請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/94546完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 鄭卜壬 | zh_TW |
| dc.contributor.advisor | Pu-Jen Cheng | en |
| dc.contributor.author | 周承宏 | zh_TW |
| dc.contributor.author | Cheng-Hong Chou | en |
| dc.date.accessioned | 2024-08-16T16:39:51Z | - |
| dc.date.available | 2024-08-17 | - |
| dc.date.copyright | 2024-08-16 | - |
| dc.date.issued | 2024 | - |
| dc.date.submitted | 2024-08-07 | - |
| dc.identifier.citation | M. Ariannezhad, S. Jullien, M. Li, M. Fang, S. Schelter, and M. de Rijke. Recanet: A repeat consumption-aware neural network for next basket recommendation in grocery shopping. In Proceedings of the 45th International ACM SIGIR Conference on Research and Development in Information Retrieval, pages 1240–1250, 2022.
T. Bai, J.-Y. Nie, W. X. Zhao, Y. Zhu, P. Du, and J.-R. Wen. An attribute-aware neural attentive model for next basket recommendation. In The 41st International ACM SIGIR Conference on Research & Development in Information Retrieval, pages 1201–1204, 2018. I. Bilan and B. Roth. Position-aware self-attention with relative positional encodings for slot filling. arXiv preprint arXiv:1807.03052, 2018. Y. Chen, J. Li, C. Liu, C. Li, M. Anderle, J. McAuley, and C. Xiong. Modeling dynamic attributes for next basket recommendation. arXiv preprint arXiv:2109.11654, 2021. M. Deshpande and G. Karypis. Item-based top-n recommendation algorithms. ACM Trans. Inf. Syst., 22(1):143–177, jan 2004. G. Faggioli, M. Polato, and F. Aiolli. Recency aware collaborative filtering for next basket recommendation. In Proceedings of the 28th ACM Conference on User Modeling, Adaptation and Personalization, UMAP ’20, page 80–87, New York, NY, USA, 2020. Association for Computing Machinery. S. Garcarz, A. Pal, and P. Praat. [re] modeling personalized item frequency information for next-basket recommendation, 2024. H. Hu and X. He. Sets2sets: Learning from sequential sets with neural networks. In Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, KDD ’19, page 1491–1499, New York, NY, USA, 2019. Association for Computing Machinery. H. Hu, X. He, J. Gao, and Z.-L. Zhang. Modeling personalized item frequency information for next-basket recommendation. In Proceedings of the 43rd international ACMSIGIR conference on research and development in information retrieval, pages 1071–1080, 2020. O. Katz, O. Barkan, N. Koenigstein, and N. Zabari. Learning to ride a buycycle: A hyper-convolutional model for next basket repurchase recommendation. In Proceedings of the 16th ACM Conference on Recommender Systems, pages 316–326, 2022. J. A. Konstan, B. N. Miller, D. Maltz, J. L. Herlocker, L. R. Gordon, and J. Riedl. Grouplens: applying collaborative filtering to usenet news. Commun. ACM, 40(3):77–87, mar 1997. D.-T. Le, H. W. Lauw, and Y. Fang. Correlation-sensitive next-basket recommendation. In Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence, IJCAI-19, pages 2808–2814. International Joint Conferences on Artificial Intelligence Organization, 7 2019. Y. Leng, L. Yu, J. Xiong, and G. Xu. Recurrent convolution basket map for diversity next-basket recommendation. In International conference on database systems for advanced applications, pages 638–653. Springer, 2020. J. Li, Y. Wang, and J. McAuley. Time interval aware self-attention for sequential recommendation. In Proceedings of the 13th international conference on web search and data mining, pages 322–330, 2020. M. Li, S. Jullien, M. Ariannezhad, and M. de Rijke. A next basket recommendation reality check. ACM Trans. Inf. Syst., 41(4), apr 2023. S. Naumov, M. Ananyeva, O. Lashinin, S. Kolesnikov, and D. I. Ignatov. Time-dependent next-basket recommendations. In Advances in Information Retrieval: 45th European Conference on Information Retrieval, ECIR 2023, Dublin, Ireland, April 2–6, 2023, Proceedings, Part II, page 502–511, Berlin, Heidelberg, 2023. Springer-Verlag. Y. Qin, P. Wang, and C. Li. The world is binary: Contrastive learning for denoising next basket recommendation. In Proceedings of the 44th International ACM SIGIR Conference on Research and Development in Information Retrieval, SIGIR ’21, page 859–868, New York, NY, USA, 2021. Association for Computing Machinery. S. Rendle, C. Freudenthaler, and L. Schmidt-Thieme. Factorizing personalized markov chains for next-basket recommendation. In Proceedings of the 19th International Conference on World Wide Web, WWW ’10, page 811–820, New York, NY, USA, 2010. Association for Computing Machinery. A. Romanov, O. Lashinin, M. Ananyeva, and S. Kolesnikov. Time-aware item weighting for the next basket recommendations. In Proceedings of the 17th ACM Conference on Recommender Systems, RecSys ’23, page 985–992, New York, NY, USA, 2023. Association for Computing Machinery. B. Sarwar, G. Karypis, J. Konstan, and J. Riedl. Item-based collaborative filtering recommendation algorithms. In Proceedings of the 10th International Conference on World Wide Web, WWW ’01, page 285–295, New York, NY, USA, 2001. Association for Computing Machinery. Z. Shao, S. Wang, Q. Zhang, W. Lu, Z. Li, and X. Peng. A systematical evaluation for next-basket recommendation algorithms, 2023. P. Shaw, J. Uszkoreit, and A. Vaswani. Self-attention with relative position representations, 2018. L. Sun, Y. Bai, B. Du, C. Liu, H. Xiong, and W. Lv. Dual sequential network for temporal sets prediction. In Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval, pages 1439–1448, 2020. S. Wan, Y. Lan, P. Wang, J. Guo, J. Xu, and X. Cheng. Next basket recommendation with neural networks. In RecSys Posters, 2015. B. L. Wang and S. Schelter. Efficiently maintaining next basket recommendations under additions and deletions of baskets and items, 2022. P. Wang, J. Guo, Y. Lan, J. Xu, S. Wan, and X. Cheng. Learning hierarchical representation model for nextbasket recommendation. In Proceedings of the 38th International ACM SIGIR conference on Research and Development in Information Retrieval, pages 403–412, 2015. F. Yu, Q. Liu, S. Wu, L. Wang, and T. Tan. A dynamic recurrent model for next basket recommendation. In Proceedings of the 39th International ACM SIGIR conference on Research and Development in Information Retrieval, pages 729–732, 2016. L. Yu, L. Sun, B. Du, C. Liu, H. Xiong, and W. Lv. Predicting temporal sets with deep neural networks. In Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, KDD '20. ACM, Aug. 2020. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/94546 | - |
| dc.description.abstract | 下一個購物籃推薦系統 (NBR) 因其在電子商務和雜貨購物的應用中產生重大影響。下一個購物籃推薦系統的目的是根據使用者的購買記錄來預測用戶的下一籃商品。
傳統的推薦方法(例如基於頻率和基於鄰居的方法)已被廣泛研究,但往往忽略了連續籃子之間的時間間隔變化。深度學習的最新進展引進了新的方法,可以更有效地為使用者行為建模。然而,這些模型主要著重於籃子的順序,而不考慮籃子之間的時間間隔,使推薦系統的表現受到限制。 我們的研究提出了一種新模型,稱為時間間隔建模的下一個購物籃推薦模型(Temporal Interval Modeling for Next Basket Recommendation, TIM-REC),將時間間隔信息整合到推薦過程中。為了評估 TIM-REC 是否能夠有效捕捉購物籃之間的時間關聯性,我們在三個真實世界的資料集上進行了大量實驗,結果證明 TIM-REC 與其他方法相比的有效性。 | zh_TW |
| dc.description.abstract | Next Basket Recommendation (NBR) systems have garnered significant interest due to their practical applications in e-commerce and grocery shopping. These systems aim to predict a user's next basket of items based on their purchase history, which is a set of items frequently bought or consumed together. Traditional recommendation methods, such as frequency-based and neighbor-based approaches, have been extensively studied but often overlook the temporal dynamics between consecutive baskets.
Recent advancements in deep learning have introduced new methodologies to model user behaviors more effectively. However, these models primarily focus on the sequence of baskets without considering the time intervals between them. Our work introduces a novel approach, Temporal Interval Modeling for Next Basket Recommendation (TIM-REC), which integrates temporal interval information into the recommendation process. To evaluate the performance of TIM-REC, we conducted extensive experiments on three real-world datasets. Our results demonstrate that TIM-REC outperforms other state-of-the-art deep learning models by effectively capturing the temporal dependencies between baskets. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-08-16T16:39:51Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2024-08-16T16:39:51Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | Acknowledgements i
摘要 ii Abstract iii Contents v List of Figures viii List of Tables ix Chapter 1 Introduction 1 Chapter 2 Related Work 3 2.1 Common NBR Methods 3 2.1.1 Heuristic Methods 4 2.1.2 Neighbor-Based Methods 5 2.1.3 Deep Learning-Based Methods 5 2.2 Relative Position Representations 6 Chapter 3 Proposed Method 7 3.1 Methodology 7 3.1.1 Problem Formulation 8 3.1.2 Weighted Graph Layer 9 3.1.2.1 Constructing Pairs 9 3.1.2.2 Calculating Pair Frequencies and Adding Self-Connections 10 3.1.2.3 Normalizing Weights 11 3.1.2.4 Constructing the Weighted Graph 11 3.1.2.5 Information Propagation 12 3.1.2.6 Layer Output 14 3.1.3 Temporal Interval Attention Layer 14 3.1.3.1 Converting Timestamps to Matrices and Scaling Time Intervals 15 3.1.3.2 Embedding Time Intervals 16 3.1.3.3 Temporal Dependency Learning 17 3.1.4 Prediction Layer 18 3.1.5 Training 18 Chapter 4 Experiments 20 4.1 Experimental Settings 20 4.1.1 Dataset Description 20 4.1.2 Evaluation 21 4.1.3 Compared Methods 22 4.1.3.1 Heuristic Methods 22 4.1.3.2 Nearest Neighbor-Based Methods 23 4.1.3.3 Deep Learning-Based Methods 23 4.2 Analysis of Results 24 4.3 Effects of Temporal Intervals 25 4.4 Effects of Time Interval Processing Methods 27 4.5 Effect of Time Interval Vector Dimensionality d 29 4.5.1 Observations 30 4.5.2 Conclusion 31 Chapter 5 Conclusions 32 5.1 Conclusion 32 5.2 Future Work 32 References 34 | - |
| dc.language.iso | en | - |
| dc.subject | 購物籃推薦系統 | zh_TW |
| dc.subject | 圖卷積網路 | zh_TW |
| dc.subject | 時間感知模型 | zh_TW |
| dc.subject | Time-aware Model | en |
| dc.subject | Next Basket Recommendation | en |
| dc.subject | Graph Convolutional Network | en |
| dc.title | TIM-REC: 基於時間間隔建模探討下一個籃子推薦系統之應用 | zh_TW |
| dc.title | TIM-REC: Temporal Interval Modeling for Next-Basket Recommendation | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 112-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 魏志達;邱志義 | zh_TW |
| dc.contributor.oralexamcommittee | Jyh-Da Wei;Chih-Yi Chiu | en |
| dc.subject.keyword | 購物籃推薦系統,圖卷積網路,時間感知模型, | zh_TW |
| dc.subject.keyword | Next Basket Recommendation,Graph Convolutional Network,Time-aware Model, | en |
| dc.relation.page | 38 | - |
| dc.identifier.doi | 10.6342/NTU202403776 | - |
| dc.rights.note | 未授權 | - |
| dc.date.accepted | 2024-08-10 | - |
| dc.contributor.author-college | 電機資訊學院 | - |
| dc.contributor.author-dept | 資訊工程學系 | - |
| 顯示於系所單位: | 資訊工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-112-2.pdf 未授權公開取用 | 3.29 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
