Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 管理學院
  3. 資訊管理學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/94522
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳建錦zh_TW
dc.contributor.advisorChien Chin Chenen
dc.contributor.author楊代如zh_TW
dc.contributor.authorTai-Ju Yangen
dc.date.accessioned2024-08-16T16:31:23Z-
dc.date.available2024-08-17-
dc.date.copyright2024-08-16-
dc.date.issued2024-
dc.date.submitted2024-08-06-
dc.identifier.citation[1] M. Du, F. Li, G. Zheng, and V. Srikumar, "Deeplog: Anomaly detection and diagnosis from system logs through deep learning," in Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communications Security (CCS '17), New York, NY, USA, 2017, pp. 1285-1298, doi: 10.1145/3133956.3134015.
[2] X. Zhang, Y. Xu, Q. Lin, B. Qiao, H. Zhang, Y. Dang, C. Xie, X. Yang, Q. Cheng, Z. Li, J. Chen, X. He, R. Yao, J. G. Lou, M. Chintalapati, F. Shen, and D. Zhang, "Robust log-based anomaly detection on unstable log data," in Proceedings of the 2019 27th ACM Joint Meeting on European Software Engineering Conference and Symposium on the Foundations of Software Engineering (ESEC/FSE 2019), New York, NY, USA, 2019, pp. 807-817, doi: 10.1145/3338906.3338931.
[3] V. H. Le and H. Zhang, "Log-based anomaly detection without log parsing," in 2021 36th IEEE/ACM International Conference on Automated Software Engineering (ASE), Melbourne, Australia, 2021, pp. 492-504, doi: 10.1109/ASE51524.2021.9678773.
[4] Z. Wang, J. Tian, H. Fang, L. Chen, and J. Qin, "LightLog: A lightweight temporal convolutional network for log anomaly detection on the edge," Computer Networks, vol. 203, Feb. 2022, Art no. 108616, doi: 10.1016/j.comnet.2021.108616.
[5] Y. Xie and K. Yang, "Log anomaly detection by adversarial autoencoders with graph feature fusion," IEEE Transactions on Reliability, vol. 73, no. 1, pp. 637-649, Mar. 2024, doi: 10.1109/TR.2023.3305376.
[6] L. Payne, "Log file anomaly detection using knowledge graphs and graph neural networks," 2023.
[7] Z. Sun, Z. H. Deng, J. Y. Nie, and J. Tang, "Rotate: Knowledge graph embedding by relational rotation in complex space," 2019, arXiv:1902.10197.
[8] W. Xu, L. Huang, A. Fox, D. Patterson, and M. I. Jordan, "Detecting large-scale system problems by mining console logs," in Proceedings of the ACM SIGOPS 22nd symposium on Operating systems principles (SOSP '09), New York, NY, USA, 2009, pp. 117-132, doi: 10.1145/1629575.1629587.
[9] A. Oliner and J. Stearley, "What supercomputers say: A study of five system logs," in Proceedings of the 37th Annual IEEE/IFIP International Conference on Dependable Systems and Networks (DSN'07), Edinburgh, UK, 2007, pp. 575-584, doi: 10.1109/DSN.2007.103.
[10] J. G. Lou, Q. Fu, S. Yang, Y. Xu, and J. Li, "Mining invariants from console logs for system problem detection," in Proceedings of the 2010 USENIX Annual Technical Conference (USENIX ATC 10), 2010, pp. 24-24.
[11] Q. Lin, H. Zhang, J. G. Lou, Y. Zhang, and X. Chen, "Log clustering based problem identification for online service systems," in Proceedings of the 38th International Conference on Software Engineering Companion (ICSE '16), New York, NY, USA, 2016, pp. 102-111, doi: 10.1145/2889160.2889232.
[12] C. D. Manning, P. Raghavan, and H. Schütze, Introduction to Information Retrieval. Cambridge: Cambridge University Press, 2008.
[13] B. Zhang, H. Zhang, V. H. Le, P. Moscato, and A. Zhang, "Semi-supervised and unsupervised anomaly detection by mining numerical workflow relations from system logs," Automated Software Engineering, vol. 30, no. 1, 2023, Art no. 4, doi: 10.1007/s10515-022-00370-w.
[14] S. Hochreiter and J. Schmidhuber, "Long short-term memory," in Neural Computation, vol. 9, no. 8, pp. 1735-1780, Nov. 1997, doi: 10.1162/neco.1997.9.8.1735.
[15] C. Zhang, X. Wang, H. Zhang, H. Zhang, and P. Han, "Log sequence anomaly detection based on local information extraction and globally sparse transformer model," in IEEE Transactions on Network and Service Management, vol. 18, no. 4, pp. 4119-4133, Dec. 2021, doi: 10.1109/TNSM.2021.3125967.
[16] T. Mikolov, K. Chen, G. Corrado, and J. Dean, "Efficient estimation of word representations in vector space," 2013, arXiv:1301.3781.
[17] H. Guo, S. Yuan, and X. Wu, "Logbert: Log anomaly detection via bert," in 2021 International Joint Conference on Neural Networks (IJCNN), Shenzhen, China, 2021, pp. 1-8, doi: 10.1109/IJCNN52387.2021.9534113.
[18] J. Devlin, M. W. Chang, K. Lee, and K. Toutanova, "Bert: Pre-training of deep bidirectional transformers for language understanding," 2018, arXiv:1810.04805.
[19] Y. Lee, J. Kim, and P. Kang, "Lanobert: System log anomaly detection based on bert masked language model," Applied Soft Computing, vol. 146, Oct. 2023, Art. no. 110689, doi: 10.1016/j.asoc.2023.110689.
[20] Y. Wang, Y. Liu, D. Wang, and Y. Wen, "Glad-paw: Graph-based log anomaly detection by position aware weighted graph attention network," in Pacific-Asia Conference on Knowledge Discovery and Data Mining, 2021, pp. 66-77, doi: 10.1007/978-3-030-75762-5_6.
[21] C. Zhang, X. Peng, C. Sha, K. Zhang, Z. Fu, X. Wu, Q. Lin, and D. Zhang, "Deeptralog: Trace-log combined microservice anomaly detection through graph-based deep learning," in Proceedings of the 44th International Conference on Software Engineering (ICSE), Pittsburgh, PA, USA, May 2022, pp. 623-634, doi: 10.1145/3510003.3510180.
[22] M. Gori, G. Monfardini, and F. Scarselli, "A new model for learning in graph domains," in Proceedings of the 2005 IEEE International Joint Conference on Neural Networks, vol. 2, Montreal, QC, Canada, 2005, pp. 729-734, doi: 10.1109/IJCNN.2005.1555942.
[23] Y. Xie, H. Zhang, and M. A. Babar, "Loggd: Detecting anomalies from system logs with graph neural networks," in 2022 IEEE 22nd International Conference on Software Quality, Reliability and Security (QRS), Guangzhou, China, Dec. 2022, pp. 299-310, doi: 10.1109/QRS57517.2022.00039.
[24] P. He, J. Zhu, Z. Zheng, and M. R. Lyu, "Drain: An online log parsing approach with fixed depth tree," in 2017 IEEE International Conference on Web Services (ICWS), Honolulu, HI, USA, 2017, pp. 33-40, doi: 10.1109/ICWS.2017.13.
[25] R. Sarkar, K. Goswami, M. Arcan, and J. P. McCrae, "Suggest me a movie for tonight: Leveraging knowledge graphs for conversational recommendation," in Proceedings of the 28th International Conference on Computational Linguistics, Dec. 2020, pp. 4179-4189.
[26] A. H. Brams, A. L. Jakobsen, T. E. Jendal, M. Lissandrini, P. Dolog, and K. Hose, "MindReader: recommendation over knowledge graph entities with explicit user ratings," in Proceedings of the 29th ACM International Conference on Information & Knowledge Management (CIKM '20), New York, NY, USA, Oct. 2020, pp. 2975-2982, doi: 10.1145/3340531.3412759.
[27] X. Li, P. Chen, L. Jing, Z. He, and G. Yu, "Swisslog: Robust and unified deep learning based log anomaly detection for diverse faults," in 2020 IEEE 31st International Symposium on Software Reliability Engineering (ISSRE), Coimbra, Portugal, 2020, pp. 92-103, doi: 10.1109/ISSRE5003.2020.00018.
[28] J. Liu, Y. Tang, J. Liu, K. Zhao, and W. Chen, "Lglog: Semi-supervised graph representation learning for anomaly detection based on system logs," in 2023 IEEE 23rd International Conference on Software Quality, Reliability, and Security (QRS), Chiang Mai, Thailand, 2023, pp. 36-47, doi: 10.1109/QRS60937.2023.00014.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/94522-
dc.description.abstract軟體系統正迅速滲透於我們日常生活中使用的許多服務,其中系統日誌對於 服務提供商用於監控系統運行與偵測潛在故障具有極高的價值。雖然過去已經有許多研究採用機器學習與深度學習技術來分析大量系統日誌以偵測系統異常,但鮮少有研究使用知識圖譜用於檢測日誌異常的任務中。在本研究中,我們提出了一種基於知識圖譜與循環神經網路的高效日誌異常檢測方法──KG-LAD。我們將從 日誌訊息中提取的日誌模板視為知識圖譜中的實體節點,並將透過兩大通用關係 將節點間相互連接,其連接方式並不須仰賴專家編譯規則或提取特定參數,具有泛用性高的特性。節點(日誌模板)與邊(關係)所衍生出的嵌入用於計算日誌序列的距離分數,並將其輸入至基於 LSTM 模型的分類器中,以識別系統運行是否異常。為了評估我們研究方法之成效,我們在三個大型資料集上進行廣泛的實驗,不僅證明知識圖譜用於異常檢測之價值及泛化能力,還展示了其方法的穩健性及準確性。不論是在精確度、召回率、及 F1 分數,各個評估指標上都優於其他最先進的日誌異常檢測方法。zh_TW
dc.description.abstractSoftware systems are rapidly permeating many services we use in our lives. The generated system logs are valuable for service providers to monitor service operation and to prevent potential malfunctions. While much research has adopted machine learning and deep learning approaches to analyze large volumes of logs, few studies have investigated knowledge graphs to detect anomalies. In this paper, we present KG-LAD, a novel method that leverages knowledge graphs and recurrent neural networks to detect system anomalies through log analysis. The designed knowledge graph treats log templates as nodes. Instead of relying on expert-compiled rules or domain-specific log parameters, two generic relations are designed to associate these nodes: structural connectivity and positions in log sequences. These relations form the edges between the nodes in the knowledge graph. The derived embeddings of nodes (log templates) and edges (relations) are used to measure the distance scores of a log sequence and are input to an LSTM-based classifier to determine whether the log template sequence indicates abnormal system operation. Extensive experiments conducted on three large datasets demonstrate not only the effect and the generalization of the knowledge graph, but also the robustness of KG-LAD and its superior performance over state-of-the-art log anomaly detection methods for precision, recall, and F1 score.en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-08-16T16:31:22Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2024-08-16T16:31:23Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents論文口試委員審定書 ....................................................................................................... i
謝辭 ....................................................................................................... ii
論文摘要 ....................................................................................................... iii
THESIS ABSTRACT ....................................................................................................... iv
Table of Contents ....................................................................................................... vi
List of Tables ....................................................................................................... viii
List of Figures ....................................................................................................... ix
Chapter 1 Introduction ....................................................................................................... 1
Chapter 2 Related Work ....................................................................................................... 4
2.1 Machine or Deep Learning Methods ....................................................................................................... 4
2.2 Graph Based Methods ....................................................................................................... 6
Chapter 3 Methodology ....................................................................................................... 9
3.1 Log Processing ....................................................................................................... 10
3.2 Knowledge Graph Construction and Embedding Generation ............................. 11
3.3 Log Anomaly Detection ....................................................................................................... 16
Chapter 4 Experiments ....................................................................................................... 19
4.1 Experimental Datasets and Settings ....................................................................................................... 19
4.2 Comparisons with other Log Anomaly Detection Methods ........................................................................................ 21
4.3 Evaluation of System Components ....................................................................................................... 23
Chapter 5 Conclusions ....................................................................................................... 28
References ....................................................................................................... 30
-
dc.language.isoen-
dc.subject異常檢測zh_TW
dc.subject系統日誌分析zh_TW
dc.subject知識圖譜zh_TW
dc.subjectKnowledge Graphen
dc.subjectLog Analysisen
dc.subjectAnomaly Detectionen
dc.titleKG-LAD: 利用知識圖譜增強之高效日誌異常檢測方法zh_TW
dc.titleKG-LAD: A Knowledge Graph-Augmented Approach for Effective Log Anomaly Detectionen
dc.typeThesis-
dc.date.schoolyear112-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee陳孟彰;張詠淳zh_TW
dc.contributor.oralexamcommitteeMeng Chang Chen;Yung Chun Changen
dc.subject.keyword系統日誌分析,異常檢測,知識圖譜,zh_TW
dc.subject.keywordLog Analysis,Anomaly Detection,Knowledge Graph,en
dc.relation.page34-
dc.identifier.doi10.6342/NTU202402222-
dc.rights.note同意授權(限校園內公開)-
dc.date.accepted2024-08-08-
dc.contributor.author-college管理學院-
dc.contributor.author-dept資訊管理學系-
顯示於系所單位:資訊管理學系

文件中的檔案:
檔案 大小格式 
ntu-112-2.pdf
授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務)
2.51 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved