請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/94532完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 周中哲 | zh_TW |
| dc.contributor.advisor | Chung-Che Chou | en |
| dc.contributor.author | 吳其錚 | zh_TW |
| dc.contributor.author | Chi-Jeng Wu | en |
| dc.date.accessioned | 2024-08-16T16:34:51Z | - |
| dc.date.available | 2024-08-17 | - |
| dc.date.copyright | 2024-08-16 | - |
| dc.date.issued | 2024 | - |
| dc.date.submitted | 2024-08-14 | - |
| dc.identifier.citation | 1. AISC (2016), Seismic Provisions for Structural Steel Buildings, ANSI/AISC 341- 16, American Institute of Steel Construction, Chicago, Illinois.
2. AISC (2022), Seismic Provisions for Structural Steel Buildings, ANSI/AISC 341- 22 , American Institute of Steel Construction, Chicago, Illinois. 3. AISC (2022), Specification for Structural Steel Buildings, ANSI/AISC 360-22, American Institute of Steel Construction, Chicago, Illinois. 4. ASCE (2022). Minimum Design Loads for Buildings and Other Structures, ASCE/SEI 7-22, American Society of Civil Engineers, Washington, D.C 5. Chou, C. C., & Chen, S. Y.(2010). Subassemblage tests and finite element analyses of sandwiched buckling-restrained braces. Engineering structures, 32 (8), 2108-2121. 6. Yifu Xiao, Shouping Shang, Zhen Wang, "Shaking Table Experiment and Energy Analysis of a New Rebar Isolation Pier", Advances in Civil Engineering, vol. 2021, Article ID 8895586, 15 pages, 2021. https://doi.org/10.1155/2021/8895586 7. Uang, C.-M. and Bertero, V.V. (1990), Evaluation of seismic energy in structures. Earthquake Engng. Struct. Dyn., 19: 77-90. https://doi.org/10.1002/eqe.4290190108 8. Kaixin Chen, Georgios Tsampras, Kyoungyeon Lee, Structural connection with predetermined discrete variable friction forces, Resilient Cities and Structures, Volume 2, Issue 1, 2023, Pages 1-17, ISSN 2772-7416, https://doi.org/10.1016/j.rcns.2023.02.006 9. Tsampras G, Sause R, Fleischman RB, Restrepo JI. Experimental study of deformable connection consisting of friction device and rubber bearings to connect floor system to lateral force resisting system. Earthquake Eng Struct Dynamics. 2016;47(4):1032‐1053. 10. Chou C-C, Lin H-Z, Córdova A, et al. Earthquake simulator testing of a three-story steel building for evaluating built-up box column performance and effect of sliding slab. Earthquake Engng Struct Dyn. 2024;1-19. https://doi.org/10.1002/eqe.4130 11. Chung-Che Chou, Li-Yu Huang, Mechanics and validation tests of a post-tensioned self-centering brace with adjusted stiffness and deformation capacities using disc springs, Thin-Walled Structures, Volume 195, 2024, 111430, ISSN 0263-8231, https://doi.org/10.1016/j.tws.2023.111430. 12. Dinh-Hai Pham, Chung-Che Chou, Strong-axis instability of sandwiched buckling restrained braces in a two-story steel X-BRBF: Seismic tests and finite element analyses, Thin-Walled Structures, Volume 157, 2020, 107011, ISSN 0263-8231, https://doi.org/10.1016/j.tws.2020.107011. 13. Sitler B, Takeuchi T. Higher-mode buckling and friction in long and large-scale buckling-restrained braces. Struct Design Tall Spec Build. 2021;30:e1812. https://doi.org/10.1002/tal.1812 14. Ooki Y, Kasai K, Motoyui S, Kaneko K, Kajiwara K, and Hikino T. Full-scale tests of passively-controlled 5-story steel building usinf E-Defense shake table, Part 3: Full-scale tests for dampers and beam-column subassemblies. Proceedings of 6th International Conference on Behavior of Steel Structures in Seismic Areas, Philadelphia, Pennsylvania, USA, 2009. 15. Zhang, Z., Fleischman, R. B., Restrepo, J. I., Guerrini, G., Nema, A., Zhang, D., doi:10.6342/NTU202303734 79 Ulina, S., Tsampras, G., Sause, R.,(2018). Shake‐table test performance of an inertial force‐limiting floor anchorage system. Earthquake Engineering & Structural Dynamics, 47(10), 1987-2011. 16. Jia, L.J. & Dong, Yang & Ge, Hanbin & Kondo, Kana & Xiang, Ping. (2018). Experimental Study on High-Performance Buckling-Restrained Braces with Perforated Core Plates. International Journal of Structural Stability and Dynamics. 19. 10.1142/S0219455419400042. 17. 內政部營建署,「鋼結構極限設計法規範及解說」,2010年修正。 18. 內政部營建署,「建築物耐震設計規範及解說」,2011年修正。 19. 黃浚瑋(1974),「火害前後之六層樓鋼造抗彎構架模擬與耐震分析」,碩士論文,國立臺灣大學土木工程學系。 20. 陳昇陽(2008),「可更換核心板之挫屈束制消能支撐耐震實驗與有限元素分析」,碩士論文,國立交通大學土木工程系。 21. 劉佳豪(2010),「挫屈束制消能支撐構架梁柱效應對接合板耐震行為研究」,碩士論文,國立臺灣大學土木工程系。 22. 陳建明(2023),「可變勁度之雙核心自復位斜撐與夾型挫屈束制斜撐於一層樓子構架耐震試驗」,碩士論文,國立臺灣大學土木工程系。 23. 林皇佐(2023),「實尺寸三層樓鋼構架二元系統於 2022 池上地震下之振動台試驗:中等韌性箱型鋼柱、全鋼型夾型挫屈束制斜撐及滑動樓版之耐震性能」,碩士論文,國立臺灣大學土木工程學系。 24. 黃于慈(2023),「以訊號分析方法進行長期結構健康監測」,碩士論文,國立臺灣大學土木工程系。 25. 黃立宇(2024),「可變勁度自復位斜撐與自復位碟型彈簧抗震裝置研發及振動台試驗」,碩士論文,國立臺灣大學土木工程學系。 26. 戴𫃎漢(2024),「高等韌性與中等韌性箱型鋼柱寬厚比發展及AISC 341設計建議」,碩士論文,國立臺灣大學土木工程學系。 | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/94532 | - |
| dc.description.abstract | 本研究討論以不同水平裝置連接樓版及構架之滑動消能樓版系統與不滿足美國鋼結構耐震設計規範AISC 341-22中等韌性斷面之銲接箱型鋼柱於振動台試驗中之耐震性能,製作實尺寸三層樓斜撐構架,兩支箱型柱之寬厚比皆為27.4,不滿足中等韌性斷面之要求,材料使用SN490B。試體樓版採用鋼筋混凝土預鑄樓版,安裝於構架上後不須現場灌漿,樓版與構架間在四個階段試驗中分別以自復位彈簧裝置、摩擦裝置與自復位彈簧裝置、水平夾型挫屈支撐與自復位彈簧裝置、高勁度及高強度的T型桿件連接,以模擬不同滑動樓版系統與傳統固接樓版構架。振動台輸入震波為2022池上地震EYUL測站的東西向加速度紀錄,試驗由中小規模地震並逐次增加強度,試驗中最大振動台面加速度達0.57 g。
實驗結果顯示,在設計地震下,前三階段的樓版皆已開始有相對構架的位移,其中又以沒有安裝額外消能裝置的第一階段有最顯著相對第四階段的構架反應降低,且在最大考量地震下,RFL側位移相對第四階段有高達58%的側位移下降和39%的一樓剪力折減;第二和第三階段則分別於樓版作用後開始有對應的構架反應降低,並在1.4倍最大考量地震下,在RFL構架位移折減量則分別有36%和16%,一樓剪力則有23%和10%的下降。顯示滑動消能樓版系統在樓版開始作用後,帶動消能裝置作用,有降低構架位移與地震下之側向力,進而達到提升結構耐震能力之作用。在第四階段Test 10一樓最大層間變角達2.4%,柱底皆發展至Mpc,最大軸力達0.30 Py,試驗後柱底無局部挫屈,柱底彎矩遲滯迴圈上也無強度衰減的現象,顯示AISC 341-22對斜撐構架柱桿件的寬厚比要求,在初始軸力約0.1 Py的情況下,要求過於保守。 本研究亦提出三種夾型挫屈束制支撐核心減弱之樣式,在動靜態的反覆載重試驗結果都顯示該設計以減弱消能段強度的方式保護核心兩端,確實可延緩因外頂壓力造成試體軸拉力比值急遽上升現象的發生,避免整體破壞模式發生。 | zh_TW |
| dc.description.abstract | This study discusses the seismic performance of a sliding slab system connecting the frame and slabs with different devices, and welded box steel columns with width-to-thichness ratio not satisfying the moderately ductile requirement of AISC 341-22. A full-scale three-story braced frame was constructed, with a width-to-thickness ratio of 27.4 for both box columns, not meeting the requirements for moderately ductile sections, using SN490B. The slabs were precast reinforced concrete slabs, installed on the frame without onsite grouting. Four phases of tests were conducted using different devices connecting the slabs and frame: with self-centering spring devices, friction devices with self-centering spring devices, horizontal buckling-restrained braces with self-centering spring devices, and high stiffness and strength T-members respectively, simulating different sliding slab systems and traditional frame with rigidly connected slabs. The input ground motion of the shaking table was the east-west acceleration record from the EYUL station of the 2022 ChiShang earthquake, with seismic intensities incrementally increased from moderate to large earthquakes, reaching a maximum table acceleration of 0.57 g.
Experimental results showed that under design basis earthquake, the slabs of first three phases began displacing relative to the frame. Phase 1, without additional energy dissipating devices, exhibited the most significant reduction in frame response relative to the Phase 4. Under maximum considered earthquake, the relative floor lateral displacement of RFL decreased by up to 58%, and shear at first story reduced by 39%. Phase 2 and 3 also showed corresponding reductions in frame response after slabs slide, with reductions in RFL displacement of 36% and 16%, and reductions in shear at first story of 23% and 10% respectively, at 1.4 times the maximum considered earthquake. This demonstrates that the sliding slab system, triggers the action of energy dissipating devices when the slabs start sliding, and reduce frame displacement and lateral forces under earthquake, thereby enhancing structural seismic resilience. In test 10 of phase 4 showed a maximum interstory drift angle of 0.024 rad at the first story, columns developing Mpc at bases, and maximum axial force reaching 0.30 Py. There were no local buckling at column bases after testing, and no strength degradation observed in the hysteresis loops, indicating that the width-to-thickness ratio requirements for braced frame columns in AISC 341-22 are overly conservative under initial axial force around 0.1 Py. The study also proposes three styles of perforated core buckling-restrained braces, with results from dynamic and static cyclic loading tests showing that this design effectively reduces the strength of dissipating segments to protect both ends of the core, thus delaying the rapid increase in ratio of the maximum compression force to the maximum tension force and preventing global failure modes from occurring. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-08-16T16:34:51Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2024-08-16T16:34:51Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 口試委員會審定書 iii
致謝 iv 摘要 vi ABSTRACT viii 目次 x 圖次 xv 表次 xxi 照片次 xxiii 第一章 緒論 1 1.1 前言 1 1.2 文獻回顧 3 1.3 研究方法 5 1.4 論文架構 6 第二章 實尺寸三層樓鋼構架試體設計與規劃 7 2.1 三層樓構架試體規劃 7 2.2 三層樓鋼構架試體設計 9 2.2.1 梁桿件強度檢核 9 2.2.2 柱桿件強度檢核 10 2.2.3 強柱弱梁檢核 11 2.2.4 可變勁度自復位斜撐 11 2.2.5 斜向夾型挫屈束制支撐 11 2.2.6 斜撐接合版 12 2.2.7 鉸接接合 12 2.2.8 柱底螺栓 12 2.3 滑動樓版系統 13 2.3.1 滑動樓版機制 13 2.3.2 水平裝置設計 13 2.3.3 水平裝置細節與行為 14 2.3.4 樓版栓接接合 15 2.4 試體製造與安裝 15 2.4.1 混凝土載重塊製作 16 2.4.2 樓版切割與鑽孔 16 2.4.3 鋼構架製造 17 2.4.4 斜撐與水平裝置製造 17 2.4.5 實驗場試體組裝與安裝 18 2.5 量測系統 19 2.5.1 應變計 19 2.5.2 位移計 19 2.5.3 加速規 20 2.5.4 荷重元 20 2.5.5 光學動態捕捉系統 20 2.6 試體力量與位移計算方式 20 2.6.1 慣性力與樓層剪力 21 2.6.2 構架側位移 21 2.6.3 梁柱桿件內力 22 2.6.4 塑性彎矩強度計算 23 2.6.5 斜撐內力 24 2.6.6 滑動樓版位移 24 2.6.7 水平裝置內力 24 2.7 地震歷時與試驗流程 25 2.8 材料性質 25 第三章 實驗結果分析與討論 27 3.1 實驗觀察 27 3.1.1 第一階段試驗(Phase 1) 27 3.1.2 第二階段試驗(Phase 2) 28 3.1.3 第三階段試驗(Phase 3) 30 3.1.4 第四階段試驗(Phase 4) 31 3.2 試體整體反應分析 32 3.2.1 構架位移 33 3.2.2 構架慣性力與樓層剪力 35 3.3 構架與樓版反應分析 37 3.3.1 樓版相對構架位移 37 3.3.2 樓版與構架絕對加速度 39 3.3.3 構架與滑動樓版消能 40 3.4 構架構件反應分析 43 3.4.1 梁柱桿件反應 43 3.4.2 斜撐反應分析 46 3.4.3 試體水平力分布情況 47 3.5 水平桿件反應分析 48 3.5.1 水平桿件遲滯迴圈 48 3.5.2 水平桿件消能 49 3.6 水平消能裝置設計檢討 50 第四章 水平裝置與夾型挫屈束制斜撐元件試驗 52 4.1 水平夾型挫屈束制支撐靜態反覆載重試驗 52 4.1.1 試驗目的 52 4.1.2 試體製作 54 4.1.3 試驗配置與量測系統 55 4.1.4 加載方式 55 4.1.5 試驗結果與比較 56 4.2 摩擦裝置靜態反覆載重試驗 58 4.2.1 試驗目的 58 4.2.2 試體製作與組裝 58 4.2.3 試驗配置與量測系統 58 4.2.4 加載方式 59 4.2.5 試驗結果與比較 59 4.3 水平夾型挫屈束制支撐動態反覆載重試驗 60 4.3.1 試驗目的 60 4.3.2 試體製作與組裝 60 4.3.3 試驗配置與量測系統 60 4.3.4 加載方式 60 4.3.5 試驗結果與比較 60 4.4 夾型挫屈束制斜撐動態反覆載重試驗 62 4.4.1 試驗目的 62 4.4.2 試體製作與組裝 62 4.4.3 試驗配置與量測系統 63 4.4.4 加載方式 63 4.4.5 試驗結果與比較 64 第五章 結論與建議 66 參考文獻 69 附錄A 試體設計圖 233 附錄B 水平裝置設計計算流程 251 附錄C 不同擷取系統所得數據之同步處理方法 253 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 夾型挫屈束制支撐 | zh_TW |
| dc.subject | 滑動消能樓版 | zh_TW |
| dc.subject | 振動台試驗 | zh_TW |
| dc.subject | 銲接箱型鋼柱 | zh_TW |
| dc.subject | Welded box steel column | en |
| dc.subject | Shaking table test | en |
| dc.subject | Sandwiched buckling-restrained brace | en |
| dc.subject | Sliding slab | en |
| dc.title | 實尺寸三層樓自復位斜撐構架含滑動消能樓版之振動台試驗 | zh_TW |
| dc.title | Shaking Table Tests of a Novel Full-Scale Three-Story Steel Self-Centering Braced Frame with Sliding Slabs | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 112-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 張家銘;鍾興陽;趙書賢 | zh_TW |
| dc.contributor.oralexamcommittee | Chia-Ming Chang;Hsin-Yang Chung;Shu-Hsien Chao | en |
| dc.subject.keyword | 滑動消能樓版,夾型挫屈束制支撐,銲接箱型鋼柱,振動台試驗, | zh_TW |
| dc.subject.keyword | Sliding slab,Sandwiched buckling-restrained brace,Welded box steel column,Shaking table test, | en |
| dc.relation.page | 255 | - |
| dc.identifier.doi | 10.6342/NTU202404243 | - |
| dc.rights.note | 同意授權(全球公開) | - |
| dc.date.accepted | 2024-08-14 | - |
| dc.contributor.author-college | 工學院 | - |
| dc.contributor.author-dept | 土木工程學系 | - |
| 顯示於系所單位: | 土木工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-112-2.pdf | 50.3 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
