請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/94541
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 相子元 | zh_TW |
dc.contributor.advisor | Tzyy-Yuang Shiang | en |
dc.contributor.author | 蔡承軒 | zh_TW |
dc.contributor.author | Cheng-Hsuan Tsai | en |
dc.date.accessioned | 2024-08-16T16:38:18Z | - |
dc.date.available | 2024-08-17 | - |
dc.date.copyright | 2024-08-16 | - |
dc.date.issued | 2024 | - |
dc.date.submitted | 2024-08-10 | - |
dc.identifier.citation | Adua, E., Kolog, E. A., Afrifa-Yamoah, E., Amankwah, B., Obirikorang, C., Anto, E. O., Acheampong, E., Wang, W., & Tetteh, A. Y. (2021). Predictive model and feature importance for early detection of type II diabetes mellitus. Translational Medicine Communications, 6, 1-15.
Balsalobre-Fernández, C., & Kipp, K. (2021). Use of machine-learning and load–velocity profiling to estimate 1-repetition maximums for two variations of the bench-press exercise. Sports, 9(3), 39. Banyard, H. G., Nosaka, K., & Haff, G. G. (2017). Reliability and validity of the load–velocity relationship to predict the 1RM back squat. Journal of Strength and Conditioning Research, 31(7), 1897-1904. https://doi.org/10.1519/jsc.0000000000001657 Basti, A., Yalçin, M., Herms, D., Hesse, J., Aboumanify, O., Li, Y., Aretz, Z., Garmshausen, J., El-Athman, R., Hastermann, M., Blottner, D., & Relógio, A. (2021). Diurnal variations in the expression of core-clock genes correlate with resting muscle properties and predict fluctuations in exercise performance across the day. Bmj Open Sport & Exercise Medicine, 7(1), Article e000876. https://doi.org/10.1136/bmjsem-2020-000876 Bejani, M. M., & Ghatee, M. (2020). Theory of adaptive SVD regularization for deep neural networks. Neural Networks, 128, 33-46. https://doi.org/10.1016/j.neunet.2020.04.021 Benavides-Ubric, A., Díez-Fernández, D. M., Rodríguez-Pérez, M. A., Ortega-Becerra, M., & Pareja-Blanco, F. (2020). Analysis of the load-velocity relationship in deadlift exercise. Journal of Sports Science & Medicine, 19(3), 452. Bosquet, L., Porta-Benache, J., & Blais, J. (2010). Validity of a commercial linear encoder to estimate bench press 1 RM from the force-velocity relationship. Journal of Sports Science and Medicine, 9(3), 459-463. <Go to ISI>://WOS:000289361700015 Bove, A. M., Lynch, A. D., Depaul, S. M., Terhorst, L., Irrgang, J. J., & Fitzgerald, G. K. (2016). Test-retest reliability of rating of perceived exertion and agreement with 1-repetition maximum in adults. Journal of Orthopaedic & Sports Physical Therapy, 46(9), 768-774. https://doi.org/10.2519/jospt.2016.6498 Caparros, T., Pena, J., Baiget, E., Borras-Boix, X., Calleja-Gonzalez, J., & Rodas, G. (2022).Influence of strength programs on the injury rate and team performance of a professional basketball team: a six-season follow-up study.Frontiers in Psychology, 12, Article 796098. https://doi.org/10.3389/fpsyg.2021.796098 Caven, E. J. G., Bryan, T. J. E., Dingley, A. E., Drury, B., Garcia-Ramos, A., Perez-Castilla, A., Arede, J., & Fernandes, J. F. T. (2020). Group versus individualised minimum velocity thresholds in the prediction of maximal strength in trained female athletes. International Journal of Environmental Research and Public Health, 17(21), 7811. https://doi.org/10.3390/ijerph17217811 Chan, J. Y.-L., Leow, S. M. H., Bea, K. T., Cheng, W. K., Phoong, S. W., Hong, Z.-W., & Chen, Y.-L. (2022). Mitigating the multicollinearity problem and its machine learning approach: a review. Mathematics, 10(8), 1283. Colyer, S. L., Evans, M., Cosker, D. P., & Salo, A. I. T. (2018). A review of the evolution of vision-based motion analysis and the integration of advanced computer vision methods towards developing a markerless system. Sports Medicine-Open, 4, 1-15. https://doi.org/10.1186/s40798-018-0139-y Cust, E. E., Sweeting, A. J., Ball, K., & Robertson, S. (2019). Machine and deep learning for sport-specific movement recognition: a systematic review of model development and performance. Journal of Sports Sciences, 37(5), 568-600. https://doi.org/10.1080/02640414.2018.1521769 Donadio, M., Vendrusculo, F., Bueno, G., Campos, N., Silveira, I., Gheller, M., & Heinzmann, J. (2018). Correlation of physical fitness with peripheral muscle strength, physical activity levels and lung function in patients with cystic fibrosis. European Respiratory Journal, 52. https://doi.org/10.1183/13993003.congress-2018.PA1317 Dorrell, H. F., Smith, M. F., & Gee, T. I. (2020). Comparison of velocity-based and traditional percentage-based loading methods on maximal strength and power adaptations. The Journal of Strength & Conditioning Research, 34(1), 46-53. https://doi.org/10.1519/jsc.0000000000003089 Douha, L., Benoudjit, N., Douak, F., & Melgani, F. (2012). Support vector regression in spectrophotometry: an experimental study. Critical Reviews in Analytical Chemistry, 42(3), 214-219. https://doi.org/10.1080/10408347.2011.651945 Elsworthy, N., Callaghan, D. E., Scanlan, A. T., Kertesz, A. N. M., Kean, C. O., Dascombe, B. J., & Guy, J. H. (2021). Validity and Reliability of Using Load-Velocity Relationship Profiles to Establish Back Squat 1 m· s‐1 Load. The Journal of Strength & Conditioning Research, 35(2), 340-346. https://doi.org/10.1519/jsc.0000000000003871 Fernandes, J. F. T., Dingley, A. F., Garcia-Ramos, A., Perez-Castilla, A., Tufano, J. J., & Twist, C. (2021). Prediction of one repetition maximum using reference minimum velocity threshold values in young and middle-aged resistance-trained males. Behavioral Sciences, 11(5), 71.https://doi.org/10.3390/bs11050071 Galiano, C., Pareja-Blanco, F., de Mora, J. H., & de Villarreal, E. S. (2022). Low-velocity loss induces similar strength gains to moderate-velocity loss during resistance training. The Journal of Strength & Conditioning Research, 36(2), 340-345. https://doi.org/10.1519/jsc.0000000000003487 Garbin, C., Zhu, X. Q., & Marques, O. (2020). Dropout vs. batch normalization: an empirical study of their impact to deep learning. Multimedia Tools and Applications, 79(19), 12777-12815. https://doi.org/10.1007/s11042-019-08453-9 García-Ramos, A., Barboza-González, P., Ulloa-Díaz, D., Rodriguez-Perea, A., Martinez-Garcia, D., Guede-Rojas, F., Hinojosa-Riveros, H., Chirosa-Ríos, L. J., Cuevas-Aburto, J., & Janicijevic, D. (2019). Reliability and validity of different methods of estimating the one-repetition maximum during the free-weight prone bench pull exercise. Journal of Sports Sciences, 37(19), 2205-2212. García-Ramos, A., Pestaña-Melero, F. L., Pérez-Castilla, A., Rojas, F. J., & Haff, G. G. (2018). Mean velocity vs. mean propulsive velocity vs. peak velocity: which variable determines bench press relative load with higher reliability? The Journal of Strength & Conditioning Research, 32(5), 1273-1279. García-Ramos, A., Ulloa-Díaz, D., Barboza-González, P., Rodríguez-Perea, Á., Martínez-García, D., Quidel-Catrilelbún, M., Guede-Rojas, F., Cuevas-Aburto, J., Janicijevic, D., & Weakley, J. (2019). Assessment of the load-velocity profile in the free-weight prone bench pull exercise through different velocity variables and regression models. Plos One, 14(2), e0212085. González-Badillo, J. J., & Sánchez-Medina, L. (2010). Movement velocity as a measure of loading intensity in resistance training. International Journal of Sports Medicine, 31(05), 347-352.https://doi.org/10.1055/s-0030-1248333 Haff, G. G., Garcia-Ramos, A., & James, L. P. (2020). Using velocity to predict the maximum dynamic strength in the power clean. Sports, 8(9), 129. Hughes, L. J., Banyard, H. G., Dempsey, A. R., Peiffer, J. J., & Scott, B. R. (2019). Using load-velocity relationships to quantify training-induced fatigue. The Journal of Strength & Conditioning Research, 33(3), 762-773.https://doi.org/10.1519/jsc.0000000000003007 Izquierdo, M., González-Badillo, J. J., Häkkinen, K., Ibáñez, J., Kraemer, W. J., Altadill, A., Eslava, J., & Gorostiaga, E. M. (2006). Effect of loading on unintentional lifting velocity declines during single sets of repetitions to failure during upper and lower extremity muscle actions. International Journal of Sports Medicine, 27(9), 718-724. https://doi.org/10.1055/s-2005-872825 Jidovtseff, B., Harris, N. K., Crielaard, J. M., & Cronin, J. B. (2011). Using the load-velocity relationship for 1RM prediction. The Journal of Strength & Conditioning Research, 25(1), 267-270.https://doi.org/10.1519/JSC.0b013e3181b62c5f Jovanović, M., & Flanagan, E. P. (2014). Researched applications of velocity based strength training. J Aust Strength Cond, 22(2), 58-69. Keller, J. L., Housh, T. J., Smith, C. M., Hill, E. C., Schmidt, R. J., & Johnson, G. O. (2018). Sex-related differences in the accuracy of estimating target force using percentages of maximal voluntary isometric contractions vs. ratings of perceived exertion during isometric muscle actions. The Journal of Strength & Conditioning Research, 32(11), 3294-3300. https://doi.org/10.1519/jsc.0000000000002210 Kilgallon, J., Cushion, E., Joffe, S., & Tallent, J. (2022). Reliability and validity of velocity measures and regression methods to predict maximal strength ability in the back-squat using a novel linear position transducer. Proceedings of the Institution of Mechanical Engineers Part P-Journal of Sports Engineering and Technology, Article 17543371221093189. https://doi.org/10.1177/17543371221093189 Knezevic, O. M., Mirkov, D. M., Kadija, M., Nedeljkovic, A., & Jaric, S. (2014). Asymmetries in explosive strength following anterior cruciate ligament reconstruction. Knee, 21(6), 1039-1045. https://doi.org/10.1016/j.knee.2014.07.021 Knutzen, K. M., Brilla, L. R., & Caine, D. (1999). Validity of 1RM prediction equations for older adults. Journal of Strength and Conditioning Research, 13(3), 242-246. <Go to ISI>://WOS:000082194200011 Kravitz, L., Akalan, C., Nowicki, K., & Kinzey, S. J. (2003). Prediction of 1 repetition maximum in high-school power lifters. Journal of Strength and Conditioning Research, 17(1), 167-172. <Go to ISI>://WOS:000181193700026 Lauersen, J. B., Andersen, T. E., & Andersen, L. B. (2018). Strength training as superior, dose-dependent and safe prevention of acute and overuse sports injuries: a systematic review, qualitative analysis and meta-analysis. British Journal of Sports Medicine, 52(24), 1557-+. https://doi.org/10.1136/bjsports-2018-099078 Lazzarini, B. S. R., Dropp, M. W., & Lloyd, W. (2017). Upper-extremity explosive resistance training with older adults can be regulated using the rating of perceived exertion. The Journal of Strength & Conditioning Research, 31(3), 831-836. <Go to ISI>://WOS:000394569600033 Li, J. B., Chen, Z. Y., Li, X., Jing, L. J., Zhangf, Y. P., Xiao, H. H., Wang, S. J., Yang, W. K., Wu, L. J., Li, P. Y., Li, H. B., Yao, M., & Fan, L. T. (2023). Feedback on a shared big dataset for intelligent TBM Part I: Feature extraction and machine learning methods. Underground Space, 11, 1-25. https://doi.org/10.1016/j.undsp.2023.01.001 Li, Z. X., Hong, X. D., Hao, K. R., Chen, L., & Huang, B. (2020). Gaussian process regression with heteroscedastic noises - A machine-learning predictive variance approach. Chemical Engineering Research & Design, 157, 162-173. https://doi.org/10.1016/j.cherd.2020.02.033 Liao, K. F., Bian, C., Chen, Z. L., Yuan, Z. H., Bishop, C., Han, M. Y., Li, Y. M., & Zheng, Y. (2023). Repetition velocity as a measure of loading intensity in the free weight and Smith machine Bulgarian split squat. Peerj, 11, Article e15863. https://doi.org/10.7717/peerj.15863 Marston, K. J., Forrest, M. R., Teo, S. Y., Mansfield, S. K., Peiffer, J. J., & Scott, B. R. (2022). Load-velocity relationships and predicted maximal strength: A systematic review of the validity and reliability of current methods. Plos One, 17(10), e0267937. Masters, D., & Luschi, C. (2018). Revisiting small batch training for deep neural networks. arXiv preprint arXiv:1804.07612. Materko, W., & Santos, E. L. (2009). Prediction of one repetition maximum strength (1RM) based on a submaximal strength in adult males. Isokinetics and Exercise Science, 17(4), 189-195. https://doi.org/10.3233/ies-2009-0353 Mayhew, J. L., Johnson, B. D., LaMonte, M. J., Lauber, D., & Kemmler, W. (2008). Accuracy of prediction equations for determining one repetition maximum bench press in women before and after resistance training. The Journal of Strength & Conditioning Research, 22(5), 1570-1577.https://doi.org/10.1519/JSC.0b013e31817b02ad Melchiorri, G., & Rainoldi, A. (2011). Muscle fatigue induced by two different resistances: Elastic tubing versus weight machines. Journal of Electromyography and Kinesiology, 21(6), 954-959. https://doi.org/10.1016/j.jelekin.2011.07.015 Morley, J. E., Perry, H. M., & Miller, D. K. (2002). Something about frailty. Journals of Gerontology Series a-Biological Sciences and Medical Sciences, 57(11), M698-M704. https://doi.org/10.1093/gerona/57.11.M698 Nikolaidis, P. T., Del Coso, J., Rosemann, T., & Knechtle, B. (2019). Muscle Strength and Flexibility in Male Marathon Runners: The Role of Age, Running Speed and Anthropometry. Frontiers in Physiology, 10, Article 1301. https://doi.org/10.3389/fphys.2019.01301 Ortega, J. A. F., Romero, D. M., Sarmento, H., & Mondragón, L. P. (2022). Bar load-velocity profile of full squat and bench press exercises in young recreational athletes. International Journal of Environmental Research and Public Health, 19(11), 6756. https://doi.org/10.3390/ijerph19116756 Pareja-Blanco, F., Rodríguez-Rosell, D., Sánchez-Medina, L., Sanchis-Moysi, J., Dorado, C., Mora-Custodio, R., Yáñez-García, J. M., Morales-Alamo, D., Pérez-Suárez, I., Calbet, J. A. L., & González-Badillo, J. J. (2017). Effects of velocity loss during resistance training on athletic performance, strength gains and muscle adaptations. Scandinavian Journal of Medicine & Science in Sports, 27(7), 724-735. https://doi.org/10.1111/sms.12678 Pérez-Castilla, A., Suzovic, D., Domanovic, A., Fernandes, J. F. T., & García-Ramos, A. (2021). Validity of different velocity-based methods and repetitions-to-failure equations for predicting the 1 repetition maximum during 2 upper-body pulling exercises. The Journal of Strength & Conditioning Research, 35(7), 1800-1808. https://doi.org/10.1519/jsc.0000000000003076 PRIYA, S. M. (2022). Hyper tuning using gridsearchcv on machine learning models for prognosticating dementia. Ramos, A. G. (2023). Resistance training intensity prescription methods based on lifting velocity monitoring. International Journal of Sports Medicine. https://doi.org/10.1055/a-2158-3848 Rivière, J. R., Peyrot, N., Cross, M. R., Messonnier, L. A., & Samozino, P. (2020). Strength-endurance: Interaction between force-velocity condition and power output. Frontiers in Physiology, 11, 576725. Scott, B. R., Duthie, G. M., Thornton, H. R., & Dascombe, B. J. (2016). Training monitoring for resistance exercise: theory and applications. Sports Medicine, 46, 687-698. https://doi.org/10.1007/s40279-015-0454-0 Stone, M. H., Hornsby, W. G., Mizuguchi, S., Sato, K., Gahreman, D., Duca, M., Carroll, K. M., Ramsey, M. W., Stone, M. E., & Pierce, K. C. (2024). The use of free weight squats in sports: a narrative review—terminology and biomechanics. Applied Sciences, 14(5), 1977. Suchomel, T. J., Nimphius, S., Bellon, C. R., & Stone, M. H. (2018). The importance of muscular strength: training considerations. Sports Medicine, 48, 765-785. https://doi.org/10.1007/s40279-018-0862-z ten Hoor, G. A., Plasqui, G., Schols, A., & Kok, G. (2018). A benefit of being heavier is being strong: a cross-sectional study in young adults. Sports Medicine-Open, 4, 1-9. https://doi.org/10.1186/s40798-018-0125-4 Thomaes, T., Thomis, M., Onkelinx, S., Goetschalckx, K., Fagard, R., Cornelissen, V., & Vanhees, L. (2012). Muscular strength and diameter as determinants of aerobic power and aerobic power response to exercise training in CAD patients. Acta Cardiologica, 67(4), 399-406. https://doi.org/10.1080/ac.67.4.2170680 Trivedi, U. B., Bhatt, M., & Srivastava, P. (2021). Prevent overfitting problem in machine learning: a case focus on linear regression and logistics regression. In Innovations in Information and Communication Technologies (IICT-2020) Proceedings of International Conference on ICRIHE-2020, Delhi, India: IICT-2020 (pp. 345-349). Springer International Publishing. Weakley, J., Mann, B., Banyard, H., McLaren, H. S., Scott, T., & Garcia-Ramos, A. (2021). Velocity-based training: From theory to application. Strength & Conditioning Journal, 43(2), 31-49. https://doi.org/10.1519/ssc.0000000000000560 West, D. J., Cook, C. J., Beaven, M. C., & Kilduff, L. P. (2014). The influence of the time of day on core temperature and lower body power output in elite rugby union sevens players. The Journal of Strength & Conditioning Research, 28(6), 1524-1528.https://doi.org/10.1519/jsc.0000000000000301 Williams, T. D., Tolusso, D. V., Fedewa, M. V., & Esco, M. R. (2017). Comparison of periodized and non-periodized resistance training on maximal strength: a meta-analysis. Sports Medicine, 47(10), 2083-2100. https://doi.org/10.1007/s40279-017-0734-y | - |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/94541 | - |
dc.description.abstract | 前言:力量訓練中最大肌力的準確預測對於運動員的訓練計劃和表現提升至關重要。傳統方法如力竭測試和運動自覺強度量表在準確性和實用性上存在諸多限制,因此需要探索更精確且低風險的方法。本研究將探討機器學習技術在預測人體最大肌力中的應用,並比較其與傳統速度依循訓練 (Velocity-Based Training, VBT) 方法的效果。目的:本研究旨在透過機器學習與深度學習方法預測人體最大肌力,並評估不同模型和資料前處理技術對預測準確性的影響。方法:本研究使用線性位移器收集了十名受試者的單次硬舉數據及一名受試者十週的蹲舉數據。透過主成分分析進行資料降維,並使用多種機器學習模型進行預測以及比較。結果:機器學習方法在個人化預測準確度上優於VBT方法,更多的參數類型可以獲得準確度的提升,加入高斯雜訊於訓練資料後,模型的泛化能力和預測精度都獲得提升。群體預測方面,使用支持向量機模型進行預測,其均方誤差遠低於傳統VBT方法。在負荷的使用上個體預測於中等負荷獲得最佳的預測準確度,群體預測於較重負荷下得出較低的預測誤差。結論:機器學習在力量預測的表現優於VBT方法。使用資料前處理技術可以有效提升模型的性能。未來建議在更大的數據上進行研究與驗證,並考慮加入更多不同類型的參數,以進一步提高預測的準確性。 | zh_TW |
dc.description.abstract | Introduction: Accurate prediction of maximum strength in strength training is crucial for developing effective training plans and enhancing athlete performance. Traditional methods, such as exhaustive testing and the Rate of Perceived Exertion scale, have limitations in terms of accuracy and practicality, necessitating the exploration of more precise and low-risk methods. This study will explore the application of machine learning techniques in predicting human maximum strength and compare their effectiveness with traditional Velocity-Based Training (VBT) methods. Purpose: This study aims to predict human maximum strength using machine learning and deep learning methods, and to evaluate the impact of different models and data preprocessing techniques on prediction accuracy. Methods: This study collected single deadlift data from ten subjects and ten-week squat data from one subject using a linear transducer. Principal Component Analysis was used for data dimensionality reduction, and various machine learning models were employed for prediction and comparison. Results: Machine learning methods outperformed VBT methods in personalized prediction accuracy. A greater variety of parameter types led to improved accuracy, and adding Gaussian noise to the training data enhanced both the model's generalization ability and prediction precision. In group predictions, the Support Vector Machine model achieved a mean squared error significantly lower than that of traditional VBT methods. For load application, individual predicting at medium loads resulted in the best prediction accuracy, while group predictions yielded lower errors under heavier loads. Conclusion: Machine learning methods outperform VBT methods in strength prediction. Data preprocessing techniques effectively enhance model performance. Future research should focus on larger datasets and consider incorporating a wider range of parameters to further improve prediction accuracy. | en |
dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-08-16T16:38:17Z No. of bitstreams: 0 | en |
dc.description.provenance | Made available in DSpace on 2024-08-16T16:38:18Z (GMT). No. of bitstreams: 0 | en |
dc.description.tableofcontents | 口試委員會審定書 i
中文摘要 ii 英文摘要 iii 目次 v 圖次 vii 表次 x 第壹章 緒論 1 第一節 研究背景 1 第二節 研究目的 3 第三節 操作性名詞定義 3 第貳章 文獻探討 5 第一節 最大肌力預測 5 第二節 不同速度下最大肌力預測 6 第三節 不同速度參數與力量預測之關聯性 8 第四節 機器學習之應用 8 第五節 文獻總結 9 第參章:研究方法 11 第一節:研究對象及研究工具 11 第二節 實驗設計: 12 第三節 使用參數 15 第四節 數據處理 15 第五節 機器學習方法 17 第六節 模型驗證與綜合評估 18 第肆章:研究結果 19 第一節 個人化預測 19 第二節 群體預測 40 第伍章:討論 51 第一節 機器學習方法於個人化預測 51 第二節 機器學習方法於群體數據預測 52 第三節 參數數量與預測準確性 53 第四節 資料增強的影響 54 第五節 負荷的使用建議 54 第陸章:結論與建議 55 第一節 結論 55 第二節 研究限制 55 第三節 建議 56 參考文獻 57 附錄 64 | - |
dc.language.iso | zh_TW | - |
dc.title | 機器學習用於預測人體最大肌力表現 | zh_TW |
dc.title | Machine Learning for Predicting Maximal Muscle Strength Performance in Humans | en |
dc.type | Thesis | - |
dc.date.schoolyear | 112-2 | - |
dc.description.degree | 碩士 | - |
dc.contributor.coadvisor | 林信甫 | zh_TW |
dc.contributor.coadvisor | Hsin-Fu Lin | en |
dc.contributor.oralexamcommittee | 王翔星 | zh_TW |
dc.contributor.oralexamcommittee | Hsiang-Hsin Wang | en |
dc.subject.keyword | 力量預測,速度依循訓練,運動表現,深度學習,人工智慧, | zh_TW |
dc.subject.keyword | Strength Prediction,Velocity-Based Training,Athletic Performance,Deep Learning,Artificial Intelligence, | en |
dc.relation.page | 66 | - |
dc.identifier.doi | 10.6342/NTU202404180 | - |
dc.rights.note | 同意授權(全球公開) | - |
dc.date.accepted | 2024-08-13 | - |
dc.contributor.author-college | 共同教育中心 | - |
dc.contributor.author-dept | 運動設施與健康管理碩士學位學程 | - |
顯示於系所單位: | 運動設施與健康管理碩士學位學程 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-112-2.pdf | 4.85 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。