Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 海洋研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/94529
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor楊穎堅zh_TW
dc.contributor.advisorYiing-Jang Yangen
dc.contributor.author游千霈zh_TW
dc.contributor.authorChien-Pei Yiuen
dc.date.accessioned2024-08-16T16:33:43Z-
dc.date.available2024-08-17-
dc.date.copyright2024-08-16-
dc.date.issued2024-
dc.date.submitted2024-08-12-
dc.identifier.citationAlford, M. H., Lien, R.-C., Simmons, H., Klymak, J., Ramp, S., Yang, Y. J., Tang, D., & Chang, M.-H. (2010). Speed and Evolution of Nonlinear Internal Waves Transiting the South China Sea. Journal of Physical Oceanography, 40(6), 1338-1355. https://doi.org/10.1175/2010JPO4388.1
Alford, M. H., MacKinnon, J. A., Nash, J. D., Simmons, H., Pickering, A., Klymak, J. M., Pinkel, R., Sun, O., Rainville, L., Musgrave, R., Beitzel, T., Fu, K.-H., & Lu, C.-W. (2011). Energy Flux and Dissipation in Luzon Strait: Two Tales of Two Ridges. Journal of Physical Oceanography, 41(11), 2211-2222. https://doi.org/10.1175/JPO-D-11-073.1
Alford, M. H., Peacock, T., MacKinnon, J. A., Nash, J. D., Buijsman, M. C., Centurioni, L. R., Chao, S. Y., Chang, M. H., Farmer, D. M., Fringer, O. B., Fu, K. H., Gallacher, P. C., Graber, H. C., Helfrich, K. R., Jachec, S. M., Jackson, C. R., Klymak, J. M., Ko, D. S., Jan, S., . . . Tang, T. Y. (2015). The Formation and Fate of Internal Waves in the South China Sea. Nature, 521(7550), 65-69. https://doi.org/10.1038/nature14399
Apel, J. R., & Holbrook, J. R. (1983). Internal Solitary Waves in the Sulu Sea Johns Hopkins APL Technical Digest, 4(4), 267-275. https://secwww.jhuapl.edu/techdigest/Content/techdigest/pdf/V04-N04/04-04-Apel.pdf
Buijsman, M. C., Kanarska, Y., & McWilliams, J. C. (2010). On the Generation and Evolution of Nonlinear Internal Waves in the South China Sea. Journal of Geophysical Research: Oceans, 115(C2). https://doi.org/10.1029/2009jc005275
Chang, M.-H., Cheng, Y.-H., Yang, Y. J., Jan, S., Ramp, S. R., Reeder, D. B., Hsieh, W.-T., Ko, D. S., Davis, K. A., Shao, H.-J., & Tseng, R.-S. (2021). Direct Measurements Reveal Instabilities and Turbulence within Large Amplitude Internal Solitary Waves beneath the Ocean. Communications Earth & Environment, 2(1). https://doi.org/10.1038/s43247-020-00083-6
Chang, M.-H., Lien, R.-C., Yang, Y. J., & Tang, T. Y. (2011). Nonlinear Internal Wave Properties Estimated with Moored Adcp Measurements. Journal of Atmospheric and Oceanic Technology, 28(6), 802-815. https://doi.org/10.1175/2010jtecho814.1
Chang, M.-H., Lien, R.-C., Yang, Y. J., Tang, T. Y., & Wang, J. (2008). A Composite View of Surface Signatures and Interior Properties of Nonlinear Internal Waves: Observations and Applications. Journal of Atmospheric and Oceanic Technology, 25(7), 1218-1227. https://doi.org/10.1175/2007jtecho574.1
Chang, M. H., Lien, R. C., Tang, T. Y., D'Asaro, E. A., & Yang, Y. J. (2006). Energy Flux of Nonlinear Internal Waves in Northern South China Sea. Geophysical Research Letters, 33(3). https://doi.org/10.1029/2005gl025196
Dunphy, M., Subich, C., & Stastna, M. (2011). Spectral Methods for Internal Waves: Indistinguishable Density Profiles and Double-Humped Solitary Waves. Nonlinear Processes in Geophysics, 18(3), 351–358. https://doi.org/10.5194/npg-18-351-2011
Echeverri, P., & Peacock, T. (2010). Internal Tide Generation by Arbitrary Two-Dimensional Topography. Journal of Fluid Mechanics, 659, 247-266. https://doi.org/10.1017/s0022112010002417
Farmer, D., Alford, M., Lien, R.-C., Yang, Y. J., Chang, M.-H., & Li, Q. (2011). From Luzon Strait to Dongsha Plateau: Stages in the Life of an Internal Wave. Oceanography, 24(4), 64-77. https://doi.org/10.5670/oceanog.2011.95
Farmer, D., Li, Q., & Park, J. H. (2009). Internal Wave Observations in the South China Sea: The Role of Rotation and Non‐Linearity. Atmosphere-Ocean, 47(4), 267-280. https://doi.org/10.3137/oc313.2009
Gill, A. E. (1982). Atmosphere-Ocean Dynamics (W. L. Donn, Ed. Vol. 30).
Grimshaw, R., Holloway, P., Pelinovsky, E., Talipova, T., Rottman, J. W., Linden, P. F., Smith, R. B., Fernando, H. J. S., Boyer, D., Srdic-Mitrovic, A., & Redekopp, L. G. (2002). Environmental Stratified Flows (U. o. S. Dr. Philip Chatwin, UK, T. A. U. Dr. Gedeon Dagan, ISRAEL, C. I. o. T. Dr. John List, USA, M. I. o. T. Dr. Chiang Mei, USA, & M. U. Dr. Stuart Savage, CANADA, Eds. Vol. 3). KLUWER ACADEMIC.
Higuchi, A., Takenaka, H., & Toyoshima, K. (2019). Himawari 8/9 Gridded Full-Disk (Fd)Data Version 02 (V20190123) ([Gridded Data]. Center for Environmental Remote Sensing (CEReS), Chiba University. ftp://hmwr829gr.cr.chiba-u.ac.jp/gridded/FD/V20190123/
Huang, N. E., Shen, Z., Long, S. R., Wu, M. C., Shih, H. H., Zheng, Q., Yen, N.-C., Tung, C. C., & Liu, H. H. (1998). The Empirical Mode Decomposition and the Hilbert Spectrum for Nonlinear and Non-Stationary Time Series Analysis. Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences, 454(1971), 903-995. https://doi.org/10.1098/rspa.1998.0193
Jackson, C. R. (2009). An Empirical Model for Estimating the Geographic Location of Nonlinear Internal Solitary Waves. Journal of Atmospheric and Oceanic Technology, 26(10), 2243-2255. https://doi.org/10.1175/2009JTECHO638.1
Jackson, C. R., & Alpers, W. (2010). The Role of the Critical Angle in Brightness Reversals on Sunglint Images of the Sea Surface. Journal of Geophysical Research: Oceans, 115(C9). https://doi.org/10.1029/2009jc006037
Lamb, M. S. K. G. (2002). Large Fully Nonlinear Internal Solitary Waves: The Effect of Background Current Physics of Fluids, 14(9), 2987–2999. https://doi.org/10.1063/1.1496510
Lawson, R. (2013). Saic Tsunami Buoy (Stb) and Easy-to-Deploy (Etd) Dart® Systems. In: Science Applications International Corporation (SAIC).
Li, Q., & Farmer, D. M. (2011). The Generation and Evolution of Nonlinear Internal Waves in the Deep Basin of the South China Sea. Journal of Physical Oceanography, 41(7), 1345-1363. https://doi.org/10.1175/2011JPO4587.1
Li, Q., Farmer, D. M., Duda, T. F., & Ramp, S. (2009). Acoustical Measurement of Nonlinear Internal Waves Using the Inverted Echo Sounder. Journal of Atmospheric and Oceanic Technology, 26(10), 2228-2242. https://doi.org/10.1175/2009jtecho652.1
Lien, R. C., Tang, T. Y., Chang, M. H., & D'Asaro, E. A. (2005). Energy of Nonlinear Internal Waves in the South China Sea. Geophysical Research Letters, 32(5). https://doi.org/10.1029/2004gl022012
Liu, A. K., Ramp, S. R., Zhao, Y., & Tang, T. Y. (2004). A Case Study of Internal Solitary Wave Propagation during Asiaex 2001. IEEE Journal of Oceanic Engineering, 29(4), 1144-1156. https://doi.org/10.1109/joe.2004.841392
Meteolorogical Satellite Center of JMA. (2024). Himawari User's Guide, Imager (Ahi). https://www.data.jma.go.jp/mscweb/en/himawari89/space_segment/spsg_ahi.html#band
Moore, S. E., & Lien, R. C. (2006). Pilot Whales Follow Internal Solitary Waves in the South China Sea. Marine Mammal Science, 23(1), 193-196. https://doi.org/10.1111/j.1748-7692.2006.00086.x
Moum, J. N., & Nash, J. D. (2008). Seafloor Pressure Measurements of Nonlinear Internal Waves. Journal of Physical Oceanography, 38(2), 481-491. https://doi.org/10.1175/2007jpo3736.1
Moum, J. N., & Smyth, W. D. (2006). The Pressure Disturbance of a Nonlinear Internal Wave Train. Journal of Fluid Mechanics, 558. https://doi.org/10.1017/s0022112006000036
Ocean Data Bank. (2024). Physical Oceanography Ctd Data. Ocean Data Bank, National Science and Technology Council. https://www.odb.ntu.edu.tw/ctd/source/
Orr, M. H., & Mignerey, P. C. (2003). Nonlinear Internal Waves in the South China Sea: Observation of the Conversion of Depression Internal Waves to Elevation Internal Waves. Journal of Geophysical Research: Oceans, 108(C3). https://doi.org/10.1029/2001JC001163
Ostrovsky, L. A., & Stepanyants, Y. A. (1989). Do Internal Solitions Exist in the Ocean? Reviews of Geophysics, 27(3), 293-310. https://doi.org/10.1029/RG027i003p00293
Paroscientific Inc. (2024). D25 Series 2000, 3000, 4000: Absolute and Gauge Pressure Transducers. In: Paroscientific Inc.
Pawlowicz, R., Beardsley, B., & Lentz, S. (2002). Classical Tidal Harmonic Analysis Including Error Estimates in Matlab Using T_Tide. Computers & Geosciences, 28(8), 929-937. https://doi.org/10.1016/S0098-3004(02)00013-4
Ramp, S. R., Park, J. H., Yang, Y. J., Bahr, F. L., & Jeon, C. (2019). Latitudinal Structure of Solitons in the South China Sea. Journal of Physical Oceanography, 49(7), 1747-1767. https://doi.org/10.1175/jpo-d-18-0071.1
Ramp, S. R., Tang, T. Y., Duda, T. F., Lynch, J. F., Liu, A. K., Chiu, C. S., Bahr, F. L., Kim, H. R., & Yang, Y. J. (2004). Internal Solitons in the Northeastern South China Sea Part I: Sources and Deep Water Propagation. IEEE Journal of Oceanic Engineering, 29(4), 1157-1181. https://doi.org/10.1109/joe.2004.840839
Ramp, S. R., Yang, Y. J., & Bahr, F. L. (2010). Characterizing the Nonlinear Internal Wave Climate in the Northeastern South China Sea. Nonlinear Processes in Geophysics, 17(5), 481-498. https://doi.org/10.5194/npg-17-481-2010
Science Applications International Corporation. (2015). Saic Tsunami Buoy System. In.
Sea-Bird Scientific. (2024). Sbe 911plus Ctd. https://www.seabird.com/sbe-911plus-ctd/product?id=60761421595
Shaw, P. T., Ko, D. S., & Chao, S. Y. (2009). Internal Solitary Waves Induced by Flow over a Ridge: With Applications to the Northern South China Sea. Journal of Geophysical Research: Oceans, 114(C2). https://doi.org/10.1029/2008jc005007
Stastna, M. (2022). Internal Waves in the Ocean (S. o. E. Michael Brenner, Harvard University, Cambridge, USA, E. L. Gábor Csányi, University of Cambridge, Cambridge, UK, S. o. E. Lakshminarayanan Mahadevan, Harvard University, Cambridge, USA, M. D. Clarence Rowley, Princeton University, Princeton, USA, F. H. Amit Singer, Princeton University, Princeton, USA, W. C. M. C. Jonathon D Victor, New York, USA, D. o. M. Rachel Ward, Office 10.144, University of Texas at Austin, & O. Dept of Mathematics, Austin, USA, Eds. 1 ed., Vol. 9). Springer Cham. https://doi.org/10.1007/978-3-030-99210-1
Takenaka, H., Sakashita, T., Higuchi, A., & Nakajima, T. (2020). Geolocation Correction for Geostationary Satellite Observations by a Phase-Only Correlation Method Using a Visible Channel. Remote Sensing, 12(15), 2472. https://www.mdpi.com/2072-4292/12/15/2472
Turkington, B., Eydeland, A., & Wang, S. (1991). A Computational Method for Solitary Internal Waves in a Continuously Stratified Fluid. Studies in Applied Mathematics, 85. https://doi.org/10.1002/sapm199185293
Yamamoto, Y., Ichii, K., Higuchi, A., & Takenaka, H. (2020). Geolocation Accuracy Assessment of Himawari-8/Ahi Imagery for Application to Terrestrial Monitoring. Remote Sensing, 12(9), 1372. https://www.mdpi.com/2072-4292/12/9/1372
Yang, K.-C., Jan, S., Yang, Y. J., Chang, M.-H., Wang, J., Wang, S.-H., Ramp, S. R., Reeder, D. B., & Ko, D. S. (2023). Anatomy of Mode-1 Internal Solitary Waves Derived from Seaglider Observations in the Northern South China Sea. Journal of Physical Oceanography, 53(11), 2519-2536. https://doi.org/10.1175/jpo-d-23-0039.1
Yang, Y. J., Fang, Y. C., Chang, M. H., Ramp, S. R., Kao, C. C., & Tang, T. Y. (2009). Observations of Second Baroclinic Mode Internal Solitary Waves on the Continental Slope of the Northern South China Sea. Journal of Geophysical Research: Oceans, 114(C10). https://doi.org/10.1029/2009jc005318
Yang, Y. J., Tang, T. Y., Chang, M. H., Liu, A. K., Hsu, M. K., & Ramp, S. R. (2004). Solitons Northeast of Tung-Sha Island during the Asiaex Pilot Studies. IEEE Journal of Oceanic Engineering, 29(4), 1182-1199. https://doi.org/10.1109/joe.2004.841424
Zhao, Y., Liu, A. K., & Hsu, M. K. (2008). Internal Wave Refraction Observed from Sequential Satellite Images. International Journal of Remote Sensing, 29(21), 6381-6390. https://doi.org/10.1080/01431160802175520
連三郎. (1977). 潮汐預報電腦程式模型. 國立臺灣大學海洋研究所專刊.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/94529-
dc.description.abstract內孤立波通常具有大波幅的波浪特徵,且會導致水平流速的強烈垂直流切以及等密度面的垂直位移。此外,由其引起的海底壓力擾動也值得關注。於南海,前人進行多次針對內孤立波的研究,像是使用溫度計串、流速剖面儀、衛星影像等進行觀測,然而欠缺的是長期觀測資料。本研究使用將近三年的觀測資料,藉由研究分析了解內孤立波在此處的季節性變化與性質。於2018年10月至2021年7月,一組海嘯浮標預警系統布放在南海北部深海海盆,距離呂宋海峽以西約110公里,當地水深約為2800公尺,此處為南海內孤立波好發之處。此系統搭載高解析度海床壓力計,得以觀測到內孤立波在深海造成的微小壓力變化,於觀測期間共紀錄513個內孤立波造成的壓力擾動。
本研究主要分為兩部分,其一是以連續小波變換和希爾伯特-黃轉換進行海底壓力計資料分析,藉此獲得內孤立波訊號,並將此訊號進行統計已得知其季節性變化。第二部分則是使用Dubreil-Jacotin-Long (DJL)方法了解內孤立波性質,由給定當季或歷史背景密度資剖面以及可用位能,計算出相對應的波速、壓力及振幅。並比對實測以及計算壓力值的相似性,便可同時驗證其他性質的可信度。
利用連續小波變換及希爾伯特-黃轉換分析海床壓力計數據得知:第一點,連續小波轉換所得週期介於0.5至2小時的訊號與希爾伯特-黃轉換所得之本質模態函數(intrinsic mode functions, IMF) IMF 1、2和3相同;第二點,此訊號發生時間為大潮期間,與前人研究之南海內孤立波好發時間相符;第三點,統計結果顯示,冬季為南海內孤立波發生的低峰期。DJL方法結果可總結為以下兩點:首先,DJL方法所得的壓力值與現場觀測的壓力數據經由計算R-squared (r^2)得知兩者的相似度,若其值大於0.95則將此結果視為高度相似,同時採信所得之波速。其次,由上述結果所得之波速與由向日葵8號衛星影像計算的波速進行比較,可進一步驗證DJL方法的準確性。然而,研究發現使用當季背景密度剖面所得之波速結果相較於使用歷史剖面有較高的準確性,因此背景密度剖面的季節性變化可能會影響DJL方法所得之波速的準確性。
zh_TW
dc.description.abstractInternal solitary waves (ISWs) are usually characterized by a large wave amplitude, strong vertical shear of horizontal currents, and vertical displacement of isopycnals. Additionally, pressure perturbations above the seafloor induced by ISWs are also noteworthy. There has been extensive research on internal waves in the South China Sea (SCS), utilizing instruments such as thermistor chains, current profilers, and satellite images. However, these studies often have short observation periods. Long-term observation data would allow further analysis of internal solitary waves in the SCS. In this study, a Tsunami Buoy System with a bottom pressure recorder (BPR) was deployed in the northern SCS deep basin, approximately 110 kilometers west of the Luzon Strait, at a depth of 2,800 m, to document pressure perturbation in-situ data from October 2018 to July 2021. During the observation period, 513 cases of ISWs were recorded.
The research mainly focused on two parts: first, the data from the BPR was analyzed using continuous wavelet transform (CWT) and Hilbert-Huang transform (HHT), and the ISW signal was extracted. Then, with the long-term signal, the seasonal change of the ISWs could be understood. Second, the Dubreil-Jacotin-Long (DJL) method was applied to understand better the parameters of ISW. With an in-season or a historical background density profile and available potential energy (APE) value, the DJL method can output the results of phase speed, pressure, and amplitude. By fitting the observation and calculated pressure data, the similarity helps to verify the confidence of other output parameters.
From the analysis of the CWT and HHT, there were three conclusions: (1) the 0.5 to 2-hour period signal from CWT and the IMFs 1, 2, and 3 signal from HHT generated intrinsic mode functions (IMF) had a similar period; (2) the happening time of these signals matched with the generation time from former research, which is on the days of spring tides; (3) statistics showed the seasonal pattern of internal solitary waves in the SCS. There were fewer cases in winter, while the other three seasons experienced higher occurrences, which aligns with previous studies. The calculation results from the DJL method indicated two conclusions. First, the pressure data from the DJL method yielded high similarity to the in-situ pressure data, according to the results from R-squared (r^2) better than 0.95, leading to higher credibility to other parameters, such as phase speed. Second, comparing the phase speed results and Himawari-8 image calculations further validated the method's accuracy. However, it was found that an in-season background density profile could improve the accuracy of the DJL results even more effectively than a historical background density profile. Therefore, the seasonal change of the density profile might be necessary for the phase speed accuracy from the DJL method.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-08-16T16:33:43Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2024-08-16T16:33:43Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents致謝 i
摘要 ii
Abstract iv
Contents vi
List of Figures ix
List of Tables xv
Nomenclature xvi
Abbreviations xvi
Symbols xvii
Chapter 1 Introduction 1
Chapter 2 Materials 5
2.1 Observation Data 5
2.1.1 Buoy Configuration and Introduction 5
2.1.2 Internal Solitary Wave Data Source 6
2.1.3 Background Density Data Sources 6
Chapter 3 Methodology 11
3.1 The BPR Pressure Data 11
3.1.1 Harmonic Tidal Analysis 12
3.1.2 The Continuous Wavelet Transform (CWT) and the Hilbert-Huang Transform (HHT) 12
3.2 Dubreil-Jacotin-Long (DJL) Equation and the DJL Method 13
3.2.1 Dubreil-Jacotin-Long (DJL) Equation 13
3.2.2 Application of the DJL Method 14
3.3 ISWs Analysis Process 15
Chapter 4 Results 19
4.1 The BPR Pressure Data Analyzation 19
4.1.1 Tidal Constituents of the Observing Site 19
4.1.2 The CWT Results 20
4.1.3 The HHT Results 20
4.1.4 Comparison Between the CWT Results and the HHT Results 21
4.1.5 Statistical Results 22
4.2 The DJL Method Results and Himawari-8 Images 23
4.2.1 The DJL Method with In-season Background Density Profile Application 23
4.2.2 The DJL Method with Historical Background Density Profile Application 24
4.2.3 Results of c_(H8-case no.) and c_(case no.) Comparison 24
Chapter 5 Discussions and Conclusion 54
Reference 56
-
dc.language.isoen-
dc.subjectDJLzh_TW
dc.subject海嘯浮標預警系統zh_TW
dc.subject海床壓力計zh_TW
dc.subject海底壓力擾動zh_TW
dc.subject南海zh_TW
dc.subject向日葵8號衛星影像zh_TW
dc.subject內孤立波zh_TW
dc.subjectDJLen
dc.subjectSouth China Seaen
dc.subjectinternal solitary waveen
dc.subjectbottom pressure recorderen
dc.subjectpressure perturbationen
dc.subjectHimawari-8 imagesen
dc.title運用海床壓力計研究北南海海盆內孤立波之變化zh_TW
dc.titleInternal Solitary Wave Variations in the Northern South China Sea Basin Study with Bottom Pressure Recorderen
dc.typeThesis-
dc.date.schoolyear112-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee張明輝;許哲源;鄭宇昕zh_TW
dc.contributor.oralexamcommitteeMing-Huei Chang;Je-Yuan Hsu;Yu-Hsin Chengen
dc.subject.keyword南海,內孤立波,海嘯浮標預警系統,海床壓力計,海底壓力擾動,DJL,向日葵8號衛星影像,zh_TW
dc.subject.keywordSouth China Sea,internal solitary wave,bottom pressure recorder,pressure perturbation,DJL,Himawari-8 images,en
dc.relation.page59-
dc.identifier.doi10.6342/NTU202403970-
dc.rights.note同意授權(限校園內公開)-
dc.date.accepted2024-08-13-
dc.contributor.author-college理學院-
dc.contributor.author-dept海洋研究所-
dc.date.embargo-lift2027-12-31-
顯示於系所單位:海洋研究所

文件中的檔案:
檔案 大小格式 
ntu-112-2.pdf
  未授權公開取用
5.66 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved