EV的一種新的通訊機制。這些發現對於開發針對eATP合酶的癌症治療和其參與EV介導的細胞間通訊具有潛在的意義。 | zh_TW |
dc.description.abstract | The ectopic ATP synthase (eATP synthase) refers to plasma membrane-localized, outward-facing ATP synthase observed in various cancer cell types, recognized as a potential target for cancer therapy. Previous studies have indicated increased expression of eATP synthase post-starvation in A549, SK-N-BE(2)C, and T47D cells. However, the precise function of cell surface eATP synthase in cancer cells under starvation conditions remains unclear.
In this study, quantitative proteomics analysis of starvation-stressed A549 cells revealed significant differential expression of 56 proteins out of 305 quantified proteins. Subsequent Gene Ontology (GO) analysis unveiled higher expression of eATP synthase in cancer cells under starvation stress, enhancing the production of extracellular vesicles (EVs). Further investigations demonstrated that eATP synthase generates extracellular ATP in A549, SK-N-BE(2)C, and T47D cells, stimulating EV secretion by enhancing P2X7 receptor-mediated Ca2+ influx. EVs are crucial regulators within the tumor microenvironment. To explore the role of increased EV release in depth, quantitative proteomic analysis of EVs derived from starved A549 cells was conducted. Surprisingly, eATP synthase was found on the surface of tumor-secreted EVs. Human protein microarray analysis revealed interaction between the plasma membrane protein Fyn on T cells and the ATP synthase subunit beta. Experimental validation confirmed that eATP synthase on EV surfaces enhances uptake by Jurkat T cells through association with Fyn, subsequently suppressing proliferation and cytokine secretion in Jurkat T cells. In summary, this study elucidates the relationship between eATP synthase and EV secretion, revealing a novel communication mechanism utilized by cancer cells through EVs. These findings hold potential implications for developing cancer therapies targeting eATP synthase and its involvement in EV-mediated intercellular communication. | en |
dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-08-16T16:40:28Z No. of bitstreams: 0 | en |
dc.description.provenance | Made available in DSpace on 2024-08-16T16:40:28Z (GMT). No. of bitstreams: 0 | en |
dc.description.tableofcontents | 致謝 i
中文摘要 ii Abstract iii List of Figures ix List of Tables xii Abbreviation xiii Chapter 1. Introduction 1 1.1 ATP synthase 1 1.2 Mitochondrial dynamics 2 1.3 Ectopic ATP synthase 4 1.4 Extracellular vesicles 6 1.5 Proteome studies in EVs 9 1.6 ATP synthase in EVs 10 1.7 Tumor microenvironment 11 1.8 The role of tumor-derived EVs in immune suppression 13 1.9 Objective of thesis 15 Chapter 2. Materials and Methods 17 2.1 Cell culture and conditioned medium 17 2.2 Fluorescence staining and immunocytochemistry 17 2.3 Reduction, alkylation, and digestion of proteins 18 2.4 Dimethyl labeling of peptides 19 2.5 NanoLC-MS/MS analysis 20 2.6 Quantitative proteome data analysis 21 2.7 DAVID GO enrichment analysis 22 2.8 EV isolation 22 2.9 Nanoparticle tracking analysis (NTA) 23 2.10 Transmission electron microscopy (TEM) 23 2.11 Western blotting. 24 2.12 Mitochondrial image analysis 25 2.13 Transfection of plasmid DNAs and selection 26 2.14 ATP bioluminescence assay 26 2.15 Calcium ion assay 27 2.16 Inhibitor treatments 28 2.17 Dot blot 29 2.18 ATP5B protein construction, amplification, and purification 29 2.19 Probing of ATP5B with a human proteome microarray 32 2.20 Protein-protein docking simulation 33 2.21 Transmembrane protein predictions 34 2.22 Treatment of Jurkat T-cells with EVs 34 2.23 Cytokine assay 35 2.24 EV uptake detection in Jurkat T cell 35 2.25 Resource 36 2.26 Statistics and Reproducibility 36 Chapter 3. Result 37 3.1 Serum starvation triggers both eATP synthase expression and EV release 37 3.2 Disrupted eATP synthase biogenesis reduces the secretion of EVs. 39 3.3 eATP synthase provides ATP to enhance the secretion of EVs 41 3.4 P2X7 receptors utilize extracellular ATP for EV release 43 3.5 S-EVs showed elevated surface levels of eATP synthase during starvation 45 3.6 eATP synthase could potentially bind with Fyn on the surface of T cells. 47 3.7 Blockade of eATP synthase or Fyn affected Jurkat T cell proliferation, cytokine release and EV uptake 49 Chapter 4. Discussion 52 Chapter 5. Conclusion 62 Reference 65 Figures 88 Tables 138 . | - |
dc.language.iso | en | - |
dc.title | 異位ATP合酶刺激細胞外囊泡的分泌並促進癌細胞的免疫抑制 | zh_TW |
dc.title | Ectopic ATP synthase stimulates the secretion of extracellular vesicles and contributes to immunosuppression in cancer cells | en |
dc.type | Thesis | - |
dc.date.schoolyear | 112-2 | - |
dc.description.degree | 博士 | - |
dc.contributor.oralexamcommittee | 李岳倫;賴品光;黃翠琴;張心儀;黃宣誠 | zh_TW |
dc.contributor.oralexamcommittee | Yueh-Luen Lee;Charles Lai;Tsui-Chin Huang;Hsin-Yi Chang;Hsuan-Cheng Huang | en |
dc.subject.keyword | 異位表達ATP合成酶,胞外囊泡,微泡,外泌體,胞外囊泡分泌,蛋白質體學,免疫抑制, | zh_TW |
dc.subject.keyword | Ectopic ATP synthase,extracellular vesicles,microvesicles,exosomes,EVs secretion,proteomics,immunosuppression, | en |
dc.relation.page | 276 | - |
dc.identifier.doi | 10.6342/NTU202403486 | - |
dc.rights.note | 同意授權(限校園內公開) | - |
dc.date.accepted | 2024-08-13 | - |
dc.contributor.author-college | 生命科學院 | - |
dc.contributor.author-dept | 生命科學系 | - |
顯示於系所單位: | 生命科學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-112-2.pdf 授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務) | 20.8 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。