Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 土木工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/94464
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor朱致遠zh_TW
dc.contributor.advisorJames C. Chuen
dc.contributor.author黃馨頤zh_TW
dc.contributor.authorSin-YI Huangen
dc.date.accessioned2024-08-16T16:12:23Z-
dc.date.available2024-08-31-
dc.date.copyright2024-08-16-
dc.date.issued2024-
dc.date.submitted2024-08-05-
dc.identifier.citation[1] Agatz, N., Bouman, P., & Schmidt, M. (2018). Optimization approaches for the traveling salesman problem with drone. Transportation Science, 52(4), 965-981
[2] Aoun, C., Daher, N., & Shammas, E. (2019, December). An energy optimal path-planning scheme for quadcopters in forests. In 2019 IEEE 58th Conference on Decision and Control (CDC) (pp. 8323-8328). IEEE.
[3] Chen, J., Li, M., Yuan, Z., & Gu, Q. (2020, June). An improved A* algorithm for UAV path planning problems. In 2020 IEEE 4th Information Technology, Networking, Electronic and Automation Control Conference (ITNEC) (Vol. 1, pp. 958-962). IEEE.
[4] Chu, J. C., Shui, C. S., & Lin, K. H. (2024). Optimization of trucks and drones in tandem delivery network with drone trajectory planning. Computers & Industrial Engineering, 110000.
[5] Di Puglia Pugliese, L., & Guerriero, F. (2017). Last-mile deliveries by using drones and classical vehicles. In Optimization and Decision Science: Methodologies and Applications: ODS, Sorrento, Italy, September 4-7, 2017 47 (pp. 557-565). Springer International Publishing.
[6] Kitjacharoenchai, P., Ventresca, M., Moshref-Javadi, M., Lee, S., Tanchoco, J. M., & Brunese, P. A. (2019). Multiple traveling salesman problem with drones: Mathematical model and heuristic approach. Computers & Industrial Engineering, 129, 14-30.
[7] Luo, Q., Wu, G., Trivedi, A., Hong, F., Wang, L., & Srinivasan, D. (2023). Multi-objective optimization algorithm with adaptive resource allocation for truck-drone collaborative delivery and pick-up services. IEEE Transactions on Intelligent Transportation Systems, 24(9), 9642-9657.
[8] Malaek, S. M., & Abbasi, A. (2011). Near-optimal terrain collision avoidance trajectories using elevation maps. IEEE Transactions on Aerospace and Electronic Systems, 47(4), 2490-2501.
[9] Mellinger, D., Michael, N., & Kumar, V. (2012). Trajectory generation and control for precise aggressive maneuvers with quadrotors. The International Journal of Robotics Research, 31(5), 664-674.
[10] Murray, C. C., & Chu, A. G. (2015). The flying sidekick traveling salesman problem: Optimization of drone-assisted parcel delivery. Transportation Research Part C: Emerging Technologies, 54, 86-109.
[11] Pestana, J., Maurer, M., Muschick, D., Hofer, M., & Fraundorfer, F. (2019). Overview obstacle maps for obstacle‐aware navigation of autonomous drones. Journal of field robotics, 36(4), 734-762.
[12] Ren, L., & Castillo-Effen, M. (2017). Air Traffic Management (ATM) operations: a review. Report 2017GRC0222.
[13] Richards, A., & How, J. P. (2002, May). Aircraft trajectory planning with collision avoidance using mixed integer linear programming. In Proceedings of the 2002 American Control Conference (IEEE Cat. No. CH37301) (Vol. 3, pp. 1936-1941). IEEE.
[14] Sacramento, D., Pisinger, D., & Ropke, S. (2019). An adaptive large neighborhood search metaheuristic for the vehicle routing problem with drones. Transportation Research Part C: Emerging Technologies, 102, 289-315.
[15] Schouwenaars, T., De Moor, B., Feron, E., & How, J. (2001, September). Mixed integer programming for multi-vehicle path planning. In 2001 European control conference (ECC) (pp. 2603-2608). IEEE.
[16] Wan, Y., Zhong, Y., Ma, A., & Zhang, L. (2022). An accurate UAV 3-D path planning method for disaster emergency response based on an improved multiobjective swarm intelligence algorithm. IEEE Transactions on Cybernetics, 53(4), 2658-2671.
[17] Wang, X., Poikonen, S., & Golden, B. (2017). The vehicle routing problem with drones: several worst-case results. Optimization Letters, 11, 679-697.
[18] Xiao, J., Li, Y., Cao, Z., & Xiao, J. (2024). Cooperative trucks and drones for rural last-mile delivery with steep roads. Computers & Industrial Engineering, 187, 109849.
[19] Xiong, T., Liu, F., Liu, H., Ge, J., Li, H., Ding, K., & Li, Q. (2023). Multi-drone optimal mission assignment and 3D path planning for disaster rescue. Drones, 7(6), 394.


網路資料
[20] Oitzman, M. (2024, June 6). Amazon Prime Air Gets FAA Approval for Extended BVLOS Drone Deliveries. THE ROBOT REPORT. https://www.wired.com/2014/06/the-next-big-thing-you-missed-delivery-drones-launched-from-trucks-are-the-future-of-shipping/
[21] DHL Parcelcopter Launches Initial Operations for Research Purpose. (2015, February 27). Air Cargo News. https://www.aircargonews.net/sectors/express/dhl-parcelcopter-launches-initial-operations-for-research-purpose/
[22] J. Stewart, Google Tests Drone Deliveries in Project Wing Trials, London, U.K.:BBC, Aug. 2014, [online] Available: http://www.bbc.com/news/technology-28964260.
[23] Kharpal, A., (2016). This firm beat amazon to drone deliveries by launching it from the roof of a truck. https://www.cnbc.com/2016/08/18/this-firm-beat-amazon-to-drone-deliveries-by-launching-it-from-the-roof-of-a-truck.html
[24] Wohlsen, M. (2014, June 10). The Next Big Thing You Missed: Amazon’s Delivery Drones Could Work—They Just Need Trucks. WIRED. https://www.wired.com/2014/06/the-next-big-thing-you-missed-delivery-drones-launched-from-trucks-are-the-future-of-shipping/
[25] 李青縈.(2022, August 30). 中華郵政無人機物流升空. 中時新聞網. https://www.chinatimes.com/newspapers/20220830000105-260202?chdtv
[26] 黃郁婷. (2022, September 19). 無人機物流計畫啟動盼成為緊急時刻的關鍵力量. 公視新聞網. https://news.pts.org.tw/article/600515
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/94464-
dc.description.abstract無人機搭配卡車的運送方式近年來成為新興的配送方式,無人機自卡車上起飛,可以快速到達目的地且不受地面交通壅塞影響,能縮短配送時間並提升運輸效率,卡車亦可彌補無人機飛行距離有限之問題,此種混合配送模式能降低總配送成本,未來若卡車無人機之配送方式成為主要配送方式,那麼空中交通管理將會變得十分重要,因此需要確保無人機在配送過程中不會與任何障礙物產生碰撞,同時亦能夠確保貨物配送之可靠度。
本研究提出一個在三維空間中考量地形與建築物的卡車無人機混合配送模式,以營運者的角度,以最小化總配送成本為目標,此外,模式亦加入軌跡問題,在離散的時階中,限制無人機在空中的飛行軌跡,確保其能夠閃避空間中的建築物、地形起伏與其他無人機,不僅考量到營運成本,亦考量到配送安全。本研究將過往文獻之避障模式完整寫入數學模型,並將其延伸至三維空間,以MIP求解,同時開發啟發式演算法與ALNS演算法加速求解效率,在兩種演算法中皆結合A*路徑規劃演算法概念計算無人機避障軌跡。
本研究藉由不同規模之案例測試,證明演算法求解快速且品質穩定,在不同規模的問題都可以找到和MIP一樣好甚至更好的答案。而在敏感度分析中得知當空間中的障礙物限制愈多,包括地形愈複雜、建築物愈多或安全距離愈大,則無人機將需要繞路或停等,甚至該路線可能會改由卡車服務,因此總成本將提高。而無人機性能愈佳,例如速度愈快或續航力愈高,有助於降低成本;因此障礙物會影響無人機起降節點之選擇,雖然考量軌跡後總配送成本更高,但卻完整考慮了所有可能產生碰撞之障礙物,使配送路線的規劃更為可靠。
zh_TW
dc.description.abstractIn recent years, the combination of drones and trucks has emerged as an innovative delivery method. Drones can take off from trucks, quickly reaching destinations without being affected by ground traffic congestion, thus reducing delivery times and increasing transport efficiency. Trucks can compensate for the limited flight range of drones. This hybrid delivery model can lower overall delivery costs. As truck-drone delivery becomes a primary method, air traffic management will become crucial. Ensuring drones do not collide with obstacles and maintaining delivery reliability will be essential in the future.
This study proposes a truck-drone hybrid delivery model in a three-dimensional space, considering terrain and buildings. From the operator's perspective, the objective is to minimize total delivery costs. The model also incorporates trajectory constraints, ensuring that drones will avoid buildings, terrain, and other drones in discrete time step. This study not only addresses operational costs but also emphasizes delivery safety. The study fully integrates obstacle avoidance methods from existing literature into a mathematical model and extends it to three dimensions. The problem is solved using Mixed-Integer Programming (MIP), heuristic algorithm and Adaptive Large Neighborhood Search (ALNS) algorithm are developed to enhance solving efficiency. Both algorithms incorporate the A* path planning algorithm concept to compute drone obstacle avoidance trajectories.
This study demonstrates through case tests of varying scales that the algorithms provide stable solutions, consistently finding results as good as or better than those obtained with MIP. Sensitivity analysis reveals that an increase in spatial obstacles, such as more complex terrain, more buildings or larger safety distances, forces drones to detour or wait, potentially shifting routes to truck service, thus raising total costs. Improved drone performance, such as higher speeds or longer battery life, helps to reduce costs. Obstacles significantly influence the selection of drone takeoff and landing points. While considering trajectories increases total delivery costs, it ensures comprehensive consideration of all potential collision obstacles, making route planning more reliable.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-08-16T16:12:23Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2024-08-16T16:12:23Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents口試委員審定書 I
誌謝 II
摘要 III
ABSTRACT IV
目次 VI
圖次 VIII
表次 X
第ㄧ章 緒論 1
1.1 研究背景與動機 1
1.2 研究內容 2
1.3 研究流程 2
第二章 文獻回顧 3
2.1 卡車與無人機混合配送模式 3
2.2 軌跡規劃與障礙物避讓 6
2.3 小結 9
第三章 研究方法 11
3.1 問題定義 11
3.2 數學模型 12
3.2.1 數學符號 12
3.2.2 目標式 15
3.2.3 限制式 16
3.3 演算法 28
3.3.1 演算法(1) 29
3.3.1.1 演算法(1)流程圖 29
3.3.1.2 演算法(1)虛擬碼 30
3.3.2 演算法(2) 38
3.3.2.1 演算法(2)流程圖 38
3.3.2.2 演算法(2)虛擬碼 39
第四章 案例測試與分析 49
4.1 情境假設與參數設定 49
4.2 案例測試 53
4.3 敏感度分析 60
4.3.1 物流 60
4.3.1.1 卡車數量之敏感度分析 60
4.3.1.2 無人機續航時間之敏感度分析 62
4.3.1.3 卡車與無人機配送成本比值之敏感度分析 63
4.3.2 軌跡 64
4.3.2.1無人機時階個數之敏感度分析 64
4.3.2.2 無人機軌跡速限之敏感度分析 66
4.3.2.3 無人機與地形維持之安全距離之敏感度分析 68
4.3.2.4 無人機之間安全距離之敏感度分析 69
4.3.3 演算法 70
4.3.4 傳統模式V.S 本模式 72
4.4 小結 79
第五章 結論與建議 80
5.1 結論 80
5.2 建議 81
參考文獻 82
-
dc.language.isozh_TW-
dc.subject卡車與無人機協同合作zh_TW
dc.subject自適應大鄰域搜索zh_TW
dc.subject啟發式演算法zh_TW
dc.subject避撞zh_TW
dc.subject軌跡規劃zh_TW
dc.subjectTrajectory planningen
dc.subjectHeuristic algorithmen
dc.subjectDrone-truck combined operationsen
dc.subjectAdaptive large neighborhood searchen
dc.subjectCollision avoidanceen
dc.title考量地形與建築物之卡車搭配無人機混合配送模式最佳化zh_TW
dc.titleOptimization of Truck-drone Hybrid Delivery Considering Terrain and Buildingsen
dc.typeThesis-
dc.date.schoolyear112-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee水敬心;沈宗緯;許聿廷zh_TW
dc.contributor.oralexamcommitteeChin-Sum Shui;Chung-Wei Shen;Yu-Ting Hsuen
dc.subject.keyword卡車與無人機協同合作,軌跡規劃,避撞,啟發式演算法,自適應大鄰域搜索,zh_TW
dc.subject.keywordDrone-truck combined operations,Trajectory planning,Collision avoidance,Heuristic algorithm,Adaptive large neighborhood search,en
dc.relation.page84-
dc.identifier.doi10.6342/NTU202402861-
dc.rights.note同意授權(限校園內公開)-
dc.date.accepted2024-08-07-
dc.contributor.author-college工學院-
dc.contributor.author-dept土木工程學系-
dc.date.embargo-lift2029-07-31-
顯示於系所單位:土木工程學系

文件中的檔案:
檔案 大小格式 
ntu-112-2.pdf
  未授權公開取用
2.13 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved