請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/94442完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 周崇熙 | zh_TW |
| dc.contributor.advisor | Chung-Hsi Chou | en |
| dc.contributor.author | 蕭瑞宏 | zh_TW |
| dc.contributor.author | Jui-Hong Hsiao | en |
| dc.date.accessioned | 2024-08-15T17:32:31Z | - |
| dc.date.available | 2024-08-16 | - |
| dc.date.copyright | 2024-08-15 | - |
| dc.date.issued | 2024 | - |
| dc.date.submitted | 2024-08-11 | - |
| dc.identifier.citation | 中文文獻
黃文輝、朱志弘(2015)。產品碳足跡計算相關作業程序概述。冷凍空調技師季刊,27-31。 經濟部(2021)。CNS14067:2021「溫室氣體-產品碳足跡-量化之要求事項與指導綱要」。臺北市。 盧怡靜、呂穎彬(2014)。ISO 14040生命週期評估的下一步。永續產業發展,29-35。 環境部(2010)。產品與服務碳足跡計算指引。臺北市。 環境部(2013)。碳足跡數據品質評估手冊第二版。臺北市。 環境部(2019)。碳足跡產品類別規則(CFP-PCR)家畜禽肉及食用雜碎第2.0版。臺北市。 環境部(2019)。溫室氣體排放係數管理表6.0.4版。臺北市。 環境部(2022)。產品碳足跡資訊網。檢自https://cfp-calculate.tw/cfpc/WebPage/LoginPage.aspx (Jun. 29, 2022) 環境部(2022)。2022年中華民國國家溫室氣體排放清冊報告。臺北市。 環境部氣候變遷署(2023)。環境部氣候變遷署全球資訊網。檢自https://www.moenv.gov.tw/cca/48E22A3C60F4F491 (Jul. 25, 2023) 環境部氣候變遷署(2024)。環境部氣候變遷署全球資訊網。檢自https://www.moenv.gov.tw/cca/668CBE2831B8AFE5 (Jan. 3, 2024) SimaPro 生命週期評估工具9.4.0版。 英文文獻 Alptekin, E., M. Canakci, A. N. Ozsezen, A. Turkcan, and H. Sanli. 2015. Using waste animal fat based biod Alptekin iesels-bioethanol-diesel fuel blends in a DI diesel engine. Fuel 157:245-254. Al-Zohairi, S., M. T. Knudsen, and L. Mogensen. 2023. Utilizing animal by-products in European slaughterhouses to reduce the environmental footprint of pork products. Sustain. Prod. Consum. 37:306-319. Angerer, V., E. Sabia, U. K. von Borstel, and M. Gauly. 2021. Environmental and biodiversity effects of different beef production. J. Environ. Manage. 289:112523. Aziz, A., H. Rameez, A. Sengar, D. Sharma, I. H. Farooqi, and F. Basheer. 2022. Biogas production and nutrients removal from slaughterhouse wastewater using integrated anaerobic and aerobic granular intermittent SBRs – Bioreactors stability and microbial dynamics. Sci. Total Environ. 848:157575. Bashiri, B., N. Fallah, B. Bonakdarpour, and S. Elyasi. 2018. The development of aerobic granules from slaughterhouse wastewater in treating real dyeing wastewater by Sequencing Batch Reactor (SBR). J. Environ. Chem. Eng. 6:5536-5543. Bragaglio, A., F. Napolitano, C. Pacelli, G. Pirlo, E. Sabia, F. Serrapica, M. Serrapica, and A. Braghieri. 2018. Environmental impacts of Italian beef production: A comparison between different systems. J. Clean. Prod. 172:4033-4043. Buratti, C., F. Fantozzi, M. Barbanera, E. Lascaro, M. Chiorri, and L. Cecchini. 2017. Carbon footprint of conventional and organic beef production systems: An Italian case study. Sci. Total Environ. 576:129-137. Bustillo-Lecompte, C. F., and M. Mehrvar. 2016. Treatment of an actual slaughterhouse wastewater by integration of biological and advanced oxidation processes: Modeling, optimization, and cost-effectiveness analysis. J. Environ. Manage. 182:651-666. Bustillo-Lecompte, C. F., and M. Mehrvar. 2017. Treatment of actual slaughterhouse wastewater by combined anaerobic-aerobic processes for biogas generation and removal of organics and nutrients: An optimization study towards a cleaner production in the meat processing industry. J. Clean. Prod. 141:278-289. Casey, J.W. and N. M. Holden. 2005. Analysis of greenhouse gas emissions from the average Irish milk production system. Agr. Syst. 86:97-114. Cezimbra, I. M., P. A. de Albuquerque-Nunes, W. de Souza-Filho, M. R. Tischler, T. C. Moraes-Genro, C. Bayer, J. V. Savian, O. J. François-Bonnet, J. -F. Soussana, and P. C. de Faccio-Carvalho. 2021. Potential of grazing management to improve beef cattle production and mitigate methane emissions in native grasslands of the Pampa biome. Sci. Total Environ. 780:146582. Cheng, Z. Y., Y. K. Jia, Y. Y. Bai, T. Z. Zhang, K. Ren, X. Y. Zhou, Y. J. Zhai, X. X. Shen and J. L. Hong. 2023. Intensifying the environmental performance of chicken meat production in China: From perspective of life cycle assessment. J. Clean. Prod. 384:135603. Chowdhury, H., P. Barua, T. Chowdhury, N. Hossain, R. Islam, S. M. Sait, and B. Salam. 2021. Synthesis of biodiesel from chicken skin waste: an economic and environmental biofuel feedstock in Bangladesh. Environ. Sci. Pollut. Res. 28:37679-37688. Costantini, M., I. Vázquez-Rowe, A. Manzardo, and J. Bacenetti. 2021. Environmental impact assessment of beef cattle production in semi-intensive systems in Paraguay. Sustain. Prod. Consum. 27:269-281. Crippa, M., Solazzo, E., Guizzardi. D., Monforti-Ferrario, F., Tubiello, F. N., Leip, A., 2021. Food systems are responsible for a third of global anthropogenic GHG emissions. Nature Food 2, 198-209. Da Silva Junior, V. P., E. Cherubini, and S. R. Soares. 2012. Comparison of two production scenarios of chickens consumed in France. Paper presented at the 8th International Conference on LCA in the Agri-Food Sector, Rennes, France. Desjardins, R. L., D. E. Worth, X. P. C. Vergé, D. Maxime, J. Dyer, and D. Cerkowniak. 2012. Carbon footprint of beef cattle. Sustainibility 4:3279-3301. Dick, M., M. A. da Silva, and H. Dewes. 2015. Life cycle assessment of beef cattle production in two typical grassland systems of southern Brazil. J. Clean. Prod. 96:426-434. Dick, M., M. A. da Silva, and H. Dewes. 2015. Mitigation of environmental impacts of beef cattle production in southern Brazil – Evaluation using farm-based life cycle assessment. J. Clean. Prod. 87:58-67. Faraji-Mahyari, Z., Z. Khorasanizadeh, M. Khanali, and K. F. Mahyari. 2021. Biodiesel production from slaughter wastes of broiler chicken: a potential survey in Iran. SN Appl. Sci. 3:57. Fatima, F., H. Du and R. R. Kommalapati. 2021. Treatment of poultry slaughterhouse wastewater with membrane technologies: a review. Water 13:1905. Gonzalez-Fischer, C., and D. Bilenca. 2020. Can we produce more beef without increasing its environmental impact? Argentina as a case study. Perspect. Ecol. Conser. 18:1-11. González-García, S., Z. Gomez-Fernández, A. C. Dias, G. Feijoo, M. T. Moreira, and L. Arroja. 2014. Life Cycle Assessment of broiler chicken production: a Portuguese case study. J. Clean. Prod. 74:125-134. González-Quintero, R., D. M. Bolívar-Vergara, N. Chirinda, J. Arango, H. Pantevez, R. Barahona-Rosales, and M. S. Sánchez-Pinzón. 2021. Environmental impact of primary beef production chain in Colombia: Carbon footprint, non-renewable energy and land use using life cycle assessment. Sci. Total Environ. 773:145573. Gonzalez-Tineo, P. A., U. Durán-Hinojosa, L. R. Delgadillo-Mirquez, E. R. Meza-Escalante, P. Gortáres-Moroyoqui, R. G. Ulloa-Mercado, and D. Serrano-Palacios. 2020. Performance improvement of an integrated anaerobic-aerobic hybrid reactor for the treatment of swine wastewater. J. Water Process. Eng. 34:101164. Hammar, T., P. -A. Hansson, and E. Roos. 2022. Time-dependent climate impact of beef production – can carbon sequestration in soil offset enteric methane emissions? J. Clean. Prod. 331:129948. Heflin, K. R., D. B. Parker, G. W. Marek, B. W. Auvermann, and T. H. Marek. 2019. Greenhouse-gas emissions of beef finishing systems in the Southern High Plains. Agr. Syst. 176:102674. Imran-Ahmad, M., O. Ejaz, A. Ali, M. A. Q. Jahangir-Durrani, and I. A. Khan. 2014. Anaerobic digestion of waste from a slaughterhouse. J. Environ. Chem. Eng. 2:1317-1320. ISO 14067, 2018. Greenhouse gases - Carbon footprint of products - Requirements and guidelines for quantification, first ed. Geneva, Switzerland. Jensen, P. D., T. Sullivan, C. Carney, and D. J. Batstone. 2014. Analysis of the potential to recover energy and nutrient resources from cattle slaughterhouses in Australia by employing anaerobic digestion. Appl. Energy 136: 23-31. Kefalew, T., and M. Lami. 2021. Biogas and bio-fertilizer production potential of abattoir waste: implication in sustainable waste management in Shashemene City, Ethiopia. Heliyon 7:e08293. Ledgard, S. F., Lieffering, M., Coup, D., O’Brien, B., 2011. Carbon footprinting of New Zealand lamb from the perspective of an exporting nation. Anim. Front. 1, 40-45. Liang, C., J. D. MacDonald, R. L. Desjardins, B. G. McConkey, K. A. Beauchemin, C. Flemming, D. Cerkowniak, and A. Blondel. 2020. Beef cattle production impacts soil organic carbon storage. Sci. Total Environ. 718:137273. Liu, Y. L., X. R. Kang, X. Li, and Y. X. Yuan. 2015. Performance of aerobic granular sludge in a sequencing batch bioreactor for slaughterhouse wastewater treatment. Bioresour. Technol. 190:487-491. McCabe, B. K., I. Hamawand, P. Harris, C. Baillie, and T. Yusaf. 2014. A case study for biogas generation from covered anaerobic ponds treating abattoir wastewater: Investigation of pond performance and potential biogas production. Appl. Energy 114:798-808. McGee, M., C. Lenehan, P. Crosson, E. G. O’Riordan, A. K. Kelly, L. Moran, and A. P. Moloney. 2022. Performance, meat quality, profitability, and greenhouse gas emissions of suckler bulls from pasture-based compared to an indoor high-concentrate weanling-to-beef finishing system. Agr. Syst. 198:103379. Mogensen, L., T. L. T. Nguyen, N. T. Madsen, O. Pontoppidan, T. Preda, and J. E. Hermansen. 2016. Environmental impact of beef sourced from different production systems - focus on the slaughtering stage: input and output. J. Clean. Prod. 133:284-293. Morel, K., J. -P. Farrié, J. Renon, V. Manneville, J. Agabriel, and J. Devun. 2016. Environmental impacts of cow-calf beef systems with contrasted grassland management and animal production strategies in the Massif Central, France. Agr. Syst. 144:133-143. Murphy, B., P. Crosson, A. K. Kelly, and R. Prendiville. 2017. An economic and greenhouse gas emissions evaluation of pasture-based dairy calf-to-beef production systems. Agr. Syst. 154:124-132. Nguyen, T. T. H., M. Doreau, M. Eugene, M. S. Corson, F. Garcia-Launay, G. Chesneau, and H. M. G. van der Werf. 2013. Effect of farming practices for greenhouse gas mitigation and subsequent alternative land use on environmental impacts of beef cattle production systems. Animal 7:860-869. Ogino, A., K. Sommart, S. Subepang, M. Mitsumori, K. Hayashi, T. Yamashita, and Y. Tanaka. 2016. Environmental impacts of extensive and intensive beef production systems in Thailand evaluated by life cycle assessment. J. Clean. Prod. 112:22-31. Ogino, A., V. T. Nguyen, Y. Hosen, T. Izumi, T. Suzuki, T. Sakai, S. Ando, T. Osada, and T. Kawashima. 2021. Environmental impacts of a rice-beef-biogas integrated system in the Mekong Delta, Vietnam evaluated by life cycle assessment. J. Environ. Manage. 294:112900. Ortner, M., D. Wöss, A. Schumergruber, T. Pröll, and W. Fuchs. 2015. Energy self-supply of large abattoir by sustainable waste utilization based on anaerobic mono-digestion. Appl. Energy 143:460-471. Ozdemir, S., A. Simsek, S. Ozdemir, and C. Dede. 2022. Investigation of poultry slaughterhouse waste stream to produce biofuel for internal utilization. Renew. Energ. 190:274-282. Pashaei-Kamali, F., A. van der Linden, M. P. M. Meuwissen, G. C. Malafaia, A. G. J. M. Oude-Lansink, and I. J. M. de Boer. 2016. Environmental and economic performance of beef farming systems with different feeding strategies in southern Brazil. Agr. Syst. 146:70-79. Payen, S., S. Falconer, B. Carlson, W. Yang, and S. Ledgard. 2020. Eutrophication and climate change impacts of a case study of New Zealand beef to the European market. Sci. Total Environ. 710:136120. Peters, G. M., Rowley, H. V., Wiedemann, S., Tucker, R., Short, M. D., Schulz, M., 2010. Red meat production in Australia: Life cycle assessment and comparison with overseas studies. Environ. Sci. Technol. 44, 1327-1332. Poore, J., Nemecek, T., 2018. Reducing food’s environmental impacts through producers and consumers. Science 360, 987-992. Ratchadaariyachat, S., and S. Kwonpongsagoon. 2020. Development of a web application for estimating CO2-equivalent emissions of poultry and swine slaughtering processes. Int. J. GEOMATE 18:149-155. Rivera-Huerta, A., L. P. Güereca, and M. S. Rubio-Lozano. 2016. Environmental impact of beef production in Mexico through life cycle assessment. Resour. Conserv. Recy. 109:44-53. Santagata, R., M. Ripa, and S. Ulgiati. 2017. An environmental assessment of electricity production from slaughterhouse residues. Linking urban, industrial and waste management systems. Appl. Energy 186:175-188. Santagata, R., S. Viglia, G. Fiorentino, G. Y. Liu, and M. Ripa. 2019. Power generation from slaughterhouse waste materials. An emergy accounting assessment. J. Clean. Prod. 223:536-552. Siddiki, S. Y. A., M. N. Uddin, M. Mofijur, I. M. R. Fattah, H. C. Ong, S. S. Lam, P. S. Kumar, and S. F. Ahmed. 2021. Theoretical calculation of biogas production and greenhouse gas emission reduction potential of livestock, poultry and slaughterhouse waste in Bangladesh. J. Environ. Chem. Eng. 9:105204. Stanley, P. L., J. E. Rowntree, D. K. Beede, M. S. DeLonge, and M. W. Hamm. 2018. Impacts of soil carbon sequestration on life cycle greenhouse gas emissions in Midwestern USA beef finishing systems. Agr. Syst. 162:249-258. Tsutsumi, M., Y. Ono, H. Ogasawara, and M. Hojito. 2018. Life-cycle impact assessment of organic and non-organic grass-fed beef production in Japan. J. Clean. Prod. 172:2513-2520. Van Gastelen, S., J. Dijkstra, and A. Bannink. 2019. Are dietary strategies to mitigate enteric methane emission equally effective across dairy cattle, beef cattle, and sheep? J. Dairy Sci. 102:6109-6130. Vergé, X. P. C., J. A. Dyer, R. L. Desjardins, and D. Worth. 2008. Greenhouse gas emissions from the Canadian beef industry. Agr. Syst. 98:126-134. Vitali, A., G. Grossi, G. Martino, U. Bernabucci, A. Nardone, and N. Lacetera. 2018. Carbon footprint of organic beef meat from farm to fork: a case study of short supply chain. J. Sci. Food Agric. 98:5518-5524. Wang, S. L., K. Sahoo, U. Jena, H. Dong, R. Bergman, and T. Runge. 2021. Life-cycle assessment of treating slaughterhouse waste using anaerobic digestion systems. J. Clean. Prod. 292:126038. Wang, S. L., U. Jena, and K. C. Das. 2018. Biomethane production potential of slaughterhouse waste in the United States. Energy Convers. Manag. 173:143-157. Wang, S. L., U. Jena, and K. C. Das. 2022. Long term performance of pilot methanogenic digester filled with seashell wastes treating slaughterhouse wastes: Biogas production and environmental impact. Biochem. Eng. J. 187:108651. Wiedemann, S., McGahan, E., Murphy, C., Yan, M.J., Henry, B., Thoma, G., Ledgard, S., 2015. Environmental impacts and resource use of Australian beef and lamb exported to the USA determined using life cycle assessment. J. Clean. Prod. 94, 67-75. Yetilmezsoy, K., F. Ilhan, E. Kiyan, and M. Bahramian. 2022. A comprehensive techno-economic analysis of income-generating sources on the conversion of real sheep slaughterhouse waste stream into valorized by-products. J. Environ. Manage. 306:114464. Yoon, Y. -M., S. -H. Kim, S. -Y. Oh, and C. -H. Kim. 2014. Potential of anaerobic digestion for material recovery and energy production in waste biomass from a poultry slaughterhouse. Waste Manage. 34:204-209. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/94442 | - |
| dc.description.abstract | 屠宰是肉製品生產的重要過程,是碳排放的關鍵來源之一,瞭解屠宰流程的碳排熱點,能作為改善產品碳足跡的依據。關於碳足跡管理的國際標準中有ISO 14064和ISO 14067,ISO 14064是用於指導組織量化和報告其溫室氣體排放,這包括直接和間接的排放,並提供了一個框架,幫助組織確定和實施溫室氣體減排目標,這項標準有助於企業評估其對氣候變化的影響,並制定相應的減排策略;而ISO 14067則是一個指導企業評估產品碳足跡的標準,它提供了一套方法,幫助企業量化其產品的碳排放量,並通過採取相應的減排措施來減少這些排放,這有助於企業更好地了解其產品對氣候變化的貢獻,並促使它們採取更環保的生產方式。此兩項標準的實施皆有助於推動企業向更永續性的發展方向轉變,減少對環境的負面影響。因糧食系統於全球溫室氣體排放佔比近1/3,其中肉品生產更視為大宗項目,隨著全世界人口不斷的上升,可以預期對於肉品的需求及消費將大幅增加,進而導致嚴重的環境衝擊,因此改變肉品生產方式以減少環境衝擊是重要課題。本研究以臺灣2家(皆為臺灣前10大家禽電宰廠)具有於三個屠後檢查站之白肉雞屠宰場為調查標的,盤查其於2021年度屠宰白肉雞所排放的總碳量,並對各場屠程實狀分析熱點及排碳佔比,同時提出可供未來改善的建議。主要研究方向有三:(i)單位碳足跡分析;(ii)各階段排碳量分析;(iii)各項目排放量分析。結果如下:(i)A屠宰場年屠宰量為18,246,909隻(屠體總重40,136公噸),總排放量為7,231.190噸CO2e,平均屠宰每公斤毛雞之單位碳足跡為0.180 kgCO2e/kg,平均屠宰每隻毛雞之單位碳足跡為0.396 kgCO2e/隻;B屠宰場年屠宰量為20,835,775隻(屠體總重43,547公噸),總排放量為5,242.072噸CO2e,平均屠宰每公斤毛雞之單位碳足跡為0.120 kgCO2e/kg,平均屠宰每隻毛雞之單位碳足跡為0.252 kgCO2e/隻;(ii)屠宰分切階段A屠宰場排碳佔比達93.36%,B屠宰場達77.70%;廢棄物處置階段A屠宰場占6.61%,B屠宰場占22.16%;廢棄物運輸階段2家屠宰場排碳佔比皆小於1%;(iii)A屠宰場排放熱點以電力為主要排碳貢獻占71.76%,次之為製冷設備冷媒逸散占11.76%,而鍋爐使用之天然氣占6.97%及廢水處理占5.09%;B屠宰場排放熱點電力排碳貢獻占62.53%,次之為廢水處理占21.63%,而鍋爐使用之液化石油氣占8.59%及製冷設備冷媒占6.01%。比較國外相關調查,臺灣此形式之白肉雞屠宰排碳單位量較高。進一步分析兩場的明顯差異包括製冷設備的設置及熱能化石燃料項目選擇,致使A場在電力、冷媒逸散及熱能使用項目的排碳量偏高;此外改善廢污水處理模式(例如B場加設甲烷收集設備)也將有效降低排放總量。因應未來的碳權管理,設備升級、改善流程與效率及再生能源利用都是必要措施,屠宰產業宜儘早針對個別場區進行碳盤查,瞭解個別場域的碳排熱點,以規劃未來減碳作為。 | zh_TW |
| dc.description.abstract | Slaughtering is an important process in the production of meat products and one of the key sources of carbon emissions. Understanding the carbon emission hotspots in the slaughtering process can be used as a basis for improving the carbon footprint of products. The international standards related to carbon footprint management include ISO 14064 and ISO 14067. ISO 14064 is used to guide organizations in quantifying and reporting their greenhouse gas emissions, including both direct and indirect emissions. It provides a framework to assist organizations in identifying and implementing greenhouse gas reduction targets. This standard helps businesses assess their impact on climate change and develop corresponding emission reduction strategies; ISO 14067, on the other hand, is a standard guiding businesses in assessing the carbon footprint of their products. It provides a methodology to help companies quantify the carbon emissions of their products and reduce these emissions through corresponding mitigation measures. This aids businesses in better understanding the contribution of their products to climate change and encourages them to adopt more environmentally friendly production methods. The implementation of these two standards helps drive businesses towards more sustainable development, reducing their negative impact on the environment. Because the food system accounts for nearly 1/3 of global greenhouse gas emissions, and meat production is considered a bulk item, as the world's population continues to rise, it can be expected that the demand and consumption of meat will increase significantly, leading to serious environmental impact, so changing meat production methods to reduce environmental impact is an important issue. This study takes two broiler slaughterhouses in Taiwan (both of which are among the top 10 largest poultry slaughterhouses in Taiwan) with three post mortem inspection stations as the subject of investigation, and examines the total carbon emissions emitted by slaughtering broilers in 2021. It also analyzes hot spots and carbon emission proportions of each slaughtering process, and puts forward suggestions for future improvements. There are three main research directions: (i) unit carbon footprint analysis; (ii) analysis of carbon emissions at each stage; (iii) analysis of emissions from each item. The results are as follows: (i) The annual slaughtering quantity of SA is 18,246,909 birds (the total carcass weight is 40,136 metric tons), the total emissions are 7,231.190 tons of CO2e, the average unit carbon footprint per kilogram of slaughtered chickens is 0.180 kgCO2e/kg, the average unit carbon footprint of each slaughtered chicken is 0.396 kgCO2e/bird; the annual slaughtering quantity of SB is 20,835,775 birds (total carcass weight 43,547 metric tons), the total emissions are 5,242.072 tons of CO2e, the average unit carbon footprint of each kilogram of slaughtered chickens is 0.120 kgCO2e/kg, and the average unit carbon footprint of each slaughtered chicken is 0.252 kgCO2e/bird; (ii) the carbon emission ratio of SA in the slaughtering and cutting stage is 93.36%, and that of SB is 77.70%; waste disposal stage in the SA accounts for 6.61%, and in the SB accounts for 22.16%; in the waste transportation stage, the carbon emissions of the two slaughterhouses are both less than 1%; (iii) At SA, the primary carbon emission hotspot is electricity, accounting for 71.76% of emissions, followed by refrigerant leakage from refrigeration equipment at 11.76%, with natural gas used in boilers contributing 6.97%, and wastewater treatment contributing 5.09%. At SB, the main carbon emission hotspot is electricity, contributing 62.53% of emissions, followed by wastewater treatment at 21.63%, with liquefied petroleum gas used in boilers contributing 8.59%, and refrigerant leakage from refrigeration equipment contributing 6.01%. Comparing with other countries, the carbon emissions per unit of broiler slaughtered from this style in Taiwan are higher. Further analysis reveals significant differences between SA and SB, including the refrigeration equipment and the usage of fossil fuel for heating, resulting in higher carbon emissions in SA in electricity, refrigerant leakage, and energy for heat. Additionally, optimization the wastewater treatment mode (such as installing methane collection facility in SB) would also effectively reduce the total emissions. In response to future carbon credit management, upgrading equipment, improving efficiency, and choosing renewable energy are necessary. The slaughter industry should conduct carbon audits for individual sites early to understand the carbon hotspots of each location, in order to plan future carbon reduction measures. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-08-15T17:32:30Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2024-08-15T17:32:31Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 口試委員審定書………………………………………………………………………...#
誌謝………………………………………………………………………………………i 中文摘要…………………………………………………………………………...........ii 英文摘要………………………………………………………………………………..iv 目次…………………………………………………………………………………....viii 圖次………………………………………………………………………………….....xii 表次…………………………………………………………………………………....xiv 第一章 緒言…………………………………………………………………………….1 第二章 文獻回顧…………………………………………………………………….…3 第一節 氣候變遷…..………….……………………………………………..…3 第二節 國際碳足跡的政策與盤查現況……………………….………………5 第三節 臺灣碳足跡的政策與盤查現況………………….……………………7 第四節 碳足跡數據品質評估分析……………...……………………………12 第三章 材料與方法………………………………………………………………...…15 第一節 碳足跡認證標準……………..………….……………………………15 生命週期評估與碳足跡盤查….……………………………………………15 產品碳足跡的盤查與計算…………………………………………….……16 第二節 碳足跡盤查說明…..……….…………………………………………21 盤查標準及邊界………………….…..………………………………..……21 盤查對象、目的及期間………………….…………………………………21 盤查範疇………………….………………………………………………....22 第三節 碳足跡計算方法與排放量計算……..………….……………26 計算方法………………………………………………………………….…26 排放量計算……………………………………………………………….…28 第四章 調查結果……………………………………………………………...………37 第一節 A屠宰場碳排放量計算結果分析………………………...……37 分配原則與假設……………………………………………………...……..37 計算結果與分析…………………………………………………………….39 數據品質分析……………………………………………………………….40 第二節 B屠宰場碳排放量計算結果分析……………………...………41 分配原則與假設…………………………………………………...………..41 計算結果與分析…………………………………………………………….42 數據品質分析……………………………………………………………….43 第三節 2家屠宰場碳足跡計算結果分析……………………………………44 單位碳足跡分析………………………………………………….…………44 各階段排碳量分析……………………………………………………….…44 各項目排放量分析………………………………………………………….45 第五章 討論…………………………………………………………………...………47 第一節 2家屠宰場分析比較…………………………………………………47 電力………………….………………………………………………………47 鍋爐燃料…….………………………………….…………………….……..48 廢水處理…….………………………………….…………………….……..49 第二節 產品碳足跡差異比較…………………………………………...……52 影響產品碳足跡的因子…………………………………………………….52 國際與臺灣畜禽肉產品碳足跡比較…………………………………….…59 第三節 畜禽肉產品碳足跡熱點分析………………………………….…..…62 碳足跡熱點………………….………………………………………………62 國際與臺灣畜禽屠宰階段碳足跡熱點分析………………….……………64 第四節 改善措施探討…………………………………………………..…….66 能源使用………………….…………………………………………………66 冷媒逸散……………………………………………………………….……70 副產品及廢棄物……………………………………………………….……71 廢水處理………………………………………………………………...…..76 第五節 建議…………………………………………………………...………80 冷媒設備的清點與計算…………………………………………….………80 廢水處理設備………………………………….……………………..……..80 第六章 結論與展望………………………………………………………………...…82 參考文獻……………………………………………………………………………….86 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 屠宰場 | zh_TW |
| dc.subject | ISO 14067 | zh_TW |
| dc.subject | 排放熱點 | zh_TW |
| dc.subject | 生命週期評估 | zh_TW |
| dc.subject | 碳權 | zh_TW |
| dc.subject | 禽肉 | zh_TW |
| dc.subject | 碳排放量 | zh_TW |
| dc.subject | carbon credit | en |
| dc.subject | emission hotspots | en |
| dc.subject | ISO 14067 | en |
| dc.subject | life cycle assessment | en |
| dc.subject | slaughterhouse | en |
| dc.subject | carbon emission | en |
| dc.subject | poultry meat | en |
| dc.title | 禽肉產品碳排放檢視及改善措施之研究-以白肉雞屠宰場為例 | zh_TW |
| dc.title | Study on Calculation and Improvement Measures of Carbon Footprint of Poultry Meat Products in Slaughterhouse | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 112-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 蔡向榮;賴敏銓;陳志維;莊啟佑 | zh_TW |
| dc.contributor.oralexamcommittee | Xiang-Rong Cai;Min-Chuan Lai;Jhih-Wei Chen;Chi-Yu Chuang | en |
| dc.subject.keyword | 禽肉,碳排放量,屠宰場,生命週期評估,ISO 14067,排放熱點,碳權, | zh_TW |
| dc.subject.keyword | poultry meat,carbon emission,slaughterhouse,life cycle assessment,ISO 14067,emission hotspots,carbon credit, | en |
| dc.relation.page | 140 | - |
| dc.identifier.doi | 10.6342/NTU202403718 | - |
| dc.rights.note | 同意授權(全球公開) | - |
| dc.date.accepted | 2024-08-12 | - |
| dc.contributor.author-college | 生物資源暨農學院 | - |
| dc.contributor.author-dept | 獸醫學系 | - |
| 顯示於系所單位: | 獸醫學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-112-2.pdf | 2.72 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
