Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 土木工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/94531
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor周中哲zh_TW
dc.contributor.advisorChung-Che Chouen
dc.contributor.author戴金漢zh_TW
dc.contributor.authorNicholas Tedjasukmanaen
dc.date.accessioned2024-08-16T16:34:27Z-
dc.date.available2024-08-17-
dc.date.copyright2024-08-16-
dc.date.issued2024-
dc.date.submitted2024-08-12-
dc.identifier.citation1. AISC. (1986). Load and resistance factor design specification for structural steel buildings. ANSI/AISC 360-86. American Institute of Steel Construction, Chicago, Illinois.
2. AISC. (1992). Seismic provisions for structural steel buildings. ANSI/AISC 341-92. American Institute of Steel Construction, Chicago, Illinois.
3. AISC. (2005). Seismic provisions for structural steel buildings. ANSI/AISC 341-05. American Institute of Steel Construction. Chicago, Illinois.
4. AISC. (2010). Seismic provisions for structural steel buildings. ANSI/AISC 341-10. American Institute of Steel Construction, Chicago, Illinois.
5. AISC. (2016), Seismic provisions for structural steel buildings. ANSI/AISC 341-16, American Institute of Steel Construction, Chicago, Illinois.
6. AISC. (2022a). Seismic provisions for structural steel buildings. ANSI/AISC 341-22. American Institute of Steel Construction, Chicago, Illinois.
7. AISC. (2022b). Specification for structural steel buildings. ANSI/AISC 360-22. American Institute of Steel Construction, Chicago, Illinois.
8. AISC. (2022c). Prequalified connections for special and intermediate steel moment frames for seismic applications. ANSI/AISC 358-22. American Institute of Steel Construction, Chicago, Illinois.
9. ASCE-WRC (Welding Research Council). (1971). Plastic design in steel: A guide and commentary. New York: WRC.
10. ASCE. (2017). Seismic evaluation and rehabilitation of existing buildings. ASCE/SEI 41-17. Reston, VA: American Society of Civil Engineers.
11. ASCE. (2022). Minimum Design Loads and Associated Criteria for Buildings and Other Structures. Reston, VA: American Society of Civil Engineers.
12. Allen, H.G. and Bulson, P.S. (1980). Background to Buckling. McGraw-Hill, New York, N.Y.
13. Ban, H., Shi, G., Shi, Y., and Wang, Y. (2013). Residual stress of 460 MPa high strength steel welded box section: Experimental investigation and modeling. Thin-Walled Structures, 64, 73-82.
14. Cao, X., Xu, Y., Wang, M., Zhao, G., Gu, L., and Kong, Z. (2018). Experimental study on the residual stresses of 800 MPa high strength steel welded box sections. Journal of Constructional Steel Research, 148, 720-727.
15. Chansuk, P., G. Ozkula, and C.M. Uang. (2018). Seismic behavior and design of deep, slender wide-flange structural steel beam-columns: Phase 2 testing. Rep. No. SSRP-18/02. San Diego: University of California.
16. Chou, C. C., and Wu, S. C. (2019). Cyclic lateral load test and finite element analysis of high-strength concrete-filled steel box columns under high axial compression. Engineering Structures, 189, 89–99.
17. Chou, C. C., Chen, G. W. (2020). Lateral cyclic testing and backbone curve development of high-strength steel built-up box columns under axial compression. Engineering Structures, 223, 111147
18. Chou, C. C., Xiong, H. C., Kumar, A., Lai, Y. C., Uang, C. M. (2023). Effects of section compactness and SCWB condition on moment redistribution and plastic hinging in SMF built-up box columns. J. Structural Engineering, ASCE, 149(11): 04023144
19. Chou, C. C., Shen, H. K., and Chou, D. Y. H. (2024). Subassemblage test and width-thickness design limit for steel built-up box columns subjected to axial load and cyclic lateral drift. Engineering Structures, 308, 118023.
20. Fadden, M., and McCormick, J. (2014). Finite element model of the cyclic bending behavior of hollow structural sections. Journal of Constructional Steel Research. 94, 64-75.
21. Fell, B. V., Kanvinde, A. M., Deierlein, G. G., Myers, A. T., and Fu, Xiangyang (2006). Buckling and fracture of concentric braces under inelastic cyclic loading. Steel Tips, Structural Steel Education Council.
22. Gerard, G., Becker, H. (1957). Handbook of structural stability part I: Buckling of flat plates. New York University.
23. Haaijer, G., and Thurlimann, B. (1960). On inelastic buckling in steel. Trans. ASCE,124, 60-2. American Iron and Steel Institute, No. 8.
24. Kiymaz, G. (1999). Stability criteria for thin-walled box columns of high performance steel in axial compression [Doctoral dissertation, Department of Civil Engineering, Imperial College].
25. Lignos, D. G., Krawinkler, H. (2010). A steel database for component deterioration of tubular hollow square steel columns under varying axial loads for collapse assessment of steel structures under earthquakes. In Proceedings of the 7th International Conference on Urban Earthquake Engineering (7CUEE).
26. Lin, T. H., Chou, C. C. (2022). High-strength steel deep H-shaped and box columns under proposed near-fault and post-earthquake loadings. Thin-Walled Structures, 172, 108892
27. Wong, M. B. (2011). Plastic Analysis and Design of Steel Structures. Netherlands: Elsevier Science.
28. NIST. (2017). Guidelines for nonlinear structural analysis for design of buildings part IIa – steel moment frames. NIST-GCR-17-917-46v2. Gaithersburg, MD:NIST.
29. Ozkula, G. (2017). Seismic behavior, modeling, and design of deep wide-flange steel columns for special moment frames. [Doctoral dissertation, University of California, San Diego].
30. Ozkula, G., Uang, C. M., and Harris, J. (2021). Development of enhanced seismic compactness requirements for webs in wide-flange steel columns. Journal of Structural Engineering, 147(7), 04021100.
31. Salmon, C. G., Johnson, J. E., Malhas, F. A. (2009). Steel structures: Design and behavior: Emphasizing load and resistance factor design. United Kingdom. Pearson/ Prentice Hall.
32. Sediek, O. A., Wu, T. Y., McCormick, J., and El-Tawil, S. (2020). Collapse behavior of hollow structural section columns under combined axial and lateral loading. Journal of Structural Engineering, 146(6), 04020094.
33. Schafer, B.W.; Geschwindner, L.F.; Sabol, T.; Uang, C.-M. (2022). Review of local buckling width-to-thickness limits. Engineering Journal, American Institute of Steel Construction, Vol. 59, pp. 65-84.
34. Somodi, B., Kollár, D., Kövesdi, B., Néző, J., and Dunai, L. (2017). Residual stresses in high-strength steel welded square box sections. Proceedings of the Institution of Civil Engineers-Structures and Buildings, 170(11), 804-812.
35. Suzuki, Y., Lignos, D. G. (2021). Experimental evaluation of steel columns under seismic hazard-consistent collapse loading protocols. Journal of Structural Engineering, 147(4), 04021020.
36. Taiwan Code. (2010). Design and technique specifications of steel structures for buildings. Construction and Planning Agency, Ministry of the Interior, Taiwan.
37. Tremblay, Robert (2001). Seismic behavior and design of concentrically braced steel frames. Engineering Journal, American Institute of Steel Construction, Vol. 38, pp. 78-89.
38. Wilkinson, T. and Hancock, G.J. (1998). Tests to Examine Compact Web Slenderness of Cold-Formed RHS. Journal of Structural Engineering, ASCE, Vol. 124, No. 10, pp. 1,166–1,174.
39. Wong, M. B. (2011). Plastic Analysis and Design of Steel Structures. Netherlands: Elsevier Science.
40. 日本建築社會,「鋼構造限界状態設計指針・同解説」,2010年改定
41. 陳冠維 (2019)「高強度箱型鋼柱之抗震實驗與背骨曲線發展」,碩士論文,國立台灣大學土木工程系
42. 熊厚淳 (2020)「兩層樓子架構高強度箱型鋼柱抗震實驗與模擬分析」,碩士論文,國立台灣大學土木工程系
43. 陳浚愿 (2021)「箱型鋼柱於高軸壓力與層間變位下之耐震行為」,碩士論文,國立陽明交通大學土木工程系
44. 庫馬 (2021)「邊界條件對兩層樓子構架箱型鋼柱影響之有限元素分析」,碩士論文,國立台灣大學土木工程系
45. 沉厚寬 (2022)「實尺寸一層樓架構受高軸力及地震側力下之鋼柱抗震實 驗」,碩士論文,國立台灣大學土木工程系
46. 覃文康 (2022)「實尺寸兩層樓夾型挫屈束制斜撐鋼構架在變軸力下之中等韌性構件箱型鋼柱耐震實驗」,碩士論文,國立台灣大學土木工程系
47. 林皇佐 (2023)「實尺寸三層樓鋼構架二元系統於2022池上地震下之振動台測試:中等韌性箱型鋼柱、全鋼型夾型挫屈束製支撐及滑動樓版之抗震性能」,碩士論文,國立台灣大學土木工程系
48. 黃于慈 (2023)「以訊號分析方法進行長期結構健康監測」,碩士論文,國立台灣大學土木工程系
49. 吳其錚 (2024)「實尺寸三層樓自復位斜撐構架含滑動消能樓版之振動台試驗」,碩士論文,國立台灣大學土木工程系
50. 黃立宇 (2024)「可變勁度自復位斜撐與樓板自復位碟型彈簧裝置研究」,碩士論文,國立台灣大學土木工程系
51. 黃浚瑋 (2024)「火害前後之六層樓鋼造抗彎構架模擬與耐震分析」,碩士論文,國立台灣大學土木工程系
52. 鄧宇雯 (2024)「方形中空鋼管柱之耐震行為與寬厚比要求」,碩士論文,國立台灣大學土木工程系
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/94531-
dc.description.abstract本研究延續Chou and Wu (2019),Chou and Chen (2020)與Chou et al. (2024) 之研究,探討銲接箱型柱在中高軸力下的耐震行為。Chou and Wu (2019)研究了混凝土充填箱型柱輿空心箱型柱之耐震行為。其中空心箱型柱之寬厚比為18與20, 軸力比皆0.4 Pya。Chou and Chen (2020) 研究了單箱型鋼柱的試驗(共六組),涵蓋不同的寬厚比、軸力比以及不同的載重歷史(標準反覆載重與近斷層載重,參見Lin and Chou (2022))。研究的寬厚比範圍為11, 12, 14, 16, 及20,其中三組試體滿足AISC 341-16規範的λhd限制。試驗結果顯示,AISC 341之載重歷時(Cyclic)比近斷層載重更為嚴格。Chou et al. (2024)研究了箱型鋼柱在一層樓子構架中的耐震行為,並與Chou and Chen (2020)中相同寬厚比和軸力比的單柱試驗(兩端為固接端)進行了比較,探討了邊界條件對柱構件耐震能力的影響。結果顯示,一層樓子構架的試體均可達到0.04 rad的最大側位移角。例如,單柱試驗I-16-40僅達到0.03 rad的最大側位移角,而一層樓子構架試驗S-16-40達到了0.04 rad。從試驗結果來看,AISC 341-22目前的箱型柱塑性設計寬厚比限制(λhd)相較於台灣鋼結構規範(2010)限制以及日本建築學會(AIJ)規範限制顯得相當保守。本研究主要延續Chou and Chen (2020)的單柱研究,考慮更大的寬厚比範圍(24至36)。斷面分別為380x380x10 mm,380x380x13 mm及400x400x15 mm。每個試體在兩種不同的軸力(0.2和0.4 Pya)下進行試驗,共計六組試體。所有試體均使用SN490B鋼材(降伏強度345至419 MPa)製造,並進行4米高的全尺寸試驗。試驗結果將考慮不同載重歷史的影響以及邊界條件的影響,對箱型鋼柱的寬厚比(b/t ratio)限制進行研究,並為美國規範制定新的寬厚比建議。試驗成果顯示AISC 341-22的寬厚比限制目前為過於保守。為了進一步確認所提出的寬厚比建議,還進行了實尺寸三層樓振動台試驗。一樓抵抗側力構架為兩組相同的箱形鋼柱,b/t為27.4,初始軸力比皆為0.11 Pya,按照所提出的建議為高等韌性桿件。結果顯示,所建議的限制與試驗結果相當合理,并按照Ozkula et al. (2021) 的定義,可以達到0.037 rad的SDAcr,接近AISC規定的需求0.04 rad。zh_TW
dc.description.abstractThis research mainly extends the research by Chou and Wu (2019), Chou and Chen (2020), and Chou et al. (2024) and attempts to systematically organize gathered data into a proposed seismic compactness limit for a built-up box column. Chou and Wu (2019) tested six concrete-filled high-strength box column (CFBC) specimens and two built-up box columns under cyclic loading history. Chou and Chen (2020) tested six isolated built-up box column specimens; four were tested cyclically, and another two were tested under a near-fault loading protocol developed by Lin and Chou (2022). It suggests that the cyclic loading prescribed by AISC 341 is too stringent. Later, Chou and Chen (2024) attempts to study the effect of boundary condition, by testing a subassemblage with identical b/t ratio and axial load ratio in a study by Chou and Chen (2020). The study suggests that the current AISC 341 (2022) compactness limit for built-up box columns is too stringent. Based on the results, this study also attempted to develop a seismic compactness limit for built-up box columns. Extending Chou and Chen's (2020) study, a total of six full-scale built-up box columns (HBC) with three different b/t ratios, where all of them are considered as non-moderately ductile by the AISC 341 (2022), were tested. For each b/t ratio, the specimen was tested with two axial load ratios, respectively. Specimens were built with SN 490B steel with actual yield strength ranging from 345-419 MPa. All specimens were tested under cyclic loading with fixed-fixed boundary conditions under constant axial load. The built-up box columns were all 4 m in height, with widths ranging from 380-400 mm, b/t ratios ranging from 24-36, and axial load ratio varying between 0.2Pya and 0.4Pya. These test data were then compiled and analyzed using the multivariate regression method, considering significant parameters affecting the specimen's behavior. The effect of boundary condition and lateral loading sequence was also considered to develop the compactness limit. The result suggests that the current seismic compactness limit for the built-up box column can be relaxed, and adding an axial load ratio to the calculation will reduce an overly conservative limit. To further confirm the proposed limit, a shaking table test was also conducted. Two identical built-up box columns with a b/t ratio of 27.4 and an initial axial load ratio of 0.11 Pya which are considered as highly ductile members by the proposed limit, were part of the lateral force-resisting system of a full-scale three-story specimen. The test result suggests a good confirmation between the proposed limit and the test result, with the specimen reaching an SDAcr of 0.037 rad, close to 0.04 rad prescribed by AISC.en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-08-16T16:34:26Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2024-08-16T16:34:27Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents誌謝 ii
摘要 iii
ABSTRACT iv
TABLE OF CONTENTS vi
LIST OF TABLES x
LIST OF FIGURES xi
LIST OF PHOTOS xv
LIST OF SYMBOLS xvi
CHAPTER I. INTRODUCTION 1
1.1 Background 1
1.2 Literature Review 2
1.3 Research Objectives 10
1.4 Research Methodology 10
1.5 Organization of Thesis 11
CHAPTER II. ISOLATED COLUMN TEST 12
2.1 Introduction 12
2.2 Test Setup 12
2.3 Test Specimens and Loading Protocol 13
2.4 Testing Procedure 13
2.5 Testing Instrumentation 14
2.5.1 MATS 14
2.5.2 Displacement Transducer 15
2.5.3 Strain Gauge 16
2.5.4 NDI 16
2.5.5 Motion Capture 16
2.6 Material Mechanical Characteristic 16
2.7 Specimen Response 17
2.7.1 I-24-20 18
2.7.2 I-24-40 19
2.7.3 I-27-20 20
2.7.4 I-27-40 21
2.7.5 I-36-20 22
2.7.6 I-36-40 23
2.8 Effect of b/t ratio and Axial Load Ratio 24
2.9 Member Elastic Capacity 25
CHAPTER III. FINITE ELEMENT ANALYSIS AND PARAMETRIC STUDY 28
3.1 Introduction 28
3.2 Modelling Techniques 28
3.2.1 General 28
3.2.2 Steel Cyclic Material 29
3.2.3 Interaction and Mesh 30
3.2.4 Loading and Boundary Condition 30
3.2.5 ABAQUS Solver 31
3.3 Geometric Local Imperfection 31
3.4 Effect of Stiffener 31
3.5 Model Verification Result 32
3.6 Parametric Study on Near Fault 33
CHAPTER IV. DEVELOPMENT OF SEISMIC COMPACTNESS AND BACKBONE CURVE 34
4.1 Introduction 34
4.2 Development of Built-Up Box Column Compactness Limit 34
4.2.1 Database Observation Remarks 34
4.2.2 Critical Story Drift Ratio 35
4.2.3 Boundary Condition Factor b 35
4.2.4 Loading Procedure Factor l 36
4.2.5 Axial Load History Effect Factor a 37
4.2.6 Proposed Built-Up Box Column Slenderness Limit 37
4.3 Backbone Curve 39
4.3.1 NIST 2017 39
4.3.2 ASCE 41-17 41
4.3.3 Chou and Chen (2020) 43
4.3.4 This work (2024) 44
4.4 Limitations of Proposed Compactness Limit 49
CHAPTER V. SHAKING TABLE TEST 50
5.1 Introduction 50
5.2 Test Setup 50
5.3 Testing Instrumentation 52
5.3.1 Displacement Transducer 52
5.3.2 Motion Capture System 53
5.3.3 Strain Gauges 53
5.3.4 Accelerometer 53
5.4 Material Mechanical Characteristic 54
5.5 Testing Procedure and Loading Protocol 54
5.6 Force and Displacement Calculation Method 55
5.6.1 Inertial Forces and Shear Forces 55
5.6.2 Frame displacement 55
5.6.3 Beam and Column Forces 56
5.6.4 Bracing Internal Forces 57
5.7 Specimen Global Response 58
5.8 Tests Observation 58
5.8.1 Phase 2 58
5.9 Phase 1 and Phase 2 61
5.9.1 General Comparison 61
5.9.2 First Floor Column Behavior 62
5.9.3 Second Floor Column Behavior 65
5.9.4 SCB Behavior 66
5.9.5 Third Floor Column Behavior 66
5.9.6 DBRB Behavior 66
5.9.7 2F Beam Behavior 66
5.9.8 3F Beam Behavior 67
5.9.9 RFL Beam Behavior 67
5.10 Isolated and Dynamic 67
CHAPTER VI. SUMMARY AND CONCLUSIONS 70
6.1 Summary 70
6.2 Suggestions 72
REFERENCES 74
APPENDIX A BACKBONE PARAMETRIC STUDY DATA 220
APPENDIX B ISOLATED COLUMN SPECIMEN SHOP DRAWING 227
-
dc.language.isoen-
dc.title高等韌性與中等韌性箱型鋼柱寬厚比發展及AISC 341設計建議zh_TW
dc.titleDevelopment and Design Recommendation of AISC 341 Seismic Compactness Limits for Highly Ductile and Moderately Ductile Built-up Box Columnsen
dc.typeThesis-
dc.date.schoolyear112-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee蔡克銓;許協隆;蕭博謙zh_TW
dc.contributor.oralexamcommitteeKeh-Chyuan Tsai;Hsieh-Lung Hsu;Po-Chien Hsiaoen
dc.subject.keyword空心箱型鋼柱,寬厚比,邊界條件,載重歷史效應,耐震設計,zh_TW
dc.subject.keywordBuilt-up box column,Width-thickness ratio,Boundary Condition,Lateral-Loading Effect,Seismic Compactness Limit,en
dc.relation.page229-
dc.identifier.doi10.6342/NTU202403401-
dc.rights.note同意授權(全球公開)-
dc.date.accepted2024-08-13-
dc.contributor.author-college工學院-
dc.contributor.author-dept土木工程學系-
顯示於系所單位:土木工程學系

文件中的檔案:
檔案 大小格式 
ntu-112-2.pdf43.1 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved