Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 獸醫專業學院
  4. 獸醫學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/94506
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor廖泰慶zh_TW
dc.contributor.advisorAlbert Taiching Liaoen
dc.contributor.author劉如敏zh_TW
dc.contributor.authorRu-Min Liuen
dc.date.accessioned2024-08-16T16:26:16Z-
dc.date.available2024-09-18-
dc.date.copyright2024-08-16-
dc.date.issued2024-
dc.date.submitted2024-08-13-
dc.identifier.citation1. Burg, J.L., et al., Direct and sensitive detection of a pathogenic protozoan, Toxoplasma gondii, by polymerase chain reaction. Journal of clinical microbiology, 1989. 27(8): p. 1787-1792.
2. Wyrosdick, H.M. and J.J. Schaefer, Toxoplasma gondii: history and diagnostic test development. Animal health research reviews, 2015. 16(2): p. 150-162.
3. Black, M.W. and J.C. Boothroyd, Lytic cycle of Toxoplasma gondii. Microbiology and molecular biology reviews, 2000. 64(3): p. 607-623.
4. Wolf, A., D. Cowen, and B. Paige, Human toxoplasmosis: occurrence in infants as an encephalomyelitis verification by transmission to animals. Science, 1939. 89(2306): p. 226-227.
5. Wolf, A., D. Cowen, and B.H. Paige, Toxoplasmic encephalomyelitis: III. A new case of granulomatous encephalomyelitis due to a protozoon. The American journal of pathology, 1939. 15(6): p. 657.
6. Desmonts, G. and J.S. Remington, Direct agglutination test for diagnosis of Toxoplasma infection: method for increasing sensitivity and specificity. Journal of clinical microbiology, 1980. 11(6): p. 562-568.
7. Sabin, A.B., Toxoplasmic encephalitis in children. Journal of the American Medical Association, 1941. 116(9): p. 801-807.
8. Sabin, A.B. and H.A. Feldman, Dyes as microchemical indicators of a new immunity phenomenon affecting a protozoon parasite (Toxoplasma). Science, 1948. 108(2815): p. 660-663.
9. Remington, J.S., M.J. Miller, and I. Brownlee, IgM antibodies in acute toxoplasmosis. II. Prevalence and significance in acquired cases. The Journal of laboratory and clinical medicine, 1968. 71(5): p. 855-866.
10. Fulton, J., Studies on agglutination of Toxoplasma gondii. Transactions of the Royal Society of Tropical Medicine and Hygiene, 1965. 59(6): p. 694-704.
11. Dubey, J. and G. Desmonts, Serological responses of equids fed Toxoplasma gondii oocysts. Equine veterinary journal, 1987. 19(4): p. 337-339.
12. Dubey, J., Strategies to reduce transmission of Toxoplasma gondii to animals and humans. Veterinary parasitology, 1996. 64(1-2): p. 65-70.
13. Gormley, P., et al., Retinochoroiditis is induced by oral administration of Toxoplasma gondii cysts in the hamster model. Experimental eye research, 1999. 68(6): p. 657-661.
14. Frenkel, J. and J. Dubey, Toxoplasmosis and its prevention in cats and man. Journal of Infectious Diseases, 1972. 126(6): p. 664-673.
15. Lücht, M., et al., Toxoplasma gondii in small exotic felids from zoos in Europe and the Middle East: serological prevalence and risk factors. Parasites & vectors, 2019. 12: p. 1-20.
16. Dubey, J., D. Lindsay, and C. Speer, Structures of Toxoplasma gondii tachyzoites, bradyzoites, and sporozoites and biology and development of tissue cysts. Clinical microbiology reviews, 1998. 11(2): p. 267-299.
17. Evering, T. and L. Weiss, The immunology of parasite infections in immunocompromised hosts. Parasite immunology, 2006. 28(11): p. 549-565.
18. Dubey, J., History of the discovery of the life cycle of Toxoplasma gondii. International journal for parasitology, 2009. 39(8): p. 877-882.
19. Hunter, C.A. and L.D. Sibley, Modulation of innate immunity by Toxoplasma gondii virulence effectors. Nature Reviews Microbiology, 2012. 10(11): p. 766-778.
20. Sullivan, A.M., et al., Evidence for finely-regulated asynchronous growth of Toxoplasma gondii cysts based on data-driven model selection. PLoS Computational Biology, 2013. 9(11): p. e1003283.
21. Lüder, C.G. and T. Rahman, Impact of the host on Toxoplasma stage differentiation. Microbial Cell, 2017. 4(7): p. 203.
22. Frenkel, J., Toxoplasma in and around us. Bioscience, 1973. 23(6): p. 343-352.
23. Robert-Gangneux, F. and M.-L. Dardé, Epidemiology of and diagnostic strategies for toxoplasmosis. Clinical microbiology reviews, 2012. 25(2): p. 264-296.
24. Jones, E.J., T. Korcsmaros, and S.R. Carding, Mechanisms and pathways of Toxoplasma gondii transepithelial migration. Tissue Barriers, 2017. 5(1): p. e1273865.
25. Portes, J., et al., Toxoplasma gondii mechanisms of entry into host cells. Frontiers in cellular and infection microbiology, 2020. 10: p. 294.
26. Ferra, B., L. Holec-Gąsior, and W. Grąźlewska, Toxoplasma gondii recombinant antigens in the serodiagnosis of toxoplasmosis in domestic and farm animals. Animals, 2020. 10(8): p. 1245.
27. Pereira-Chioccola, V.L., J.E. Vidal, and C. Su, Toxoplasma gondii infection and cerebral toxoplasmosis in HIV-infected patients. Future microbiology, 2009. 4(10): p. 1363-1379.
28. Weiss, L.M. and J.P. Dubey, Toxoplasmosis: A history of clinical observations. International journal for parasitology, 2009. 39(8): p. 895-901.
29. Sabin, A.B. and J. Warren, Therapeutic effectiveness of certain sulfonamides on infection by an intracellular protozoon (Toxoplasma). Proceedings of the Society for Experimental Biology and Medicine, 1942. 51(1): p. 19-23.
30. Thiébaut, Rodolphe, et al., Effectiveness of prenatal treatment for congenital toxoplasmosis: a meta-analysis of individual patients' data. The Lancet, 2007. 369(9556): p. 115-122.
31. Decoster, A., et al., Platelia-Toxo IgA, a new kit for early diagnosis of congenital toxoplasmosis by detection of anti-P30 immunoglobulin A antibodies. Journal of clinical microbiology, 1991. 29(10): p. 2291-2295.
32. McLeod, R., D. Mack, and C. Brown, Toxoplasma gondii—new advances in cellular and molecular biology. Experimental parasitology, 1991. 72(1): p. 109-121.
33. Luft, B., et al., Outbreak of central-nervous-system toxoplasmosis in western Europe and North America. The Lancet, 1983. 321(8328): p. 781-784.
34. Basso, W., et al., Involvement of Toxoplasma gondii in reproductive disorders in Swiss pig farms. Parasitology international, 2015. 64(2): p. 157-160.
35. Dubey, J., A review of toxoplasmosis in cattle. Veterinary parasitology, 1986. 22(3-4): p. 177-202.
36. Dubey, J., Toxoplasmosis in sheep—the last 20 years. Veterinary parasitology, 2009. 163(1-2): p. 1-14.
37. Dubey, J., Toxoplasmosis in pigs—the last 20 years. Veterinary parasitology, 2009. 164(2-4): p. 89-103.
38. Dubey, J., Toxoplasma gondii infections in chickens (Gallus domesticus): prevalence, clinical disease, diagnosis and public health significance. Zoonoses and public health, 2010. 57(1): p. 60-73.
39. Cenci-Goga, B.T., et al., Toxoplasma in animals, food, and humans: an old parasite of new concern. Foodborne Pathogens and Disease, 2011. 8(7): p. 751-762.
40. Epiphanio, S., I. Sinhorini, and J. Catão-Dias, Pathology of toxoplasmosis in captive new world primates. Journal of Comparative Pathology, 2003. 129(2-3): p. 196-204.
41. Nishimura, M., et al., Outbreak of toxoplasmosis in four squirrel monkeys (Saimiri sciureus) in Japan. Parasitology international, 2019. 68(1): p. 79-86.
42. Dubey, J., et al., Toxoplasma gondii, Neospora caninum, Sarcocystis neurona, and Sarcocystis canis-like infections in marine mammals. Veterinary parasitology, 2003. 116(4): p. 275-296.
43. Conrad, P., et al., Transmission of Toxoplasma: clues from the study of sea otters as sentinels of Toxoplasma gondii flow into the marine environment. International journal for parasitology, 2005. 35(11-12): p. 1155-1168.
44. Hutchison, W., Experimental transmission of Toxoplasma gondii. Nature, 1965. 206(4987): p. 961-962.
45. Cole, R.A., et al., Biological and molecular characterizations of Toxoplasma gondii strains obtained from southern sea otters (Enhydra lutris nereis). Journal of Parasitology, 2000. 86(3): p. 526-530.
46. Liu, Q., et al., Diagnosis of toxoplasmosis and typing of Toxoplasma gondii. Parasites & vectors, 2015. 8: p. 1-14.
47. Al-Adhami, B.H. and A.A. Gajadhar, A new multi-host species indirect ELISA using protein A/G conjugate for detection of anti-Toxoplasma gondii IgG antibodies with comparison to ELISA-IgG, agglutination assay and Western blot. Veterinary Parasitology, 2014. 200(1-2): p. 66-73.
48. Reiter-Owona, I., et al., The past and present role of the Sabin-Feldman dye test in the serodiagnosis of toxoplasmosis. Bulletin of the World Health Organization, 1999. 77(11): p. 929.
49. Homan, W., et al., Identification of a 200-to 300-fold repetitive 529 bp DNA fragment in Toxoplasma gondii, and its use for diagnostic and quantitative PCR. International journal for parasitology, 2000. 30(1): p. 69-75.
50. Reischl, U., et al., Comparison of two DNA targets for the diagnosis of Toxoplasmosis by real-time PCR using fluorescence resonance energy transfer hybridization probes. BMC infectious diseases, 2003. 3(1): p. 1-9.
51. Belaz, S., et al., A 10-year retrospective comparison of two target sequences, REP-529 and B1, for Toxoplasma gondii detection by quantitative PCR. Journal of clinical microbiology, 2015. 53(4): p. 1294-1300.
52. Costa, M.E.S., et al., An alternative nested-PCR assay for the detection of Toxoplasma gondii strains based on GRA7 gene sequences. Acta tropica, 2016. 159: p. 120-124.
53. Lin, D., N. Sung, and A. Fei, Prevalences of antibodies to Toxoplasma gondii in Taipei Zoo animals. Taiwan Vet. J, 2009. 35(1): p. 43-48.
54. 余子安, et al., 以半巢式聚合酶連鎖反應方法調查台北市立動物園動物受弓漿蟲感染之情形. 台灣生物多樣性研究, 2016. 18(1): p. 19-28.
55. Vollaire, M.R., S.V. Radecki, and M.R. Lappin, Seroprevalence of Toxoplasma gondii antibodies in clinically ill cats in the United States. American journal of veterinary research, 2005. 66(5): p. 874-877.
56. Meireles, L., et al., Toxoplasma gondii spreading in an urban area evaluated by seroprevalence in free‐living cats and dogs. Tropical medicine & international health, 2004. 9(8): p. 876-881.
57. Jittapalapong, S., et al., Seroprevalence of Toxoplasma gondii antibodies in stray cats and dogs in the Bangkok metropolitan area, Thailand. Veterinary Parasitology, 2007. 145(1-2): p. 138-141.
58. Sroka, J., et al., Preliminary assessment of ELISA, MAT, and LAT for detecting Toxoplasma gondii antibodies in pigs. Bull Vet Inst Pulawy, 2008. 52(4): p. 545-549.
59. Stelzer, S., et al., Toxoplasma gondii infection and toxoplasmosis in farm animals: Risk factors and economic impact. Food and waterborne parasitology, 2019. 15: p. e00037.
60. Park, Y., et al., Seroprevalence and B1 gene Phylogeny of Toxoplasma gondii of Dogs and Cats in Republic of Korea. The Korean journal of parasitology, 2020. 58(3): p. 257.
61. Chiang, Ting-Yi, et al. "Seroepidemiology of Toxoplasma gondii infection among healthy blood donors in Taiwan." PLOS one 2012. 7(10): e48139.
62. Oliveira, G.C., et al., Prevalence of Toxoplasma gondii infections in swine of non-tecnified rearing farms of the northeastern region of the state of São Paulo, Brazil and associated risk factors. Parasite epidemiology and control, 2019. 4: p. e00080.
63. Al-Adhami, B.H., et al., Development and evaluation of a modified agglutination test for diagnosis of Toxoplasma infection using tachyzoites cultivated in cell culture. Food and Waterborne Parasitology, 2016. 2: p. 15-21.
64. Ferreira, F.B., et al., Serological evidence of Toxoplasma gondii infection in Melanosuchus niger (Spix, 1825) and Caimam crocodilus (Linnaeus, 1758). International Journal for Parasitology: Parasites and Wildlife, 2020. 12: p. 42-45.
65. Hsu, Chin‐Wei, et al. "Molecular and serological detection of Toxoplasma gondii infection in mammals in the Taipei Zoo." Zoonoses and Public Health 2022. 69(8): 904-914.

66. Liu, R.-M., et al., Investigation of Toxoplasma infection in zoo animals using multispecies ELISA and GRA7 nested PCR. BMC Veterinary Research, 2022. 18(1): p. 335.
67. Lin, D.-S., et al., Feline immunodeficiency virus, feline leukaemia virus, Toxoplasma gondii, and intestinal parasitic infections in Taiwanese cats. British Veterinary Journal, 1990. 146(5): p. 468-475.
68. Roqueplo, C., et al., Toxoplasma gondii in wild and domestic animals from New Caledonia. Parasite, 2011. 18(4): p. 345.
69. Ferreira, S.C.M., et al., Evidence of high exposure to Toxoplasma gondii in free-ranging and captive African carnivores. International Journal for Parasitology: Parasites and Wildlife, 2019. 8: p. 111-117.
70. Chiang, S.-H., et al., Epidemiological survey of Toxoplasma gondii and Neospora caninum infections in dairy goats in Central-Southern Taiwan. Journal of Veterinary Medical Science, 2020. 82(10): p. 1537-1544.
71. Lin, D.-S., Seroprevalences to Toxoplasma gondii in privately-owned dogs in Taiwan. Preventive Veterinary Medicine, 1998. 35(1): p. 21-27.
72. Lin, Y.-L., et al., Seroprevalence and sources of Toxoplasma infection among indigenous and immigrant pregnant women in Taiwan. Parasitology Research, 2008. 103: p. 67-74.
73. Tsai, Y.-J., et al., Seroprevalence of Toxoplasma gondii in pigs from slaughterhouses in Taiwan. Journal of Parasitology, 2007. 93(6): p. 1540-1541.
74. Chen, J.-C., Y.-J. Tsai, and Y.-L. Wu, Seroprevalence of Toxoplasma gondii antibodies in wild birds in Taiwan. Research in Veterinary Science, 2015. 102: p. 184-188.
75. Nasiru Wana, M., et al., Molecular detection and genetic diversity of Toxoplasma gondii oocysts in cat faeces from Klang Valley, Malaysia, using B1 and REP genes in 2018. Pathogens, 2020. 9(7): p. 576.
76. Tenter, A. M., et al., Toxoplasma gondii: from animals to humans. International journal for parasitology, 2000. 30(12-13), 1217-1258.
77. Calero-Bernal, R., et al., Clinical toxoplasmosis in dogs and cats: an update. Frontiers in veterinary science, 2019. 6: 54.
78. Sousa, S., et al., Selection of polymorphic peptides from GRA6 and GRA7 sequences of Toxoplasma gondii strains to be used in serotyping. Clinical and Vaccine Immunology, 2009. 16(8), 1158-1169.
79. Can, H., et al., Development of a new serotyping ELISA for Toxoplasma gondii type II, type III and Africa 1 lineages using in silico peptide discovery methods, well categorized feline and human outbreak serum samples. BMC Infectious Diseases, 2022. 22(1), 110.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/94506-
dc.description.abstract弓蟲(T. gondii)是一種絕對細胞內寄生的原生動物,會引起人畜共通傳染疾病,分佈於世界各地;貓科動物是這種寄生蟲的最終宿主,而包括鳥類和人類在內的幾乎所有溫血動物,都是其中間宿主。在2019年6月,台北市立動物園有四隻環尾狐猴(Lemur catta)死於急性弓蟲感染;此後,在對死亡動物進行病理解剖時,常發現動物有弓蟲感染的情形,且後續送檢的血液檢體,也常於PCR(Polymerase chain reaction)檢測呈現陽性反應;因此,對動物園圈養動物進行大規模篩查,以了解弓蟲感染情形似乎非常急迫和重要。本研究首先收集2019年1月至2021年5月間,動物園75種動物的326份血清樣本,使用多物種ELISA(Enzyme-linked immunosorbent assay)試劑,進行弓蟲感染的篩查,檢測結果顯示動物感染率為27 % (88/326) ;接著應用LAT(Latex agglutination test)試驗以確(118/326),且建議此多物種ELISA試劑僅適用於我們研究的75 個物種中的31 個。其次,我們應用針對弓蟲ITS1(Internal transcribed spacer1)及GRA7(Dense granule protein 7)基因的巢式PCR(nPCR),分別篩檢8隻動物身上採集的10 個肝臟或血液DNA檢體,結果有8個檢體驗出GRA7基因,但僅有4個檢體驗出ITS1基因,推測GRA7基因似乎是檢測弓蟲感染較好的分子靶標,且依據nPCR陽性產物序列分析,推測台北動物園的動物感染了至少三種不同的弓蟲變異株。為了進一步了解台北都會區弓蟲感染的情形,將nPCR應用於檢測路死貓各種組織的弓蟲感染情形。由46隻路死貓身上收集的224個包括肝臟、肌肉、小腸、脾臟和/或血液的檢體,以GRA7 nRCR檢測貓的陽性率是93.5%(43/46),而檢體總陽性率為58.5%(131/224),各臟器陽性率分別是肝臟58.7%(27/46)、肌肉65.2%(30/46)、小腸58.7%(27/46)、脾臟56.5%(26/46)和血液55%(22/40),而ITS1 nPCR檢測中僅有10個(4.5%)檢體呈陽性,分別是2個肝臟、4個肌肉、1個小腸、2脾臟和1個血液檢體。後續,根據GRA7 nPCR陽性產物的序列分析,推測路死貓感染了至少14種不同的弓蟲變異株(包含動物園發現的兩株),且有約37%(17/46)同時被兩種以上的蟲株感染,這些蟲株應多為第三型弓蟲,且與中國大陸流行的蟲株較為相近。zh_TW
dc.description.abstractAbstract

 Toxoplasma gondii (T. gondii) is an obligate intracellular protozoan causing an important zoonotic disease with worldwide distribution. Felids are the definitive hosts of this parasite, while virtually all warm-blooded animals including birds and human serve as the intermediate hosts. At June 2019, four Ring-tailed lemur (Lemur catta) in Taipei Zoo died of acute T. gondii infection. Since then, T. gondii infection was identified frequently during regular blood examines or the necropsy of death animals. Therefore, a general survey of T. gondii infection for captive animals in Taipei Zoo is urgent and needed. In this study, an indirect multi-species ELISA (Enzyme-linked immunosorbent assay) kit was firstly applied to screen T. gondii infection in 326 serum samples collected from 75 species of animals between January, 2019 and May, 2021. The infection rate of captive animals in Taipei Zoo was 27% (88/326). Later, a LAT (Latex agglutination test) assay was applied to reconfirm the results of ELISA and the infection rate was adjusted to 36.2% (118/326) according to the results of LAT assay. The ELISA kit we used appeares to be applicable to 31 of 75 species included in this study. Next, nested PCR (nPCR) targeting the ITS1 gene and GRA7 (dense granule protein 7) gene were also used to detect T. gondii in DNA samples extracted from 10 (liver or blood) samples collected from 8 animals. Since 8 and 4 of 10 samples were respectively identified T. gondii infection by using GRA7 and ITS1 nPCR, the GRA7 gene seemed to be the better molecular target for the detection of T. gondii infection. According to the analysis of nPCR product sequences, captive animals in Taipei Zoo were speculatively infected by at least three different T. gondii variants. To further investigate the prevalence and variants of T. gondii infection in Taipei metropolitan area, nPCR was applied to detect T. gondii from various tissues or organs of road mortality cats. Total 224 samples including liver, muscle, small intestine, spleen, and/or blood were collected from 46 road mortality cats in Taipei metropolitan area. By using nPCR to detect T. gondii infection, 93.5 %(43/46) cats 131 of 224 samples including liver 58.7%(27/46), muscle 65.2%(30/46), small intestine 58.7%(27/46), spleen 56.5%(26/46) and blood 55%(22/40) were positive for GRA7 gene, while only 10 samples (2 livers, 4 muscles, one small intestine, 2 spleens and 1 blood) were positive for ITS1 gene. At last, according to the sequence analysis of GRA7 nPCR product, at least 14 strains (including two strains found in the animals’ DNA of Taipei Zoo) of T. gondii can be found in road mortality cats. Thirty-seven percent of RMCs were infected by at least two strains. Those strains should be type III T. gondii and similar to the strains found in the mainland China.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-08-16T16:26:16Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2024-08-16T16:26:16Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents中文摘要 Ⅰ
Abstract Ⅱ
目次 Ⅳ
圖表次 Ⅵ

1. 文獻探討 1
1.1 介紹弓蟲 1
1.2 弓蟲的型態和生活史 2
1.3 感染症狀 3
1.3.1 人類 4
1.3.2 動物 4
1.4 感染途徑 5
1.5診斷弓蟲症的方法 5
1.5.1 蟲體檢出 5
1.5.2 血清學 6
1.5.3 分子檢測 7
1.6弓蟲的流行病學 7
2. 前言 10
3. 材料與方法 11
3.1血清學檢測 11
3.1.1 檢體來源 11
3.1.2 酶聯免疫吸附測定(ELISA) 11
3.1.3 乳膠凝集試驗(LAT) 12
3.2分子檢測 12
3.2.1 檢體來源 12
3.2.1.1 動物園檢體 12
3.2.1.2 路死貓檢體 13
3.2.2 DNA萃取 13
3.2.3巢式聚合酶連鎖反應(nPCR) 14
3.2.4 PCR產物的分離與純化 14
3.2.4.1 PCR產物的分離 14
3.2.4.2 純化PCR產物 14
3.2.5 DNA定序分析 15
4. 結果 16
4.1 血清學檢測 16
4.1.1 動物園動物血清檢體ELISA檢測結果 16
4.1.2 動物園動物血清檢體LAT檢測結果 16
4.2分子檢測 18
4.2.1 GRA7 nPCR和ITS1 nPCR檢測動物園檢體 18
4.2.2 動物園nPCR 產物的序列比對 19
4.2.3 GRA7 nPCR和ITS1 nPCR檢測弓蟲感染的特異性和敏感性 19
4.2.4 GRA7 nPCR和ITS1 nPCR檢測路死貓檢體 20
4.2.5 路死貓nPCR陽性產物的序列比對 20
4.2.6 B1 nPCR檢測路死貓檢體 22
4.2.7 RE nPCR檢測路死貓檢體 23
4.3比較動物園和路死貓弓蟲基因分型 23
4.4同時感染了兩種以上不同弓蟲變異株 24

5. 討論 27
6. 結論 33
參考文獻 67

圖表次
表1、動物園血清檢體動物物種別及收集數量 34
表2、動物園DNA檢體動物物種別及收集來源 36
表3、路死貓檢體資訊 37
表4、PCR的引物對和預期的PCR產物尺寸 38
表5、PCR的環境條件 39
表6、多物種ELISA檢測的結果(P、N及D)和LAT檢測調整後的結果(AP及AN) 40
表7、LAT檢測ELISA疑陽性和不確定的檢體 43
表8、路死貓檢體感染弓蟲的情況 45
表9、路死貓檢體檢測出弓蟲B1基因和ITS1基因的情況 46
表10、動物園檢體和路死貓感染不同弓蟲變異株(依據GRA7檢測及基因比對結果) 47
表11、動物園檢體和路死貓感染不同弓蟲變異株(依據GRA7和ITST1檢測及基因比對結果) 48
表12、比對弓蟲GRA7參考基因跟動物園動物和路死貓感染弓蟲變異株GRA7基因 49
表13、適用多物種ELISA套組檢測弓蟲感染的物種 50
圖1、動物園動物血清檢體經ELISA檢測結果 51
圖2、動物園動物血清檢體經LAT檢測結果圖 52
圖3、藉由GRA7 nPCR和ITS1 nPCR檢測動物園動物弓蟲感染情況 53
圖4、動物園動物ITS1 nPCR和GRA7 nPCR陽性檢體序列比對 54
圖5、比較nPCR檢測弓蟲GRA7和ITS1基因的專一性和敏感性 55
圖6、藉由GRA7 nPCR及ITS1 nPCR檢測路死貓弓蟲感染情況 57
圖7、路死貓ITS1 nPCR和GRA7 nPCR陽性檢體序列比對 59
圖8、藉由B1 nPCR檢測路死貓弓蟲感染情況 62
圖9、藉由RE nPCR檢測路死貓弓蟲感染情況 63
圖10、動物園動物及路死貓GRA7 nPCR、ITS1 nPCR陽性檢體序列比對 64
附錄 76
附錄1、弓蟲的型態和生活史 76
附錄2、弓蟲侵入細胞的方式 77
附錄3、動物園血清檢體動物物種別及收集數量 78
附錄4、動物園感染弓蟲動物分布圖 82
附錄5、路殺貓檢體ITS1 nPCR及GRA7 nPCR陽性檢體關係圖 83
附錄6、GRA7 nPCR陽性檢體序列比對(鹼基對和胺基酸改變位點對照圖) 84
-
dc.language.isozh_TW-
dc.title台北都會區動物園溫血動物及路死貓 弓蟲感染的調查zh_TW
dc.titleThe investigation of Toxoplasma gondii infection in the warm-blood zoo animals and road mortality cats in Taipei metropolitan areaen
dc.typeThesis-
dc.date.schoolyear113-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee王尚麟;黃威翔;詹昆衛zh_TW
dc.contributor.oralexamcommitteeShang Lin Wang;Wei Xiang Huang;Kun Wei Chanen
dc.subject.keyword弓蟲,動物園動物,路死貓,ELISA,LAT,巢式PCR,GRA7,ITS1,zh_TW
dc.subject.keywordToxoplasma gondii,Zoo animals,Road-motality cats,ELISA,LAT,Nested PCR,GRA7,ITS1,en
dc.relation.page84-
dc.identifier.doi10.6342/NTU202403097-
dc.rights.note同意授權(限校園內公開)-
dc.date.accepted2024-08-14-
dc.contributor.author-college生物資源暨農學院-
dc.contributor.author-dept獸醫學系-
dc.date.embargo-lift2029-08-02-
顯示於系所單位:獸醫學系

文件中的檔案:
檔案 大小格式 
ntu-113-2.pdf
  目前未授權公開取用
10.32 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved