請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/94512
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 郭光宇 | zh_TW |
dc.contributor.advisor | Guang-Yu Guo | en |
dc.contributor.author | 石雲辰 | zh_TW |
dc.contributor.author | Yun-Chen Shih | en |
dc.date.accessioned | 2024-08-16T16:28:18Z | - |
dc.date.available | 2024-08-17 | - |
dc.date.copyright | 2024-08-16 | - |
dc.date.issued | 2024 | - |
dc.date.submitted | 2024-08-05 | - |
dc.identifier.citation | Bibliography
[1] Z. Y. Zhu, Y. C. Cheng, and U. Schwingenschlögl, Giant spin-orbit-induced spin splitting in two-dimensional transition-metal dichalcogenide semiconductors, Phys. Rev. B 84, 153402 (2011). [2] M. Chhowalla, H. S. Shin, G. Eda, L.-J. Li, K. P. Loh, and H. Zhang, The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets, Nat. Chem. 5, 263 (2013). [3] W. Zhao, Z. Ghorannevis, L. Chu, M. Toh, C. Kloc, P.-H. Tan, and G. Eda, Evolution of Electronic Structure in Atomically Thin Sheets of WS2 and WSe2, ACS Nano 7, 791 (2013). [4] G. Sallen, L. Bouet, X. Marie, G. Wang, C. R. Zhu, W. P. Han, Y. Lu, P. H. Tan, T. Amand, B. L. Liu, and B. Urbaszek, Robust optical emission polarization in MoS2 monolayers through selective valley excitation, Phys. Rev. B 86, 081301(R) (2012). [5] D. Xiao, G.-B. Liu, W. Feng, X. Xu, and W. Yao, Coupled Spin and Valley Physics in Monolayers of MoS2 and Other Group-VI Dichalcogenides, Phys. Rev. Lett. 108, 196802 (2012). [6] T. Cao, G. Wang, W. Han, H. Ye, C. Zhu, J. Shi, Q. Niu, P. Tan, E. Wang, B. Liu, and J. Feng, Valley-selective circular dichroism of monolayer molybdenum disulphide, Nat. Commun. 3, 887 (2012). [7] H. Zeng, J. Dai, W. Yao, D. Xiao, and X. Cui, Valley polarization in MoS2 monolayers by optical pumping, Nat. Nanotechnol. 7, 490 (2012). [8] K. F. Mak, K. He, J. Shan, and T. F. Heinz, Control of valley polarization in monolayer MoS2 by optical helicity, Nat. Nanotechnol. 7, 494 (2012). [9] L. V. Keldysh, Coulomb interaction in thin semiconductor and semimetal films, JETP Lett. 29, 658 (1979). [10] P. Cudazzo, I. V. Tokatly, and A. Rubio, Dielectric screening in two-dimensional insulators: Implications for excitonic and impurity states in graphane, Phys. Rev. B 84, 085406 (2011). [11] F. Hüser, T. Olsen, and K. S. Thygesen, How dielectric screening in two-dimensional crystals affects the convergence of excited-state calculations: Monolayer MoS2, Phys. Rev. B 88, 245309 (2013). [12] S. Latini, T. Olsen, and K. S. Thygesen, Excitons in van der Waals heterostructures: The important role of dielectric screening, Phys. Rev. B 92, 245123 (2015). [13] X. L. Yang, S. H. Guo, F. T. Chan, K. W. Wong, and W. Y. Ching, Analytic solution of a two-dimensional hydrogen atom. I. Nonrelativistic theory, Phys. Rev. A 43, 1186 (1991). [14] A. Ramasubramaniam, Large excitonic effects in monolayers of molybdenum and tungsten dichalcogenides, Phys. Rev. B 86, 115409 (2012). [15] D. Y. Qiu, F. H. da Jornada, and S. G. Louie, Optical Spectrum of MoS2: Many-Body Effects and Diversity of Exciton States, Phys. Rev. Lett. 111, 216805 (2013). [16] A. Chernikov, T. C. Berkelbach, H. M. Hill, A. Rigosi, Y. Li, B. Aslan, D. R. Reichman, M. S. Hybertsen, and T. F. Heinz, Exciton Binding Energy and Nonhydrogenic Rydberg Series in Monolayer WS2, Phys. Rev. Lett. 113, 076802 (2014). [17] K. He, N. Kumar, L. Zhao, Z. Wang, K. F. Mak, H. Zhao, and J. Shan, Tightly Bound Excitons in Monolayer WSe2, Phys. Rev. Lett. 113, 026803 (2014). [18] K. F. Mak, C. Lee, J. Hone, J. Shan, and T. F. Heinz, Atomically Thin MoS2: A New Direct-Gap Semiconductor, Phys. Rev. Lett. 105, 136805 (2010). [19] Y. Li, A. Chernikov, X. Zhang, A. Rigosi, H. M. Hill, A. M. Van Der Zande, D. A. Chenet, E. M. Shih, J. Hone, and T. F. Heinz, Measurement of the optical dielectric function of monolayer transition-metal dichalcogenides: MoS2, MoSe2, WS2, and WSe2, Phys. Rev. B 90, 205422 (2014). [20] Q. H. Wang, K. Kalantar-Zadeh, A. Kis, J. N. Coleman, and M. S. Strano, Electronics and optoelectronics of two-dimensional transition metal dichalcogenides, Nat. Nanotechnol. 7, 699 (2012). [21] K. F. Mak and J. Shan, Photonics and optoelectronics of 2D semiconductor transition metal dichalcogenides, Nat. Nanotechnol. 10, 216 (2016). [22] X.-X. Zhang, Y. You, S. Y. F. Zhao, and T. F. Heinz, Experimental Evidence for Dark Excitons in Monolayer WSe2, Phys. Rev. Lett. 115, 257403 (2015). [23] M. Selig, G. Berghäuser, M. Richter, R. Bratschitsch, A. Knorr, and E. Malic, Dark and bright exciton formation, thermalization, and photoluminescence in monolayer transition metal dichalcogenides, 2D Mater. 5, 035017 (2018). [24] F. Wu, F. Qu, and A. H. MacDonald, Exciton band structure of monolayer MoS2, Phys. Rev. B 91, 075310 (2015). [25] D. Y. Qiu, T. Cao, and S. G. Louie, Valley Quantum Phases, and Lightlike Exciton Dispersion in Monolayer Transition Metal Dichalcogenides: Theory and First-Principles Calculations, Phys. Rev. Lett. 115, 176801 (2015). [26] P. Cudazzo, L. Sponza, C. Giorgetti, L. Reining, F. Sottile, and M. Gatti, Exciton Band Structure in Two-Dimensional Materials, Phys. Rev. Lett. 116, 066803 (2016). [27] T. Deilmann and K. S. Thygesen, Finite-momentum exciton landscape in mono- and bilayer transition metal dichalcogenides, 2D Mater. 6, 035003 (2019). [28] M. O. Sauer, C. E. M. Nielsen, L. Merring-Mikkelsen, and T. G. Pedersen, Optical emission from light-like and particle-like excitons in monolayer transition metal dichalcogenides, Phys. Rev. B 103, 205404 (2021). [29] J. Hong, R. Senga, T. Pichler, and K. Suenaga, Probing Exciton Dispersions of Freestanding Monolayer WSe2 by Momentum-Resolved Electron Energy-Loss Spectroscopy, Phys. Rev. Lett. 124, 087401 (2020). [30] D. Y. Qiu, G. Cohen, D. Novichkova, and S. Refaely-Abramson, Signatures of Dimensionality and Symmetry in Exciton Band Structure: Consequences for Exciton Dynamics and Transport, Nano Lett. 21, 7644 (2021). [31] K. Andersen and K. S. Thygesen, Plasmons in metallic monolayer and bilayer transition metal dichalcogenides, Phys. Rev. B 88, 155128 (2013). [32] S. C. Liou, C.-S. Shie, C. H. Chen, R. Breitwieser, W. W. Pai, G.-Y. Guo, and M.-W. Chu, π-plasmon dispersion in free-standing graphene by momentum-resolved electron energy-loss spectroscopy, Phys. Rev. B 91, 045418 (2015). [33] H. C. Nerl, K. T. Winther, F. S. Hage, K. S. Thygesen, L. Houben, C. Backes1, J. N. Coleman1, Q. M. Ramasse, and V. Nicolosi, Probing the local nature of excitons and plasmons in few-layer MoS2, npj 2D Mater. Appl. 1, 2 (2017). [34] J. Hong, M. K. Svendsen, M. Koshino, T. Pichler, H. Xu, K. Suenaga, and K. S. Thygesen, Momentum-Dependent Oscillator Strength Crossover of Excitons and Plasmons in Two-Dimensional PtSe2, ACS Nano 16, 12328 (2022). [35] J. Hong, M. Koshino, R. Senga, T. Pichler, H. Xu, and K. Suenaga, Deciphering the Intense Postgap Absorptions of Monolayer Transition Metal Dichalcogenides, ACS Nano 15, 7783 (2021). [36] K. Sturm, Electron energy loss in simple metals and semiconductors, Adv. Phys. 31, 1 (1982). [37] J. Yan, J. J. Mortensen, K. W. Jacobsen, and K. S. Thygesen, Linear density response function in the projector augmented wave method: Applications to solids, surfaces, and interfaces, Phys. Rev. B 83, 245122 (2011). [38] C. Habenicht, M. Knupfer, and B. Büchner, Investigation of the dispersion and the effective masses of excitons in bulk 2H-MoS2 using transition electron energy-loss spectroscopy, Phys. Rev. B 91, 245203 (2015). [39] F. J. García de Abajo, Optical excitations in electron microscopy, Rev. Mod. Phys. 82, 209 (2010). [40] K. Sturm, Dynamic Structure Factor: An Introduction, Z. Naturforsch. 48a, 233 (1993). [41] V. U. Nazarov, Electronic excitations in quasi-2D crystals: what theoretical quantities are relevant to experiment?, New Journal of Physics 17, 073018 (2015). [42] P. Hohenberg and W. Kohn, Inhomogeneous Electron Gas, Phys. Rev. 136, B864 (1964). [43] W. Kohn and L. J. Sham, Self-Consistent Equations Including Exchange and Correlation Effects, Phys. Rev. 140, A1133 (1965). [44] D. C. Langreth and M. J. Mehl, Beyond the local-density approximation in calculations of ground-state electronic properties, Phys. Rev. B 28, 1809 (1983). [45] J. P. Perdew, K. Burke, and M. Ernzerhof, Generalized Gradient Approximation Made Simple, Phys. Rev. Lett. 77, 3865 (1996). [46] J. J. Mortensen, L. B. Hansen, and K. W. Jacobsen, Real-space grid implementation of the projector augmented wave method, Phys. Rev. B 71, 035109 (2005). [47] J. J. Mortensen, A. H. Larsen, M. Kuisma, A. V. Ivanov, A. Taghizadeh, A. Peterson, A. Haldar, A. O. Dohn, C. Schäfer, E. Orn Jónsson, E. D. Hermes, F. A. Nilsson, G. Kastlunger, G. Levi, H. Jónsson, H. Häkkinen, J. Fojt, J. Kangsabanik, J. Sødequist, J. Lehtomäki et al., GPAW: An open Python package for electronic structure calculations, J. Chem. Phys. 160, 092503 (2024). [48] J. Enkovaara, C. Rostgaard, J. J. Mortensen, J. Chen, M. Du lak, L. Ferrighi, J. Gavnholt, C. Glinsvad, V. Haikola, H. A. Hansen, H. H. Kristoffersen, M. Kuisma, A. H. Larsen, L. Lehtovaara, M. Ljungberg, O. Lopez-Acevedo, P. G. Moses, J. Ojanen, T. Olsen, V. Petzold et al., Electronic structure calculations with GPAW: a real-space implementation of the projector augmented-wave method, J. Phys. Condens. Matter 22, 253202 (2010). [49] A. H. Larsen, J. J. Mortensen, J. Blomqvist, I. E. Castelli, R. Christensen, M. Du lak, J. Friis, M. N. Groves, B. Hammer, C. Hargus, E. D. Hermes, P. C. Jennings, P. B. Jensen, J. Kermode, J. R. Kitchin, E. L. Kolsbjerg, J. Kubal, K. Kaasbjerg, S. Lysgaard, J. B. Maronsson et al., The atomic simulation environment—a Python library for working with atoms, J. Phys. Condens. Matter 29, 273002 (2017). [50] F. Aryasetiawan and O. Gunnarsson, The GW method, Rep. Prog. Phys. 61, 237 (1998). [51] L. Hedin, New Method for Calculating the One-Particle Green's Function with Application to the Electron-Gas Problem, Phys. Rev. 139, A796 (1965). [52] F. Hüser, T. Olsen, and K. S. Thygesen, Quasiparticle GW calculations for solids, molecules, and two-dimensional materials, Phys. Rev. B 87, 235132 (2013). [53] F. A. Rasmussen, P. S. Schmidt, K. T. Winther, and K. S. Thygesen, Efficient many-body calculations for two-dimensional materials using exact limits for the screened potential: Band gaps of MoS2, h-BN, and phosphorene, Phys. Rev. B 94, 155406 (2016). [54] M. Rohlfing and S. G. Louie, Electron-hole excitations and optical spectra from first principles, Phys. Rev. B 62, 4927 (2000). [55] J. Yan, K. W. Jacobsen, and K. S. Thygesen, Optical properties of bulk semiconductors and graphene/boron nitride: The Bethe-Salpeter equation with derivative discontinuity-corrected density functional energies, Phys. Rev. B 86, 045208 (2012). [56] G. Onida, L. Reining, and A. Rubio, Electronic excitations: density-functional versus many-body Green's-function approaches, Rev. Mod. Phys. 74, 601 (2002). [57] M. M. Denisov and V. P. Makarov, Longitudinal and Transverse Excitons in Semiconductors, Phys. Status Solidi B 56, 9 (1973). [58] C. A. Rozzi, D. Varsano, A. Marini, E. K. U. Gross, and A. Rubio, Exact Coulomb cutoff technique for supercell calculations, Phys. Rev. B 73, 205119 (2006). [59] S. Ismail-Beigi, Truncation of periodic image interactions for confined systems, Phys. Rev. B 73, 233103 (2006). [60] J. Fink, Recent Developments in Energy-Loss Spectroscopy, Adv. Electron. Electron Phys. 75, 121 (1989). [61] P. Johari and V. B. Shenoy, Tunable Dielectric Properties of Transition Metal Dichalcogenides, ACS Nano 5, 5903 (2011). [62] X. W. Zhao, Z. Yang, J. T. Guo, G. C. Hu, W. W. Yue, X. B. Yuan, and J. F. Ren, Tuning electronic and optical properties of monolayer PdSe2 by introducing defects: first-principles calculations, Sci. Rep. 10, 4028 (2020). [63] G. Yang, J. Fan, and S.-P. Gao, Momentum and thickness dependent excitonic and plasmonic properties of 2D h-BN and MoS2 restored from supercell calculations, Nanoscale Adv. 5, 6990 (2023). [64] K. S. Thygesen, Calculating excitons, plasmons, and quasiparticles in 2D materials and van der Waals heterostructures, 2D Mater. 4, 022004 (2017). [65] Z. Yuan and S. Gao, Linear response approach to collective electronic excitations of solids and surfaces, Comput. Phys. Commun. 180, 466 (2009). [66] D. Voß, P. Krüger, A. Mazur, and J. Pollmann, Atomic and electronic structure of WSe2 from ab initio theory: Bulk crystal and thin film systems, Phys. Rev. B 60, 14311 (1999). [67] W.J. Schutte, J.L. De Boer, and F. Jellinek, Crystal structures of tungsten disulfide and diselenide, J. Solid State Chem. 70, 207 (1987). [68] T. Böker, R. Severin, A. Müller, C. Janowitz, R. Manzke, D. Voß, P. Krüger, A. Mazur, and J. Pollmann, Band structure of MoS2, MoSe2, and α-MoTe2: Angle-resolved photoelectron spectroscopy and ab initio calculations, Phys. Rev. B 64, 235305 (2001). [69] M. Drüppel, T. Deilmann, J. Noky, P. Marauhn, P. Krüger, and M. Rohlfing, Electronic excitations in transition metal dichalcogenide monolayers from an LDA+GdW approach, Phys. Rev. B 98, 155433 (2018). [70] W.-T. Hsu, L.-S. Lu, D. Wang, J.-K. Huang, M.-Y. Li, T.-R. Chang, Y.-C. Chou, Z.-Y. Juang, H.-T. Jeng, L.-J. Li, and W.-H. Chang, Evidence of indirect gap in monolayer WSe2, Nat. Commun. 8, 929 (2017). [71] R. Gillen, Interlayer Excitonic Spectra of Vertically Stacked MoSe2/WSe2 Heterobilayers, Phys. Status Solidi B 258, 2000614 (2021). [72] C. Zhang, Y. Chen, A. Johnson, M.-Y. Li, L.-J. Li, P. C. Mende, R. M. Feenstra, and C.-K. Shih, Probing Critical Point Energies of Transition Metal Dichalcogenides: Surprising Indirect Gap of Single Layer WSe2, Nano Lett. 15, 6494 (2015). [73] Y. Zhang, M. M. Ugeda, C. Jin, S.-F. Shi, A. J. Bradley, A. Martín-Recio, H. Ryu, J. Kim, S. Tang, Y. Kim, B. Zhou, C. Hwang, Y. Chen, F. Wang, M. F. Crommie, Z. Hussain, Z.-X. Shen, and S.-K. Mo, Electronic Structure, Surface Doping, and Optical Response in Epitaxial WSe2 Thin Films, Nano Lett. 16, 2485 (2016). [74] D. Le, A. Barinov, E. Preciado, M. Isarraraz, I. Tanabe, T. Komesu, C. Troha, L. Bartels, T. S. Rahman, and P. A. Dowben, Spin–orbit coupling in the band structure of monolayer WSe2, J. Phys. Condens. Matter 27, 182201 (2015). [75] P. Kapuściński, A. Delhomme, D. Vaclavkova, A. O. Slobodeniuk, M. Grzeszczyk, M. Bartos, K. Watanabe, T. Taniguchi, C. Faugeras, and M. Potemski, Rydberg series of dark excitons and the conduction band spin-orbit splitting in monolayer WSe2, Commun. Phys. 4, 186 (2021). [76] L. Ren, C. Robert, H. Dery, M. He, P. Li, D. V. Tuan, P. Renucci, D. Lagarde, T. Taniguchi, K. Watanabe, X. Xu, and X. Marie, Measurement of the conduction band spin-orbit splitting in WSe2 and WS2 monolayers, Phys. Rev. B 107, 245407 (2023). [77] A. R. Klots, A. K. M. Newaz, Bin Wang, D. Prasai, H. Krzyzanowska, Junhao Lin, D. Caudel, N. J. Ghimire, J. Yan, B. L. Ivanov, K. A. Velizhanin, A. Burger, D. G. Mandrus, N. H. Tolk, S. T. Pantelides, and K. I. Bolotin, Probing excitonic states in suspended two-dimensional semiconductors by photocurrent spectroscopy, Sci. Rep. 4, 6608 (2014). [78] W. Lee, Y. Lin, L.-S. Lu, W.-C. Chueh, M. Liu, X. Li, W.-H. Chang, R. A. Kaindl, and C.-K. Shih, Time-resolved ARPES Determination of a Quasi-Particle Band Gap and Hot Electron Dynamics in Monolayer MoS2, Nano Lett. 21, 7363 (2021). [79] W. Jin, P.-C. Yeh, N. Zaki, D. Zhang, J. T. Liou, J. T. Sadowski, A. Barinov, M. Yablonskikh, J. I. Dadap, P. Sutter, I. P. Herman, and R. M. Osgood, Jr., Substrate interactions with suspended and supported monolayer MoS2: Angle-resolved photoemission spectroscopy, Phys. Rev. B 91, 121409(R) (2015). [80] B. Aslan, M. Deng, and T. F. Heinz, Strain tuning of excitons in monolayer WSe2, Phys. Rev. B 98, 115308 (2018). [81] K. F. Mak and K. He and C. Lee and G. H. Lee and J. Hone and T. F. Heinz, and J. Shan, Tightly bound trions in monolayer MoS2, Nat. Mater. 12, 207 (2013). [82] H. M. Hill, A. F. Rigosi, C. Roquelet, A. Chernikov, T. C. Berkelbach, D. R. Reichman, M. S. Hybertsen, L. E. Brus, and T. F. Heinz, Observation of Excitonic Rydberg States in Monolayer MoS2 and WS2 by Photoluminescence Excitation Spectroscopy, Nano Lett. 15, 2992 (2015). [83] M. N. Gjerding, A. Taghizadeh, A. Rasmussen, S. Ali, F. Bertoldo, T. Deilmann, U. P. Holguin, N. R. Knøsgaard, M. Kruse, A. H. Larsen, S. Manti, T. G. Pedersen, T. Skovhus, M. K. Svendsen, J. J. Mortensen, T. Olsen, and K. S. Thygesen, Recent progress of the Computational 2D Materials Database (C2DB), 2D Mater. 8, 044002 (2021). [84] Y. Li and T. F. Heinz, Two-dimensional models for the optical response of thin films, 2D Mater. 5, 025021 (2018). [85] H.-Y. Chen, D. Sangalli, and M. Bernardi, First-principles ultrafast exciton dynamics and time-domain spectroscopies: Dark-exciton mediated valley depolarization in monolayer WSe2, Phys. Rev. Res. 4, 043203 (2022). [86] N. W. Ashcroft and N. D. Mermin, Solid State Physics (Harcourt College Publishers, 1976). | - |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/94512 | - |
dc.description.abstract | 具有非零質心動量的激子 (Exciton) 的可以通過電子能量損失譜(Electron Energy-Loss Spectroscopy, EELS)實驗激發。近期對二硒化鎢單層的電子能量損失譜實驗表明,激子能帶 (Exciton band structure) 可以透過追蹤電子能量損失譜電子能量損失譜中的峰值色散關係 (Dispersion relation) 來量測。然而,如果不能直接與激子能帶比較,就無法徹底理解電子能量損失譜實驗中的激子激發機制。在這篇碩士論文中,我們首先利用第一原理密度泛函理論結合貝特–薩爾皮特方程計算來探索二硒化鎢和二硫化鉬單層中的激子能帶。由於電子-電洞交換作用,能量最低的明激子 (Bright exciton) 能帶在非零激子質心動量時匹裂,形成較低的拋物線激子能帶以及較高的非拋物線激子能帶。我們發現由於電子-電洞直接作用,拋物線能帶的激子的有效質量大幅增加,而二硒化鎢單層中的激子有效速度比二硫化鉬單層大,這表明二硒化鎢單層中有較強的電子-電洞交換作用且可能源於較強的自旋-軌道耦合作用。有趣的是,我們發現在較小的激子動量範圍內,二硒化鎢單層中兩個能量最低的暗激子的能量有 4 meV 的分裂,且在二硫化鉬單層中它們是簡併的。接著,我們仔細檢查了現有準二維系統的電子能量損失譜公式之間的差異和關聯,並確立了適當的電子能量損失譜的公式。使用這個公式,我們透過密度泛函理論結合貝特–薩爾皮特方程方法計算了二硒化鎢和二硫化鉬單層的電子能量損失譜,並發現與現有的實驗能譜非常吻合。我們也證明適當的電子能量損失譜公式能得到與實驗能譜有更好的吻合度的能譜。值得注意的是,在我們計算的電子能量損失譜中的最低能量的峰值色散是各向同性的,且與明激子的非拋物線激子能帶一致。此外,在實驗量測和我們的理論計算中,電子能量損失譜中的能量第二低的峰值都顯示出明顯的非拋物線行為。通過進一步的分析,我們闡明了電子能量損失譜實驗中的激子激發機制。在使用垂直入射高速電子的電子能量損失譜實驗中,徑向激子 (Longitudinal exciton,構成 A 與 B 明激子的非拋物線能帶) 會被選擇性地激發。相反地,軸向激子(Transverse exciton,構成 A 與 B 明激子的拋物線能帶)對能譜幾乎沒有貢獻。這解釋了我們理論計算中觀察到的非拋物線色散行為。最後,我們提出了可以選擇性激發橫向激子的電子能量損失譜實驗設置。這將會啟發電子能量損失譜實驗進一步地探索其他激子能帶,如 A 與 B 明激子的拋物線能帶,從而對準二維材料中的激子動力學有更深刻的理解。 | zh_TW |
dc.description.abstract | Exciton with finite center-of-mass momentum Q is experimentally accessible by electron energy-loss spectroscopy (EELS) techniques. Recent EELS experiment on the WSe2 monolayer suggests that the EELS techniques can measure the exciton band structure by tracking the peak dispersion in the electron-energy-loss (EEL) spectra. However, the exciton excitation mechanism in EELS cannot be fully understood without knowing the underlying exciton band structure. In this master's thesis, we first utilize ab initio density-functional theory plus Bethe-Salpeter equation (DFT+BSE) approach to explore the exciton band structure in the WSe2 and MoS2 monolayers. Due to the electron-hole exchange interaction, the lowest bright (A) exciton bands split at finite Q, with the lower branch exhibiting a parabolic behavior and the upper branch showing a distinct non-parabolic characteristics. We find the exciton effective masses for the lower band are greatly enhanced by the electron-hole direct interaction, and the exciton effective velocity in the WSe2 monolayer is larger than the MoS2 monolayer, which indicates the stronger electron-hole exchange interaction in the WSe2 monolayer and may result from the stronger spin-orbit coupling (SOC) interaction. Interestingly, we find that in the small Q regime, the excitation energies of the two lowest dark excitons in the WSe2 monolayer exhibit a 4 meV splitting, a feature absent in the MoS2 monolayer. Next, we carefully examine the discrepancies and connections among the existing EEL spectrum formulas for quasi-two-dimensional (2D) systems, and establish a proper definition of the EEL spectrum. Using this proper EEL spectrum formula for quasi-2D materials, we calculate the EEL spectra of WSe2 and MoS2 monolayers within the DFT+BSE framework at non-vanishing Q, finding good agreement with experimental spectra. We demonstrate that the proper EEL spectrum formula yields better agreement with experiment. Notably, the lowest-energy EELS peaks dispersion is isotropic and coincides with the non-parabolic upper band of the A exciton. Additionally, we observe that the second-lowest-energy B peaks in the EEL spectra exhibit a distinctly non-parabolic behavior in both experimental data and our theoretical calculations. Through comprehensive analysis, we clarify the underlying exciton excitation mechanism in EELS. In the previous experimental setup with normally incident high-velocity electrons, EELS will selectively probe the longitudinal exciton, comprising the upper band of the A and B excitons. In contrast, the transverse exciton, corresponding to the lower band of the A and B excitons, contributes negligibly. This validates the non-parabolic A and B EELS peaks dispersion observed in our theoretical EELS peaks. Finally, we propose an experimental setup designed to selectively probe the transverse exciton, which will inspire further EELS experiments to explore other branches of the exciton band structure, such as the parabolic lower band of the A and B excitons, leading to a deeper understanding of exciton dynamics in quasi-2D materials. | en |
dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-08-16T16:28:17Z No. of bitstreams: 0 | en |
dc.description.provenance | Made available in DSpace on 2024-08-16T16:28:18Z (GMT). No. of bitstreams: 0 | en |
dc.description.tableofcontents | Acknowledgements iii
摘要 v Abstract vii Contents ix List of Figures xi List of Tables xix Chapter 1 Introduction 1 Chapter 2 Theoretical background 7 2.1 Density functional theory 7 2.2 G0W0 quasi-particle calculations 10 2.3 Bethe-Salpeter equation 12 2.4 Coulomb truncation and optical absorbance 15 2.5 Electron energy-loss spectrum 17 2.5.1 Different EEL spectrum formulas 17 2.5.2 Justification for the EEL spectrum formula used in this work 21 Chapter 3 Results and discussion 25 3.1 Crystal structure of WSe2 and MoS2 monolayers 25 3.2 Electronic properties of WSe2 and MoS2 monolayers 26 3.3 Optical properties of WSe2 and MoS2 monolayers 30 3.4 Exciton band structure 36 3.4.1 Exciton states at Q = 0 37 3.4.2 Exciton states at finite Q 40 3.5 Electron energy-loss spectrum 46 3.5.1 Momentum-dependent EEL spectrum 46 3.5.2 Selective excitation of excitons via EELS 52 Chapter 4 Conclusion 59 Bibliography 63 | - |
dc.language.iso | en | - |
dc.title | 以第一原理多體理論研究二維二硫化鉬與二硒化鎢的激子能帶及電子能量損失能譜 | zh_TW |
dc.title | Exciton band structures and electron energy-loss spectrum of MoS2 and WSe2 monolayers from ab initio many-body calculations | en |
dc.type | Thesis | - |
dc.date.schoolyear | 112-2 | - |
dc.description.degree | 碩士 | - |
dc.contributor.oralexamcommittee | 薛宏中;詹楊皓;蔡政達;溫昱傑 | zh_TW |
dc.contributor.oralexamcommittee | Hung-Chung Hsueh;Yang-Hao Chan;Jeng-Da Chai;Yu-Chieh Wen | en |
dc.subject.keyword | 第一原理計算,貝特–薩爾皮特方程,激子能帶,二維材料,過渡金屬二硫族化物,電子能量損失能譜, | zh_TW |
dc.subject.keyword | First-principles calculation,Bethe-Salpeter equation,Exciton band structure,Two-dimensional material,Transition metal dichalcogenides,Electron energy-loss spectrum, | en |
dc.relation.page | 72 | - |
dc.identifier.doi | 10.6342/NTU202402385 | - |
dc.rights.note | 同意授權(全球公開) | - |
dc.date.accepted | 2024-08-08 | - |
dc.contributor.author-college | 理學院 | - |
dc.contributor.author-dept | 物理學系 | - |
顯示於系所單位: | 物理學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-112-2.pdf | 11.21 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。