請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/94525
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 陳振中 | zh_TW |
dc.contributor.advisor | Jerry Chun-Chung Chan | en |
dc.contributor.author | 林佾曇 | zh_TW |
dc.contributor.author | Yi-Tan Lin | en |
dc.date.accessioned | 2024-08-16T16:32:18Z | - |
dc.date.available | 2024-08-17 | - |
dc.date.copyright | 2024-08-16 | - |
dc.date.issued | 2024 | - |
dc.date.submitted | 2024-08-13 | - |
dc.identifier.citation | (1) Meldrum, F. C.; Cölfen, H. The Many Lives of Calcium Carbonate. Nat. Chem. 2023, 15 (8), 1196–1196.
(2) Wolf, S. E.; Müller, L.; Barrea, R.; Kampf, C. J.; Leiterer, J.; Panne, U.; Hoffmann, T.; Emmerling, F.; Tremel, W. Carbonate-Coordinated Metal Complexes Precede the Formation of Liquid Amorphous Mineral Emulsions of Divalent Metal Carbonates. Nanoscale. 2011, 3 (3), 1158–1165. (3) Mass, T.; Giuffre, A. J.; Sun, C.-Y.; Stifler, C. A.; Frazier, M. J.; Neder, M.; Tamura, N.; Stan, C. V.; Marcus, M. A.; Gilbert, P. U. P. A. Amorphous Cal-cium Carbonate Particles Form Coral Skeletons. Proc. Natl. Acad. Sci. 2017, 114 (37), E7670–E7678. (4) Seto, J.; Ma, Y.; Davis, S. A.; Meldrum, F.; Gourrier, A.; Kim, Y.-Y.; Schilde, U.; Sztucki, M.; Burghammer, M.; Maltsev, S.; Jäger, C.; Cölfen, H. Struc-ture-Property Relationships of a Biological Mesocrystal in the Adult Sea Ur-chin Spine. Proc. Natl. Acad. Sci. 2012, 109 (10), 3699–3704. (5) Cölfen, H.; Mann, S. Higher-Order Organization by Mesoscale Self-Assembly and Transformation of Hybrid Nanostructures. Angew. Chem. Int. Ed. 2003, 42 (21), 2350–2365. (6) Politi, Y.; Arad, T.; Klein, E.; Weiner, S.; Addadi, L. Sea Urchin Spine Calcite Forms via a Transient Amorphous Calcium Carbonate Phase. Science. 2004, 306 (5699), 1161–1164. (7) Cantaert, B.; Kuo, D.; Matsumura, S.; Nishimura, T.; Sakamoto, T.; Kato, T. Use of Amorphous Calcium Carbonate for the Design of New Materials. ChemPlusChem. 2017, 82 (1), 107–120. (8) Addadi, L.; Raz, S.; Weiner, S. Taking Advantage of Disorder: Amorphous Calcium Carbonate and Its Roles in Biomineralization. Adv. Mater. 2003, 15 (12), 959–970. (9) Niederberger, M.; Cölfen, H. Oriented Attachment and Mesocrystals: Non-Classical Crystallization Mechanisms Based on Nanoparticle Assembly. Phys. Chem. Chem. Phys. 2006, 8 (28), 3271–3287. (10) Bianco-Stein, N.; Polishchuk, I.; Lang, A.; Portal, L.; Dejoie, C.; Katsman, A.; Pokroy, B. High-Mg Calcite Nanoparticles within a Low-Mg Calcite Matrix: A Widespread Phenomenon in Biomineralization. Proc. Natl. Acad. Sci. 2022, 119 (16), e2120177119. (11) Loste, E.; Wilson, R. M.; Seshadri, R.; Meldrum, F. C. The Role of Magnesi-um in Stabilising Amorphous Calcium Carbonate and Controlling Calcite Morphologies. J. Cryst. Growth. 2003, 254 (1), 206–218. (12) Polishchuk, I.; Bracha, A. A.; Bloch, L.; Levy, D.; Kozachkevich, S.; Etinger-Geller, Y.; Kauffmann, Y.; Burghammer, M.; Giacobbe, C.; Villanova, J.; Hendler, G.; Sun, C.-Y.; Giuffre, A. J.; Marcus, M. A.; Kundanati, L.; Zaslansky, P.; Pugno, N. M.; Gilbert, P. U. P. A.; Katsman, A.; Pokroy, B. Co-herently Aligned Nanoparticles within a Biogenic Single Crystal: A Biological Prestressing Strategy. Science. 2017, 358 (6368), 1294–1298. (13) Seknazi, E.; Pokroy, B. Residual Strain and Stress in Biocrystals. Adv. Mater. 2018, 30 (41), 1707263. (14) Katz, A. K.; Glusker, J. P.; Beebe, S. A.; Bock, C. W. Calcium Ion Coordina-tion: A Comparison with That of Beryllium, Magnesium, and Zinc. J. Am. Chem. Soc. 1996, 118 (24), 5752–5763. (15) Davis, K. J.; Dove, P. M.; De Yoreo, J. J. The Role of Mg2+ as an Impurity in Calcite Growth. Science. 2000, 290 (5494), 1134–1137. (16) Politi, Y.; Batchelor, D. R.; Zaslansky, P.; Chmelka, B. F.; Weaver, J. C.; Sagi, I.; Weiner, S.; Addadi, L. Role of Magnesium Ion in the Stabilization of Bio-genic Amorphous Calcium Carbonate: A Structure−Function Investigation. Chem. Mater. 2010, 22 (1), 161–166. (17) Wang, D.; Wallace, A. F.; De Yoreo, J. J.; Dove, P. M. Carboxylated Molecules Regulate Magnesium Content of Amorphous Calcium Carbonates during Cal-cification. Proc. Natl. Acad. Sci. 2009, 106 (51), 21511–21516. (18) Falini, G.; Gazzano, M.; Ripamonti, A. Magnesium Calcite Crystallizatin from Water–Alcohol Mixtures. Chem. Commun. 1996, 1037–1038. (19) Raz, S.; Weiner, S.; Addadi, L. Formation of High-Magnesian Calcites via an Amorphous Precursor Phase: Possible Biological Implications. Adv. Mater. 2000, 12 (1), 38–42. (20) Blue, C. R.; Giuffre, A.; Mergelsberg, S.; Han, N.; De Yoreo, J. J.; Dove, P. M. Chemical and Physical Controls on the Transformation of Amorphous Calci-um Carbonate into Crystalline CaCO3 Polymorphs. Geochim. Cosmochim. Acta. 2017, 196, 179–196. (21) Politi, Y.; Metzler, R. A.; Abrecht, M.; Gilbert, B.; Wilt, F. H.; Sagi, I.; Addadi, L.; Weiner, S.; Gilbert, P. U. P. A. Transformation Mechanism of Amorphous Calcium Carbonate into Calcite in the Sea Urchin Larval Spicule. Proc. Natl. Acad. Sci. 2008, 105 (45), 17362–17366. (22) Du, H.; Amstad, E. Water: How Does It Influence the CaCO3 Formation? An-gew. Chem. Int. Ed. 2020, 59 (5), 1798–1816. (23) Goodwin, A. L.; Michel, F. M.; Phillips, B. L.; Keen, D. A.; Dove, M. T.; Reeder, R. J. Nanoporous Structure and Medium-Range Order in Synthetic Amorphous Calcium Carbonate. Chem. Mater. 2010, 22 (10), 3197–3205. (24) Saharay, M.; Kirkpatrick, R. J. Water Dynamics in Hydrated Amorphous Ma-terials: A Molecular Dynamics Study of the Effects of Dehydration in Amor-phous Calcium Carbonate. Phys. Chem. Chem. Phys. 2017, 19 (43), 29594–29600. (25) Michel, F. M.; MacDonald, J.; Feng, J.; Phillips, B. L.; Ehm, L.; Tarabrella, C.; Parise, J. B.; Reeder, R. J. Structural Characteristics of Synthetic Amorphous Calcium Carbonate. Chem. Mater. 2008, 20 (14), 4720–4728. (26) Du, H.; Steinacher, M.; Borca, C.; Huthwelker, T.; Murello, A.; Stellacci, F.; Amstad, E. Amorphous CaCO3: Influence of the Formation Time on Its De-gree of Hydration and Stability. J. Am. Chem. Soc. 2018, 140 (43), 14289–14299. (27) Bushuev, Y. G.; Finney, A. R.; Rodger, P. M. Stability and Structure of Hy-drated Amorphous Calcium Carbonate. Cryst. Growth Des. 2015, 15 (11), 5269–5279. (28) Jensen, A. C. S.; Imberti, S.; Parker, S. F.; Schneck, E.; Politi, Y.; Fratzl, P.; Bertinetti, L.; Habraken, W. J. E. M. Hydrogen Bonding in Amorphous Cal-cium Carbonate and Molecular Reorientation Induced by Dehydration. J. Phys. Chem. C. 2018, 122 (6), 3591–3598. (29) Smeets, P. J. M.; Finney, A. R.; Habraken, W. J. E. M.; Nudelman, F.; Friedrich, H.; Laven, J.; De Yoreo, J. J.; Rodger, P. M.; Sommerdijk, N. A. J. M. A Clas-sical View on Nonclassical Nucleation. Proc. Natl. Acad. Sci. 2017, 114 (38), E7882–E7890. (30) Wolf, S. E.; Leiterer, J.; Kappl, M.; Emmerling, F.; Tremel, W. Early Homog-enous Amorphous Precursor Stages of Calcium Carbonate and Subsequent Crystal Growth in Levitated Droplets. J. Am. Chem. Soc. 2008, 130 (37), 12342–12347. (31) Avaro, J. T.; Wolf, S. L. P.; Hauser, K.; Gebauer, D. Stable Prenucleation Cal-cium Carbonate Clusters Define Liquid–Liquid Phase Separation. Angew. Chem. Int. Ed. 2020, 59 (15), 6155–6159. (32) Gebauer, D.; Völkel, A.; Cölfen, H. Stable Prenucleation Calcium Carbonate Clusters. Science. 2008, 322 (5909), 1819–1822. (33) Gebauer, D.; Wolf, S. E. Designing Solid Materials from Their Solute State: A Shift in Paradigms toward a Holistic Approach in Functional Materials Chem-istry. J. Am. Chem. Soc. 2019, 141 (11), 4490–4504. (34) Kellermeier, M.; Raiteri, P.; Berg, J. K.; Kempter, A.; Gale, J. D.; Gebauer, D. Entropy Drives Calcium Carbonate Ion Association. ChemPhysChem. 2016, 17 (21), 3535–3541. (35) Sebastiani, F.; Wolf, S. L. P.; Born, B.; Luong, T. Q.; Cölfen, H.; Gebauer, D.; Havenith, M. Water Dynamics from THz Spectroscopy Reveal the Locus of a Liquid–Liquid Binodal Limit in Aqueous CaCO3 Solutions. Angew. Chem. Int. Ed. 2017, 56 (2), 490–495. (36) Lu, H.; Huang, Y.-C.; Hunger, J.; Gebauer, D.; Cölfen, H.; Bonn, M. Role of Water in CaCO3 Biomineralization. J. Am. Chem. Soc. 2021, 143 (4), 1758–1762. (37) Schoeppler, V.; Stier, D.; Best, R. J.; Song, C.; Turner, J.; Savitzky, B. H.; Ophus, C.; Marcus, M. A.; Zhao, S.; Bustillo, K.; Zlotnikov, I. Crystallization by Amorphous Particle Attachment: On the Evolution of Texture. Adv. Mater. 2021, 33 (37), 2101358. (38) Gilbert, P. U. P. A.; Porter, S. M.; Sun, C.-Y.; Xiao, S.; Gibson, B. M.; Shenkar, N.; Knoll, A. H. Biomineralization by Particle Attachment in Early Animals. Proc. Natl. Acad. Sci. 2019, 116 (36), 17659–17665. (39) Cölfen, H. Nonclassical Nucleation and Crystallization. Crystals. 2020, 10 (2), 61. (40) Gong, Y. U. T.; Killian, C. E.; Olson, I. C.; Appathurai, N. P.; Amasino, A. L.; Martin, M. C.; Holt, L. J.; Wilt, F. H.; Gilbert, P. U. P. A. Phase Transitions in Biogenic Amorphous Calcium Carbonate. Proc. Natl. Acad. Sci. 2012, 109 (16), 6088–6093. (41) Gilbert, P. U. P. A.; Bergmann, K. D.; Boekelheide, N.; Tambutté, S.; Mass, T.; Marin, F.; Adkins, J. F.; Erez, J.; Gilbert, B.; Knutson, V.; Cantine, M.; Her-nández, J. O.; Knoll, A. H. Biomineralization: Integrating Mechanism and Evolutionary History. Sci. Adv. 2022, 8 (10), eabl9653. (42) Rodríguez-Navarro, A. B.; Marie, P.; Nys, Y.; Hincke, M. T.; Gautron, J. Amorphous Calcium Carbonate Controls Avian Eggshell Mineralization: A New Paradigm for Understanding Rapid Eggshell Calcification. J. Struct. Biol. 2015, 190 (3), 291–303. (43) Gal, A.; Kahil, K.; Vidavsky, N.; DeVol, R. T.; Gilbert, P. U. P. A.; Fratzl, P.; Weiner, S.; Addadi, L. Particle Accretion Mechanism Underlies Biological Crystal Growth from an Amorphous Precursor Phase. Adv. Funct. Mater. 2014, 24 (34), 5420–5426. (44) De Yoreo, J. J.; Gilbert, P. U. P. A.; Sommerdijk, N. A. J. M.; Penn, R. L.; Whitelam, S.; Joester, D.; Zhang, H.; Rimer, J. D.; Navrotsky, A.; Banfield, J. F.; Wallace, A. F.; Michel, F. M.; Meldrum, F. C.; Cölfen, H.; Dove, P. M. Crystallization by Particle Attachment in Synthetic, Biogenic, and Geologic Environments. Science. 2015, 349 (6247), aaa6760. (45) Li, D.; Chen, Q.; Chun, J.; Fichthorn, K.; De Yoreo, J.; Zheng, H. Nanoparticle Assembly and Oriented Attachment: Correlating Controlling Factors to the Resulting Structures. Chem. Rev. 2023, 123 (6), 3127–3159. (46) Liu, L.; Nakouzi, E.; Sushko, M. L.; Schenter, G. K.; Mundy, C. J.; Chun, J.; De Yoreo, J. J. Connecting Energetics to Dynamics in Particle Growth by Oriented Attachment Using Real-Time Observations. Nat. Commun. 2020, 11 (1), 1045. (47) Li, D.; Nielsen, M. H.; Lee, J. R. I.; Frandsen, C.; Banfield, J. F.; De Yoreo, J. J. Direction-Specific Interactions Control Crystal Growth by Oriented At-tachment. Science. 2012, 336 (6084), 1014–1018. (48) Bishop, K. J. M.; Wilmer, C. E.; Soh, S.; Grzybowski, B. A. Nanoscale Forces and Their Uses in Self-Assembly. Small. 2009, 5 (14), 1600–1630. (49) Electrostatic Double-Layer Forces. Surface and Interfacial Forces 2e. John Wiley & Sons, Ltd, 2018, pp 99–129. (50) Matter, F.; Luna, A. L.; Niederberger, M. From Colloidal Dispersions to Aer-ogels: How to Master Nanoparticle Gelation. Nano Today. 2020, 30, 100827. (51) Matter, F.; Niederberger, M. Optimization of Mass and Light Transport in Nanoparticle-Based Titania Aerogels. Chem. Mater. 2023, 35 (19), 7995–8008. (52) Gower, L. B.; Odom, D. J. Deposition of Calcium Carbonate Films by a Pol-ymer-Induced Liquid-Precursor (PILP) Process. J. Cryst. Growth. 2000, 210 (4), 719–734. (53) Gindele, M. B.; Nolte, S.; Stock, K. M.; Kebel, K.; Gebauer, D. Bottling Liq-uid-Like Minerals for Advanced Materials Synthesis. Adv. Mater. 2023, 35 (25), 2300702. (54) Liu, Z.; Shao, C.; Jin, B.; Zhang, Z.; Zhao, Y.; Xu, X.; Tang, R. Crosslinking Ionic Oligomers as Conformable Precursors to Calcium Carbonate. Nature. 2019, 574 (7778), 394–398. (55) Kong, K.; Wang, J.; Zhang, P.; Ma, X.; Xu, Y.; Ma, Z.; Sang, Y.; Zhang, Z.; Liu, T.; Jin, C.; Liu, Z.; Tang, R. Linear Calcium Carbonate Chains by Direc-tional Control of Ionic Bonding. J. Phys. Chem. Lett. 2024, 15 (9), 2624–2631. (56) Fang, W.; Mu, Z.; He, Y.; Kong, K.; Jiang, K.; Tang, R.; Liu, Z. Organic–Inorganic Covalent–Ionic Molecules for Elastic Ceramic Plastic. Nature. 2023, 619 (7969), 293–299. (57) Yu, Y.; Mu, Z.; Jin, B.; Liu, Z.; Tang, R. Organic–Inorganic Copolymerization for a Homogenous Composite without an Interphase Boundary. Angew. Chem. Int. Ed. 2020, 59 (5), 2071–2075. (58) Ma, Z.; Kong, K.; Yin, Y.; Guo, Z.; Ma, X.; Lin, Q.; Wang, J.; Shen, Y.; Lu, X.; Xu, X.; Kong, X.; Liu, Z.; Tang, R. High Mechanical Strength Alloy-like Minerals Prepared by Inorganic Ionic Co-Cross-Linking. Adv. Mater. 2024, 36 (3), 2308017. (59) Yan, L.; Zheng, C.; Yuan, D.; Guo, Z.; Cui, Y.; Xie, Z.; Chen, Z.; Tang, R.; Liu, Z. Fast Construction of Biomimetic Organic–Inorganic Interface by Cross-linking of Calcium Phosphate Oligomers: A Strategy for Instant Regeneration of Hard Tissue. Adv. Healthc. Mater. 2022, 11 (23), 2201161. (60) Shao, C.; Jin, B.; Mu, Z.; Lu, H.; Zhao, Y.; Wu, Z.; Yan, L.; Zhang, Z.; Zhou, Y.; Pan, H.; Liu, Z.; Tang, R. Repair of Tooth Enamel by a Biomimetic Min-eralization Frontier Ensuring Epitaxial Growth. Sci. Adv. 2019, 5 (8), eaaw9569. (61) Xue, N.; Ding, X.; Huang, R.; Jiang, R.; Huang, H.; Pan, X.; Min, W.; Chen, J.; Duan, J.-A.; Liu, P.; Wang, Y. Bone Tissue Engineering in the Treatment of Bone Defects. Pharmaceuticals. 2022, 15 (7), 879. (62) Wei, S.; Ma, J.-X.; Xu, L.; Gu, X.-S.; Ma, X.-L. Biodegradable Materials for Bone Defect Repair. Mil. Med. Res. 2020, 7 (1), 54. (63) Ohgushi, H.; Okumura, M.; Yoshikawa, T.; Inboue, K.; Senpuku, N.; Tamai, S.; Shors, E. C. Bone Formation Processin Porous Calcium Carbonate and Hy-droxyapatite. J. Biomed. Mater. Res. 1992, 26 (7), 885–895. (64) Petite, H.; Viateau, V.; Bensaïd, W.; Meunier, A.; de Pollak, C.; Bourguignon, M.; Oudina, K.; Sedel, L.; Guillemin, G. Tissue-Engineered Bone Regenera-tion. Nat. Biotechnol. 2000, 18 (9), 959–963. (65) Monchau, F.; Lefèvre, A.; Descamps, M.; Belquin-myrdycz, A.; Laffargue, P.; Hildebrand, H. F. In Vitro Studies of Human and Rat Osteoclast Activity on Hydroxyapatite, β-Tricalcium Phosphate, Calcium Carbonate. Biomol. Eng. 2002, 19 (2), 143–152. (66) Green, D. W.; Bolland, B. J. R. F.; Kanczler, J. M.; Lanham, S. A.; Walsh, D.; Mann, S.; Oreffo, R. O. C. Augmentation of Skeletal Tissue Formation in Im-paction Bone Grafting Using Vaterite Microsphere Biocomposites. Biomateri-als. 2009, 30 (10), 1918–1927. (67) Pountos, I.; Giannoudis, P. V. Is There a Role of Coral Bone Substitutes in Bone Repair? Injury. 2016, 47 (12), 2606–2613. (68) Chróścicka, A.; Jaegermann, Z.; Wychowański, P.; Ratajska, A.; Sadło, J.; Hoser, G.; Michałowski, S.; Lewandowska-Szumiel, M. Synthetic Calcite as a Scaffold for Osteoinductive Bone Substitutes. Ann. Biomed. Eng. 2016, 44 (7), 2145–2157. (69) Wang, X.; Ackermann, M.; Wang, S.; Tolba, E.; Neufurth, M.; Feng, Q.; Schröder, H. C.; Müller, W. E. G. Amorphous Polyphosphate/Amorphous Cal-cium Carbonate Implant Material with Enhanced Bone Healing Efficacy in a Critical-Size Defect in Rats. Biomed. Mater. 2016, 11 (3), 035005. (70) Müller, W. E. G.; Neufurth, M.; Huang, J.; Wang, K.; Feng, Q.; Schröder, H. C.; Diehl-Seifert, B.; Muñoz-Espí, R.; Wang, X. Nonenzymatic Transformation of Amorphous CaCO3 into Calcium Phosphate Mineral after Exposure to Sodium Phosphate in Vitro: Implications for in Vivo Hydroxyapatite Bone Formation. ChemBioChem. 2015, 16 (9), 1323–1332. (71) Liu, H.; Wen, Z.; Liu, Z.; Yang, Y.; Wang, H.; Xia, X.; Ye, J.; Liu, Y. Unlock-ing the Potential of Amorphous Calcium Carbonate: A Star Ascending in the Realm of Biomedical Application. Acta Pharm. Sin. B. 2024, 14 (2), 602–622. (72) Sun, R.; Zhang, P.; Bajnóczi, É. G.; Neagu, A.; Tai, C.-W.; Persson, I.; Strømme, M.; Cheung, O. Amorphous Calcium Carbonate Constructed from Nanoparticle Aggregates with Unprecedented Surface Area and Mesoporosity. ACS Appl. Mater. Interfaces. 2018, 10 (25), 21556–21564. (73) Zhao, Y.; Luo, Z.; Li, M.; Qu, Q.; Ma, X.; Yu, S.-H.; Zhao, Y. A Preloaded Amorphous Calcium Carbonate/Doxorubicin@Silica Nanoreactor for pH-Responsive Delivery of an Anticancer Drug. Angew. Chem. Int. Ed. 2015, 54 (3), 919–922. (74) Wang, C.; Han, M.; Liu, X.; Chen, S.; Hu, F.; Sun, J.; Yuan, H. Mitoxan-trone-Preloaded Water-Responsive Phospholipid-Amorphous Calcium Car-bonate Hybrid Nanoparticles for Targeted and Effective Cancer Therapy. Int. J. Nanomedicine. 2019, 14, 1503–1517. (75) Rao, C.; Guo, X.; Li, M.; Sun, X.; Lian, X.; Wang, H.; Gao, X.; Niu, B.; Li, W. In Vitro Preparation and Characterization of Amorphous Calcium Carbonate Nanoparticles for Applications in Curcumin Delivery. J. Mater. Sci. 2019, 54 (16), 11243–11253. (76) Kamaly, N.; Yameen, B.; Wu, J.; Farokhzad, O. C. Degradable Con-trolled-Release Polymers and Polymeric Nanoparticles: Mechanisms of Con-trolling Drug Release. Chem. Rev. 2016, 116 (4), 2602–2663. (77) Slika, L.; Patra, D. A Short Review on Chemical Properties, Stability and Nano-Technological Advances for Curcumin Delivery. Expert Opin. Drug De-liv. 2020, 17 (1), 61–75. (78) Ali, B. H.; Marrif, H.; Noureldayem, S. A.; Bakheit, A. O.; Blunden, G. Some Biological Properties of Curcumin: A Review. Nat. Prod. Commun. 2006, 1 (6), 1934578X0600100613. (79) Xu, D.; Wan, Y.; Xie, Z.; Du, C.; Wang, Y. Hierarchically Structured Hydrox-yapatite Particles Facilitate the Enhanced Integration and Selective An-ti-Tumor Effects of Amphiphilic Prodrug for Osteosarcoma Therapy. Adv. Healthc. Mater. 2023, 12 (18), 2202668. (80) Zhang, M.; Zhang, J.; Chen, J.; Zeng, Y.; Zhu, Z.; Wan, Y. Fabrication of Cur-cumin-Modified TiO2 Nanoarrays via Cyclodextrin Based Polymer Functional Coatings for Osteosarcoma Therapy. Adv. Healthc. Mater. 2019, 8 (23), 1901031. (81) Bose, S.; Sarkar, N.; Banerjee, D. Effects of PCL, PEG and PLGA Polymers on Curcumin Release from Calcium Phosphate Matrix for in Vitro and in Vivo Bone Regeneration. Mater. Today Chem. 2018, 8, 110–120. (82) Shome, S.; Talukdar, A. D.; Choudhury, M. D.; Bhattacharya, M. K.; Upadh-yaya, H. Curcumin as Potential Therapeutic Natural Product: A Nanobiotech-nological Perspective. J. Pharm. Pharmacol. 2016, 68 (12), 1481–1500. (83) Corrêa Carvalho, G.; Marena, G. D.; Gaspar Gonçalves Fernandes, M.; Ricci Leonardi, G.; Santos, H. A.; Chorilli, M. Curcuma Longa: Nutraceutical Use and Association With Nanotechnology. Adv. Healthc. Mater. n/a (n/a), 2400506. (84) Ju, Y.-M.; Zhao, Y.; Guan, Q.-F.; Yang, S.-Y.; Wang, W.; Yan, B.-B.; Meng, Y.-F.; Li, S.-C.; Tang, P.-P.; Mao, L.-B.; Yu, S.-H. Amorphous Calcium Car-bonate Cluster Nanospheres in Water-Deficient Organic Solvents. Angew. Chem. Int. Ed. 2022, 61 (47), e202211254. (85) Zhong, D.; Zhang, D.; Chen, W.; He, J.; Ren, C.; Zhang, X.; Kong, N.; Tao, W.; Zhou, M. Orally Deliverable Strategy Based on Microalgal Biomass for Intes-tinal Disease Treatment. Sci. Adv. 2021, 7 (48), eabi9265. (86) Coathup, M. J.; Cai, Q.; Campion, C.; Buckland, T.; Blunn, G. W. The Effect of Particle Size on the Osteointegration of Injectable Silicate-Substituted Cal-cium Phosphate Bone Substitute Materials. J. Biomed. Mater. Res. B Appl. Biomater. 2013, 101B (6), 902–910. (87) Liu, Y.-J.; Li, S.-L.; Chen, B. P.-W.; Chien, C.-L.; Chan, J. C. C. Porous Mg-Stabilized Amorphous Calcium Carbonate as Carrier for Hydrophobic Drugs. J. Chin. Chem. Soc. 2022, 69 (9), 1688–1697. (88) Stetefeld, J.; McKenna, S. A.; Patel, T. R. Dynamic Light Scattering: A Prac-tical Guide and Applications in Biomedical Sciences. Biophys. Rev. 2016, 8 (4), 409–427. (89) Bhattacharjee, S. DLS and Zeta Potential – What They Are and What They Are Not? J. Controlled Release. 2016, 235, 337–351. (90) Addadi, L.; Raz, S.; Weiner, S. Taking Advantage of Disorder: Amorphous Calcium Carbonate and Its Roles in Biomineralization. Adv. Mater. 2003, 15 (12), 959–970. (91) Coats, A. W.; Redfern, J. P. Thermogravimetric Analysis. A Review. Analyst. 1963, 88 (1053), 906–924. (92) Freire, E. Differential Scanning Calorimetry. Protein Stability and Folding. Humana Press, 1995, pp 191–218. (93) Akhtar, K.; Khan, S. A.; Khan, S. B.; Asiri, A. M. Scanning Electron Micros-copy: Principle and Applications in Nanomaterials Characterization. Hand-book of Materials Characterization. Springer International Publishing: Cham, 2018, pp 113–145. (94) Brown, R. by P. D. Transmission Electron Microscopy-A Textbook for Mate-rials Science, by David B. Williams and C. Barry Carter. Microsc. Microanal. 1999, 5 (6), 452–453. (95) Cole, K.; Levine, B. S. Ultraviolet-Visible Spectrophotometry. Principles of Forensic Toxicology. Springer International Publishing: Cham, 2020, pp 127–134. (96) Scientific, T. F. Differences in Bacterial Optical Density Measurements be-tween UV-Visible Spectrophotometers. (97) BET Theory | Anton Paar Wiki. https://wiki.anton-paar.com/en/bet-theory/ (98) Brunauer, S.; Emmett, P. H.; Teller, E. Adsorption of Gases in Multimolecular Layers. J. Am. Chem. Soc. 1938, 60 (2), 309–319. (99) Levitt, M. H. Spin Dynamics: Basics of Nuclear Magnetic Resonance. John Wiley & Sons, 2008. (100) Ridgway, J. P. Cardiovascular Magnetic Resonance Physics for Clinicians: Part I. J. Cardiovasc. Magn. Reson. 2010, 12 (1), 71. (101) bob, B. Spin-Echo and CPMG Pulse Sequence for NMR | Fundamentals of Fluid Flow in Porous Media. Special Core Analysis & EOR Laboratory | PERM Inc. (102) Medina-Rodriguez, B. X.; Reilly, T.; Wang, H.; Smith, E. R.; Garcia-Olvera, G.; Alvarado, V.; Aryana, S. Time-Domain Nuclear Magnetic Resonance De-termination of Wettability Alteration: Analysis for Low-Salinity Water. Appl. Sci. 2020, 10 (3), 1017. (103) Carper, W. R.; Keller, C. E. Direct Determination of NMR Correlation Times from Spin−Lattice and Spin−Spin Relaxation Times. J. Phys. Chem. A. 1997, 101 (18), 3246–3250. (104) Lucas, L. H.; Larive, C. K. Measuring Ligand-Protein Binding Using NMR Diffusion Experiments. Concepts Magn. Reson. Part A. 2004, 20A (1), 24–41. (105) van Zijl, P. C. M.; Yadav, N. N. Chemical Exchange Saturation Transfer (CEST): What Is in a Name and What Isn’t? Magn. Reson. Med. 2011, 65 (4), 927–948. (106) Straub, J. S.; Nowotarski, M. S.; Lu, J.; Sheth, T.; Jiao, S.; Fisher, M. P. A.; Shell, M. S.; Helgeson, M. E.; Jerschow, A.; Han, S. Phosphates Form Spec-troscopically Dark State Assemblies in Common Aqueous Solutions. Proc. Natl. Acad. Sci. 2023, 120 (1), e2206765120. (107) Edwards, J. M.; Bramham, J. E.; Podmore, A.; Bishop, S. M.; van der Walle, C. F.; Golovanov, A. P. 19F Dark-State Exchange Saturation Transfer NMR Re-veals Reversible Formation of Protein-Specific Large Clusters in High-Concentration Protein Mixtures. Anal. Chem. 2019, 91 (7), 4702–4708. (108) Leukel, S.; Mondeshki, M.; Tremel, W. Hydrogen Bonding in Amorphous Al-kaline Earth Carbonates. Inorg. Chem. 2018, 57 (17), 11289–11298. (109) Xu, X.-R.; Cai, A.-H.; Liu, R.; Pan, H.-H.; Tang, R.-K.; Cho, K. The Roles of Water and Polyelectrolytes in the Phase Transformation of Amorphous Cal-cium Carbonate. J. Cryst. Growth. 2008, 310 (16), 3779–3787. (110) Schmidt, M. P.; Ilott, A. J.; Phillips, B. L.; Reeder, R. J. Structural Changes upon Dehydration of Amorphous Calcium Carbonate. Cryst. Growth Des. 2014, 14 (3), 938–951. (111) Radha, A. V.; Fernandez-Martinez, A.; Hu, Y.; Jun, Y.-S.; Waychunas, G. A.; Navrotsky, A. Energetic and Structural Studies of Amorphous Ca1−xMgxCO3·nH2O (0 ⩽ x ⩽ 1). Geochim. Cosmochim. Acta. 2012, 90, 83–95. (112) Gindele, M. B.; Nolte, S.; Stock, K. M.; Kebel, K.; Gebauer, D. Bottling Liq-uid-Like Minerals for Advanced Materials Synthesis. Adv. Mater. 2023, 35 (25), 2300702. (113) Kong, K.; Wang, J.; Zhang, P.; Ma, X.; Xu, Y.; Ma, Z.; Sang, Y.; Zhang, Z.; Liu, T.; Jin, C.; Liu, Z.; Tang, R. Linear Calcium Carbonate Chains by Direc-tional Control of Ionic Bonding. J. Phys. Chem. Lett. 2024, 15 (9), 2624–2631. (114) Liu, Z.; Shao, C.; Jin, B.; Zhang, Z.; Zhao, Y.; Xu, X.; Tang, R. Crosslinking Ionic Oligomers as Conformable Precursors to Calcium Carbonate. Nature. 2019, 574 (7778), 394–398. (115) Chen, G.; Kang, Z.; Liu, C.; Yu, J.; Wang, Q.; Liu, J.; Xu, T. Crosslinking Ion-ic Oligomers Sol-Gel Synthesis of High-Surface-Area Mesoporous Magnesi-um Carbonate and Its General Applicability. Microporous Mesoporous Mater. 2024, 374, 113135. (116) Smeets, P. J. M.; Finney, A. R.; Habraken, W. J. E. M.; Nudelman, F.; Friedrich, H.; Laven, J.; De Yoreo, J. J.; Rodger, P. M.; Sommerdijk, N. A. J. M. A Clas-sical View on Nonclassical Nucleation. Proc. Natl. Acad. Sci. 2017, 114 (38), E7882–E7890. (117) Matter, F.; Luna, A. L.; Niederberger, M. From Colloidal Dispersions to Aer-ogels: How to Master Nanoparticle Gelation. Nano Today. 2020, 30, 100827. (118) Demichelis, R.; Raiteri, P.; Gale, J. D.; Quigley, D.; Gebauer, D. Stable Prenu-cleation Mineral Clusters Are Liquid-like Ionic Polymers. Nat. Commun. 2011, 2 (1), 590. (119) Kubincová, A.; Hünenberger, P. H.; Krishnan, M. Interfacial Solvation Can Explain Attraction between Like-Charged Objects in Aqueous Solution. J. Chem. Phys. 2020, 152 (10), 104713. (120) Wang, S.; Walker-Gibbons, R.; Watkins, B.; Flynn, M.; Krishnan, M. A Charge-Dependent Long-Ranged Force Drives Tailored Assembly of Matter in Solution. Nat. Nanotechnol. 2024, 1–9. (121) Di Carluccio, C.; Forgione, M. C.; Martini, S.; Berti, F.; Molinaro, A.; Mar-chetti, R.; Silipo, A. Investigation of Protein-Ligand Complexes by Lig-and-Based NMR Methods. Carbohydr. Res. 2021, 503, 108313. (122) Sharma, R.; Holland, G. P.; Solomon, V. C.; Zimmermann, H.; Schiffenhaus, S.; Amin, S. A.; Buttry, D. A.; Yarger, J. L. NMR Characterization of Ligand Binding and Exchange Dynamics in Triphenylphosphine-Capped Gold Nano-particles. J. Phys. Chem. C. 2009, 113 (37), 16387–16393. (123) Di Carluccio, C.; Forgione, M. C.; Martini, S.; Berti, F.; Molinaro, A.; Mar-chetti, R.; Silipo, A. Investigation of Protein-Ligand Complexes by Lig-and-Based NMR Methods. Carbohydr. Res. 2021, 503, 108313. (124) Wallace, A. F.; Hedges, L. O.; Fernandez-Martinez, A.; Raiteri, P.; Gale, J. D.; Waychunas, G. A.; Whitelam, S.; Banfield, J. F.; De Yoreo, J. J. Microscopic Evidence for Liquid-Liquid Separation in Supersaturated CaCO3 Solutions. Science. 2013, 341 (6148), 885–889. (125) Li, S.-L.; Wang, L.-H.; Lin, Y.-T.; Huang, S.-J.; Chung Chan, J. C. Hydrogen Phosphates Play a Critical Structural Role in Amorphous Calcium Phosphates. Chem. Commun. 2022, 58 (74), 10329–10332. (126) Wang, Y.; Von Euw, S.; Fernandes, F. M.; Cassaignon, S.; Selmane, M.; Lau-rent, G.; Pehau-Arnaudet, G.; Coelho, C.; Bonhomme-Coury, L.; Gi-raud-Guille, M.-M.; Babonneau, F.; Azaïs, T.; Nassif, N. Water-Mediated Structuring of Bone Apatite. Nat. Mater. 2013, 12 (12), 1144–1153. (127) Rechberger, F.; Niederberger, M. Synthesis of Aerogels: From Molecular Routes to 3-Dimensional Nanoparticle Assembly. Nanoscale Horiz. 2016, 2 (1), 6–30. (128) Yang, L.; Killian, C. E.; Kunz, M.; Tamura, N.; Gilbert, P. U. P. A. Biomineral Nanoparticles Are Space-Filling. Nanoscale. 2011, 3 (2), 603–609. (129) Connolly, B. M.; Aragones-Anglada, M.; Gandara-Loe, J.; Danaf, N. A.; Lamb, D. C.; Mehta, J. P.; Vulpe, D.; Wuttke, S.; Silvestre-Albero, J.; Moghadam, P. Z.; Wheatley, A. E. H.; Fairen-Jimenez, D. Tuning Porosity in Macroscopic Monolithic Metal-Organic Frameworks for Exceptional Natural Gas Storage. Nat. Commun. 2019, 10 (1), 2345. (130) Sing, K. S. W. Reporting Physisorption Data for Gas/Solid Systems with Spe-cial Reference to the Determination of Surface Area and Porosity (Recom-mendations 1984). Pure Appl. Chem. 1985, 57 (4), 603–619. (131) A. Cychosz, K.; Guillet-Nicolas, R.; García-Martínez, J.; Thommes, M. Re-cent Advances in the Textural Characterization of Hierarchically Structured Nanoporous Materials. Chem. Soc. Rev. 2017, 46 (2), 389–414. (132) Santos, H. A.; Salonen, J.; Bimbo, L. M.; Lehto, V.-P.; Peltonen, L.; Hirvonen, J. Mesoporous Materials as Controlled Drug Delivery Formulations. J. Drug Deliv. Sci. Technol. 2011, 21 (2), 139–155. (133) Elbaz, N. M.; Owen, A.; Rannard, S.; McDonald, T. O. Controlled Synthesis of Calcium Carbonate Nanoparticles and Stimuli-Responsive Multi-Layered Nanocapsules for Oral Drug Delivery. Int. J. Pharm. 2020, 574, 118866. (134) Gunasekaran, S.; Anbalagan, G. Spectroscopic Characterization of Natural Calcite Minerals. Spectrochim. Acta. A. Mol. Biomol. Spectrosc. 2007, 68 (3), 656–664. (135) Zuleger, S.; Lippold, B. C. Polymer Particle Erosion Controlling Drug Release. I. Factors Influencing Drug Release and Characterization of the Release Mechanism. Int. J. Pharm. 2001, 217 (1), 139–152. (136) Ghavimi, M. A.; Bani Shahabadi, A.; Jarolmasjed, S.; Memar, M. Y.; Maleki Dizaj, S.; Sharifi, S. Nanofibrous Asymmetric Collagen/Curcumin Membrane Containing Aspirin-Loaded PLGA Nanoparticles for Guided Bone Regenera-tion. Sci. Rep. 2020, 10 (1), 18200. (137) Monchau, F.; Lefèvre, A.; Descamps, M.; Belquin-myrdycz, A.; Laffargue, P.; Hildebrand, H. F. In Vitro Studies of Human and Rat Osteoclast Activity on Hydroxyapatite, β-Tricalcium Phosphate, Calcium Carbonate. Biomol. Eng. 2002, 19 (2), 143–152. (138) Fu, K.; Xu, Q.; Czernuszka, J.; Triffitt, J. T.; Xia, Z. Characterization of a Bi-odegradable Coralline Hydroxyapatite/Calcium Carbonate Composite and Its Clinical Implementation. Biomed. Mater. 2013, 8 (6), 065007. (139) Gonella, G.; Backus, E. H. G.; Nagata, Y.; Bonthuis, D. J.; Loche, P.; Schlaich, A.; Netz, R. R.; Kühnle, A.; McCrum, I. T.; Koper, M. T. M.; Wolf, M.; Winter, B.; Meijer, G.; Campen, R. K.; Bonn, M. Water at Charged Interfaces. Nat. Rev. Chem. 2021, 5 (7), 466–485. (140) Liu, J.; Huang, C.; Wu, H.; Long, Y.; Tang, X.; Li, H.; Shen, J.; Zhou, B.; Zhang, Y.; Xu, Z.; Fan, J.; Zeng, X. C.; Lu, J.; Li, Y. Y. From Salt Water to Bioceramics: Mimic Nature through Pressure-Controlled Hydration and Crys-tallization. Sci. Adv. 2024, 10 (9), eadk5047. (141) Ruiz-Agudo, C.; Cölfen, H. Exploring the Potential of Nonclassical Crystalli-zation Pathways to Advance Cementitious Materials. Chem. Rev. 2024, 124 (12), 7538–7618. (142) Chuzeville, L.; Boury, F.; Duday, D.; Anand, R.; Moretto, E.; Thomann, J.-S. Eco-Friendly Processes for the Synthesis of Amorphous Calcium Carbonate Nanoparticles in Ethanol and Their Stabilisation in Aqueous Media. Green Chem. 2022, 24 (3), 1270–1284. (143) Kim, J.; Bea, S. K.; Kim, Y. H.; Kim, D.-W.; Lee, K.-Y.; Lee, C.-M. Improved Suspension Stability of Calcium Carbonate Nanoparticles by Surface Modifi-cation with Oleic Acid and Phospholipid. Biotechnol. Bioprocess Eng. 2015, 20 (4), 794–799. (144) Albéric, M.; Bertinetti, L.; Zou, Z.; Fratzl, P.; Habraken, W.; Politi, Y. The Crystallization of Amorphous Calcium Carbonate Is Kinetically Governed by Ion Impurities and Water. Adv. Sci. 2018, 5 (5), 1701000. (145) Jouyban, A.; Soltanpour, S.; Chan, H.-K. A Simple Relationship between Die-lectric Constant of Mixed Solvents with Solvent Composition and Tempera-ture. Int. J. Pharm. 2004, 269 (2), 353–360. (146) Williamson, M. P. Using Chemical Shift Perturbation to Characterise Ligand Binding. Prog. Nucl. Magn. Reson. Spectrosc. 2013, 73, 1–16. (147) Kapur, G. S.; Cabrita, E. J.; Berger, S. The Qualitative Probing of Hydrogen Bond Strength by Diffusion-Ordered NMR Spectroscopy. Tetrahedron Lett. 2000, 41 (37), 7181–7185. (148) Fecko, C. J.; Eaves, J. D.; Loparo, J. J.; Tokmakoff, A.; Geissler, P. L. Ultrafast Hydrogen-Bond Dynamics in the Infrared Spectroscopy of Water. Science. 2003, 301 (5640), 1698–1702. (149) Khago, D.; Fucci, I. J.; Byrd, R. A. The Role of Conformational Dynamics in the Recognition and Regulation of Ubiquitination. Molecules. 2020, 25 (24), 5933. (150) Marchetti, R.; Dillon, M. J.; Burtnick, M. N.; Hubbard, M. A.; Kenfack, M. T.; Blériot, Y.; Gauthier, C.; Brett, P. J.; AuCoin, D. P.; Lanzetta, R.; Silipo, A.; Molinaro, A. Burkholderia Pseudomallei Capsular Polysaccharide Recogni-tion by a Monoclonal Antibody Reveals Key Details toward a Biodefense Vaccine and Diagnostics against Melioidosis. ACS Chem. Biol. 2015, 10 (10), 2295–2302. | - |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/94525 | - |
dc.description.abstract | 製備無機連續結構的塊材是一項富有挑戰性的任務,但無機塊材的製備可能對新穎光學器件及生物材料的發展有助益。在近期的文獻報導中,有人提出了一種藉由交聯膠狀寡聚前驅物,即非晶質碳酸鈣寡聚物,來合成無機塊狀材料。延續其製備流程,我們製備了鎂穩定的非晶質碳酸鈣寡聚物,並發現其可以在三乙胺存在下藉由水進行可逆聚集。我們假設水可以改變礦物的表面性質,通過氫鍵幫助寡聚物進行聚集。為了試驗這一假設,我們引入多元醇進行寡聚物聚集的動力學研究,並利用核磁共振儀研究二元醇與寡聚物之間的交互作用,這些結果為我們的假設提供證據。藉由控制寡聚物的聚集,我們製備了具有高比表面積的中孔洞含鎂非晶質碳酸鈣塊材,並發現製程中加入水可以增加塊材的尺寸。最後,由於中孔洞含鎂非晶質塊材有作為人工骨填充物並進行局部藥物輸送的潛力,我們將其用為薑黃素的藥物載體,與非晶質碳酸鈣奈米球相比,發現其具有更延長的藥物釋放曲線。此研究有潛力推進寡聚物製作成為功能性材料。 | zh_TW |
dc.description.abstract | Constructing inorganic monolithic materials with a continuous structure is a chal-lenging task, but the processability of these materials may allow the development of novel optical devices and biomaterials. Recently, it has been proposed a method to prepare inorganic monolithic materials through the crosslinking of a gel-like oligo-meric precursor, viz., amorphous calcium carbonate (ACC) ionic oligomers. Following Tang's protocol, we reported the synthesis of Mg-stabilized amorphous calcium car-bonate (Mg-ACC) ionic oligomers; their reversible aggregation is induced by adding water in the presence of triethylamine (TEA). We hypothesized that water modifies the surface of ionic oligomers, aiding in the aggregation of ionic oligomers through hy-drogen bond interactions. To test this hypothesis, we introduced polyols to study the kinetics of the aggregation of ionic oligomers, and the interaction between diols and ionic oligomers was studied by NMR. These results provide evidence for our hypothe-sis. By controlling the aggregation of ionic oligomers, we synthesized mesoporous monoliths with high specific surface areas, and the dimensions of the monoliths in-creased with increasing water content. Finally, the mesoporous Mg-ACC monolith, which has the potential to be applied as a bone filler for local drug delivery, was used as a curcumin carrier and exhibited a more extended release profile than ACC nano-spheres. This study has the potential to advance the processing of ionic oligomers into functional materials. | en |
dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-08-16T16:32:18Z No. of bitstreams: 0 | en |
dc.description.provenance | Made available in DSpace on 2024-08-16T16:32:18Z (GMT). No. of bitstreams: 0 | en |
dc.description.tableofcontents | 口試委員會審定書 I
謝誌 II 中文摘要 VIII Abstract IX Abbreviations XI Contents XIII List of Figures XIX List of Tables XXIV CHAPTER 1 Introduction 1 1.1 Calcium Carbonate 1 1.1.1 Calcium Carbonate Polymorphism 1 1.1.2 Amorphous Calcium Carbonate 2 1.2 Magnesium Ions in ACC 4 1.3 Water in ACC 5 1.3.1 Structural Water 5 1.3.2 Water in ACC Formation 7 1.4 Particle Attachment 9 1.4.1 Particle Attachment in Biominerals 9 1.4.2 DLVO theory 13 1.5 Liquid-Like Mineral Precursors 15 1.5.1 Polymer Induced Liquid Precursors 16 1.5.2 Ionic Oligomers 16 1.6 ACC as Bone Substitutes 22 1.7 Curcumin 23 1.8 Motivation 24 CHAPTER 2 Materials and Method 26 2.1 Chemicals and Instruments 26 2.2 Sample Preparation 31 2.2.1 Mg-ACC Ionic Oligomers and Monolith 31 2.2.2 Optical Density 600 (OD600) Tracking of Different Mineralization Stages 33 2.2.3 Mg-ACC Aggregation Kinetics Induced by Water and Polyols 34 2.2.4 NMR Sample Preparation: Chemical Exchange Saturation Transfer (CEST) 36 2.2.5 NMR Sample Preparation: 37 2.2.6 Aggregation Kinetics Among Mg-ACC, Mg-ACC TEA, Mg-ACC water, Mg-ACC TEA-water 38 2.2.7 Preparation of Amorphous Calcium Phosphate (ACP) and Amorphous Magnesium Phosphate (AMP) Ionic Oligomers and Study of Aggregation Kinetics 40 2.2.8 Preparation of Mg-ACC Monolith with Different Water Content in the Process 41 2.2.9 Preparation of ACC Nanospheres 42 2.2.10 Loading Curcumin into Mg-ACC Monolith and ACC Nanospheres 43 2.2.11 Release Profile of Curcumin 44 2.3 Sample Characterization 46 2.3.1 Inductively Coupled Plasma Mass Spectroscopy (ICP-MS) 46 2.3.2 Dynamic Light Scattering (DLS) 48 2.3.3 Zeta Potential 49 2.3.4 Fourier Transform Infrared Spectroscopy (FT-IR) 50 2.3.5 Thermogravimetric Analysis (TGA) and Differential Scanning Calorimetry (DSC) 51 2.3.6 Scanning Electron Microscopy (SEM) 52 2.3.7 Transmission Electron Microscope (TEM) 53 2.3.8 UV-vis Spectroscopy 54 2.3.9 Specific Surface Area and Porosimetry Analyzer 55 2.4 Solution State Nuclear Magnetic Resonance (NMR) 57 2.4.1 Larmor Frequency 57 2.4.2 Spin Lattice Relaxation 57 2.4.3 Spin Spin Relaxation 59 2.4.4 Estimation of Correlation Time from Relaxation Data 61 2.4.5 Diffusion Ordered Spectroscopy (DOSY) 61 2.4.6 Chemical Exchange Saturation Transfer (CEST) 63 CHAPTER 3 Mg-ACC Monolith and Aggregation of Ionic Oligomers Induced by Water 65 3.1 Characterization of Mg-ACC Monolith 65 3.1.1 ICP-MS 65 3.1.2 FT-IR 66 3.1.3 TGA and DSC 67 3.1.4 SEM 69 3.2 Gel-Like Ionic Oligomers Induced by Water 70 3.2.1 CEST: Nanodroplet Property of Mg-ACC Ionic Oligomers 75 3.3 Roles of Water in Aggregation of Mg-ACC Ionic Oligomers 77 3.3.1 Different Amount of Water 78 3.3.2 Double Hydrogen Bond Donor 79 3.3.3 Length of Diols 81 3.4 Role of TEA 84 3.5 Attraction between Like-charged Particles 87 3.6 NMR Study: Interfacial Interactions between Propanediols, TEA, Chloroform and Ionic Oligomers 89 3.6.1 Concept 89 3.6.2 Rotational Correlation Time 91 3.7 Aggregation of ACC, AMC, ACP and AMP Ionic Oligomers 96 3.8 Summary 99 CHAPTER 4 Mesoporous Mg-ACC Monolith and Its Application as Curcumin Carrier 101 4.1 Mesoporous Mg-ACC Monoliths 101 4.1.1 Effect of Water to the Dimension of Monolith 101 4.1.2 Pore Analysis 102 4.2 Loading and Release of Curcumin 107 4.3 Summary 113 CHAPTER 5 Conclusions and Outlook 115 5.1 Conclusion 115 5.2 Outlook 116 References 118 Appendix A Mg Content in Mg-ACC Monoliths with Different Mg mol% in Mother Liquid 131 Appendix B Effects of Dielectric Constant 132 Appendix C Karl-Fischer Titration 135 Appendix D Other NMR Results 138 D.1 1H Direct Excitation NMR Spectrum 138 D.2 Chemical Shift 139 D.3 Diffusion Coefficient 140 Appendix E Calculation of Rotational Correlation Time from Relaxation Data 145 Appendix F DLS Results of Other Ionic Oligomers 147 Appendix G Calibration Curves of Curcumin 148 | - |
dc.language.iso | en | - |
dc.title | 藉由水誘導含鎂非晶質碳酸鈣寡聚物粒子聚集的機制探討及應用 | zh_TW |
dc.title | Mechanistic Study of Particle Attachment of Mg-Stabilized Amorphous Calcium Carbonate Ionic Oligomers Induced by Water and Its Applications | en |
dc.type | Thesis | - |
dc.date.schoolyear | 112-2 | - |
dc.description.degree | 碩士 | - |
dc.contributor.oralexamcommittee | 余慈顏;鍾博文 | zh_TW |
dc.contributor.oralexamcommittee | Tsyr-Yan Yu;Po-Wen Chung | en |
dc.subject.keyword | 含鎂非晶質碳酸鈣,離子寡聚物,塊材,水,溶膠凝膠法,中孔洞,藥物載體, | zh_TW |
dc.subject.keyword | magnesium amorphous calcium carbonate,ionic oligomers,monolith,water,sol-gel process,mesoporous,drug carrier, | en |
dc.relation.page | 148 | - |
dc.identifier.doi | 10.6342/NTU202404043 | - |
dc.rights.note | 未授權 | - |
dc.date.accepted | 2024-08-14 | - |
dc.contributor.author-college | 理學院 | - |
dc.contributor.author-dept | 化學系 | - |
顯示於系所單位: | 化學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-112-2.pdf 目前未授權公開取用 | 5.91 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。