請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/94513完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 周錫增 | zh_TW |
| dc.contributor.advisor | Hsi-Tseng Chou | en |
| dc.contributor.author | 李達緯 | zh_TW |
| dc.contributor.author | Da-Wei Li | en |
| dc.date.accessioned | 2024-08-16T16:28:36Z | - |
| dc.date.available | 2024-08-17 | - |
| dc.date.copyright | 2024-08-16 | - |
| dc.date.issued | 2024 | - |
| dc.date.submitted | 2024-07-16 | - |
| dc.identifier.citation | [1] C. A. Balanis. Advanced engineering electromagnetics. John Wiley & Sons, 2012.
[2] C. A. Balanis. Antenna theory: analysis and design. John wiley & sons, 2016. [3] M. Bosiljevac, A. Polemi, S. Maci, and Z. Sipus. Analytic approach to the analysis of ridge and groove gap waveguides-comparison of two methods. In Proceedings of the 5th European Conference on Antennas and Propagation (EUCAP), pages 1886–1889. IEEE, 2011. [4] H.-T. Chou and D. Torrungrueng. Development of 2-d generalized tri-focal rotman lens beamforming network to excite conformal phased arrays of antennas for general near/far-field multi-beam radiations. IEEE Access, 9:49176–49188, 2021. [5] H.-T. Chou and Z.-C. Tsai. Near-field focus radiation of multibeam phased array of antennas realized by using modified rotman lens beamformer. IEEE Transactions on Antennas and Propagation, 66(12):6618–6628, 2018. [6] R. E. Collin. Antennas and radiowave propagation. McGraw-Hill, 1985. [7] R. E. Collin. Foundations for microwave engineering. John Wiley & Sons, 2007. [8] R. S. Elliot. Antenna theory and design. John Wiley & Sons, 2006. [9] R. F. Harrington. Time harmonic electromagnetic fields. McGraw-Hill, 1961. [10] P.-S. Kildal. Definition of artificially soft and hard surfaces for electromagnetic waves. Electronics Letters, 24:168–170, 1988. [11] P.-S. Kildal. Three metamaterial-based gap waveguides between parallel metal plates for mm/submm waves. In 2009 3rd European Conference on Antennas and Propagation, pages 28–32. IEEE, 2009. [12] P.-S. Kildal, E. Alfonso, A. Valero-Nogueira, and E. Rajo-Iglesias. Local metamaterial-based waveguides in gaps between parallel metal plates. IEEE Antennas and wireless propagation letters, 8:84–87, 2008. [13] J. Liu, A. Vosoogh, A. U. Zaman, and J. Yang. Design and fabrication of a high-gain 60-ghz cavity-backed slot antenna array fed by inverted microstrip gap waveguide. IEEE Transactions on Antennas and Propagation, 65(4):2117–2122, 2017. [14] A. Polemi and S. Maci. Closed form expressions for the modal dispersion equations and for the characteristic impedance of a metamaterial-based gap waveguide. IET microwaves, antennas & propagation, 4(8):1073–1080, 2010. [15] D. Pozar. Radiation and scattering from a microstrip patch on a uniaxial substrate. IEEE Transactions on Antennas and Propagation, 35(6):613–621, 1987. [16] D. M. Pozar. Microwave engineering. John wiley & sons, 2011. [17] E. Rajo-Iglesias and P.-S. Kildal. Numerical studies of bandwidth of parallel-plate cut-off realised by a bed of nails, corrugations and mushroom-type electromagnetic bandgap for use in gap waveguides. IET microwaves, antennas & propagation, 5(3):282–289, 2011. [18] H. Raza, J. Yang, P.-S. Kildal, and E. Alfonso. Resemblance between gap waveguides and hollow waveguides. IET Microwaves, Antennas & Propagation,7(15):1221–1227, 2013. [19] S. A. Razavi, P.-S. Kildal, L. Xiang, H. Chen, and E. Alfonso. Design of 60ghz planar array antennas using pcb-based microstrip-ridge gap waveguide and siw. In The 8th European Conference on Antennas and Propagation (EuCAP 2014), pages 1825–1828, 2014. [20] W. Rotman and R. Turner. Wide-angle microwave lens for line source applications. IEEE Transactions on Antennas and Propagation, 11(6):623–632, 1963. [21] J. Ruze. Wide-angle metal-plate optics. Proceedings of the IRE, 38(1):53–59, 1950. [22] Y. Shi, W. Feng, X. Jiang, Q. Xue, and W. Che. Half-air-filled ball-grid-array-based substrate-integrated groove-gap waveguide and its transition to microstrip at w-band. IEEE Transactions on Microwave Theory and Techniques, 68(12):5145–5153, 2020. [23] F. C. Suárez, D. N. Méndez, and M. Baquero-Escudero. Rotman lens with ridge gap waveguide technology for millimeter wave applications. In 2013 7th European Conference on Antennas and Propagation (EuCAP), pages 4006–4009, 2013. [24] L. F. C. Suárez, D. V. N. Méndez, M. Baquero-Escudero, B. Bernardo-Clemente, and S. M. Giner. Transitions between gap waveguides for use in a phased array antenna fed by a rotman lens. In The 8th European Conference on Antennas and Propagation (EuCAP 2014), pages 774–777, 2014. [25] A. Vosoogh and P.-S. Kildal. Corporate-fed planar 60-ghz slot array made of three unconnected metal layers using amc pin surface for the gap waveguide. IEEE Antennas and Wireless Propagation Letters, 15:1935–1938, 2016. [26] A. U. Zaman and P.-S. Kildal. Wide-band slot antenna arrays with single-layer corporate-feed network in ridge gap waveguide technology. IEEE Transactions on antennas and propagation, 62(6):2992–3001, 2014. [27] 彭伯倫. 以 hfss 模擬檢驗電磁能隙結構防制印刷電路板的電磁干擾之分析方法與效果. Master’s thesis, 國立成功大學電機工程學系, 2023. Available at https://hdl.handle.net/11296/67wab5. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/94513 | - |
| dc.description.abstract | 本論文提出一套整合電子式與機械式波束掃描機制的架構,達到二維訊號覆蓋(coverage)。其中電子式掃描的波束成型網絡(beam forming network)是透過共形(conformal)配置的羅特曼透鏡(Rotman lens)實現;並透過共形曲折的間隙波導(gap waveguide)空氣介質層的特性,分離天線單元與波束成型網絡,當內側的波束成型網絡環向(circumferential)旋轉時,可維持天線陣列的靜止,同時達到二維覆蓋的機械式波束掃描。本原型設計經過數值電磁模擬與實作量測之驗證,證實此概念的有效性。
本論文的架構如下,第1章將回顧羅特曼透鏡與間隙波導的理論,並平面間隙波導的邊界條件在共形配置下的散射係數驗證;第2章則聚焦在共形槽狀陣列天線之設計、共形羅特曼透鏡多波束掃描網絡的設計,並其與曲面間隙波導之整合,亦進行數值電磁模擬驗證;第3章以3D積層製造(additive manufacturing)與水浴電鍍實現陣列天線,呈現實作驗證、場型量測結果與誤差分析,其中的誤差分析涵蓋了製作之形變造成非共形陣列排列,與空氣間隙偏差造成之相位偏離;第4章則提出結論。 | zh_TW |
| dc.description.abstract | The paper is going to propose a framework to integrate electronic and mechanical beam scanning mechanisms to achieve two-dimensional coverage. The electronic scanning beamforming network is implemented through a conformally configured Rotman lens. By the nature of air substrate in conformally bent gap waveguides, the antenna elements are separated from the beamforming network. When the inner beamforming network rotates circumferentially, the antenna array can remain stationary, meanwhile achieving two-dimensional mechanical beam scanning.
The thesis is organized as follows: Chapter 1 reviews the theory foundation of Rotman lenses and gap waveguides. Also, we verify the S parameters performance of gap waveguides in conformal configurations. Chapter 2 focuses on the design of conformal slot array antenna, the design of conformal Rotman lens beam scanning network, along with the integration of the previous with curved gap waveguides. In the meanwhile, numerical electromagnetic simulations are used to testify our design. Chapter 3 shows experimental verification implemented via 3D additive manufacturing and electroplating, field pattern measurement and error analyses. The error analyses cover main beam deviations from fabrication-induced deformed non-conformal array, and phase deviations caused by the thickness discrepancies of the airgap. Finally, chapter 4 shall conclude this paper. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-08-16T16:28:36Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2024-08-16T16:28:36Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 致謝 i
摘要 ii Abstract iii 目次 v 圖次 vii 表次 x 符號列表 xi 第一章 緒論 1 1.1 共形槽狀陣列天線之設計動機 1 1.2 羅特曼透鏡理論 4 1.3 間隙波導理論 10 1.3.1 模態分析 11 1.3.1.1 一維週期性皺摺結構 11 1.3.1.2 二維週期性針床結構 16 1.3.2 弗洛奎定理下的空間諧波展開 20 1.3.3 脊狀間隙波導之特徵阻抗分析 26 1.4 共形配置下之間隙波導設計 28 vdoi:10.6342/NTU202401742 1.5 槽孔矩形波導天線陣列原理 33 第二章 共形槽狀陣列天線之羅特曼透鏡多波束掃描網絡設計 36 2.1 矩形波導轉脊狀間隙波導之介面 38 2.2 羅特曼透鏡多波束掃描網絡之設計 41 2.3 常相位傳輸線之設計 51 2.4 由間隙波導耦合饋入天線陣列之機制 55 2.5 槽孔矩形波導之陣列天線設計 56 第三章 實作驗證與誤差分析 61 3.1 共形天線陣列實作 61 3.2 共形天線陣列量測 61 3.3 共形天線陣列之誤差分析 67 3.3.1 製作之形變造成非共形陣列排列之誤差分析 69 3.3.2 空氣間隙偏差造成相位偏離之誤差分析 69 第四章 結論 75 參考文獻 76 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 透鏡式波束成形電路 | zh_TW |
| dc.subject | 波導天線 | zh_TW |
| dc.subject | 波束掃描 | zh_TW |
| dc.subject | 共形相位陣列天線 | zh_TW |
| dc.subject | 羅特曼透鏡 | zh_TW |
| dc.subject | 間隙波導 | zh_TW |
| dc.subject | beam steering | en |
| dc.subject | lens-based beamforming network | en |
| dc.subject | gap waveguide | en |
| dc.subject | Rotman lens | en |
| dc.subject | conformal phased array | en |
| dc.subject | waveguide antenna | en |
| dc.title | 以間隙波導實現羅特曼透鏡多波束成形網絡之共形陣列天線設計 | zh_TW |
| dc.title | Design of Conformal Antenna Array by Gap Waveguide-Based Rotman Lens Beamforming Network | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 112-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 廖文照;張家宏;盧信嘉 | zh_TW |
| dc.contributor.oralexamcommittee | Wen-Jiao Liao;Chia-Hung Chang;Hsin-Chia Lu | en |
| dc.subject.keyword | 透鏡式波束成形電路,波導天線,波束掃描,共形相位陣列天線,羅特曼透鏡,間隙波導, | zh_TW |
| dc.subject.keyword | lens-based beamforming network,waveguide antenna,beam steering,conformal phased array,Rotman lens,gap waveguide, | en |
| dc.relation.page | 79 | - |
| dc.identifier.doi | 10.6342/NTU202401742 | - |
| dc.rights.note | 同意授權(全球公開) | - |
| dc.date.accepted | 2024-07-17 | - |
| dc.contributor.author-college | 電機資訊學院 | - |
| dc.contributor.author-dept | 電信工程學研究所 | - |
| 顯示於系所單位: | 電信工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-112-2.pdf | 8.96 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
