請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/94440完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 羅世強 | zh_TW |
| dc.contributor.advisor | Shyh-Chyang Luo | en |
| dc.contributor.author | 林佳欣 | zh_TW |
| dc.contributor.author | Chia-Hsin Lin | en |
| dc.date.accessioned | 2024-08-15T17:31:45Z | - |
| dc.date.available | 2024-08-16 | - |
| dc.date.copyright | 2024-08-15 | - |
| dc.date.issued | 2024 | - |
| dc.date.submitted | 2024-07-30 | - |
| dc.identifier.citation | REFERENCE
(1) MacDiarmid, A. G.; Epstein, A. J. The concept of secondary doping as applied to polyaniline. Synth. Met. 1994, 65 (2), 103-116. (2) Snook, G. A.; Kao, P.; Best, A. S. Conducting-polymer-based supercapacitor devices and electrodes. J. Power Sources 2011, 196 (1), 1-12. (3) Warren, L. F.; Walker, J. A.; Anderson, D. P.; Rhodes, C. G.; Buckley, L. J. A Study of Conducting Polymer Morphology: The Effect of Dopant Anions Upon Order. J. Electrochem. Soc. 1989, 136 (8), 2286-2295. (4) K, N.; Rout, C. S. Conducting polymers: a comprehensive review on recent advances in synthesis, properties and applications. RSC Advances 2021, 11 (10), 5659-5697. (5) Bai, H.; Shi, G. Gas Sensors Based on Conducting Polymers. Sensors 2007, 7 (3). (6) Etemad, S.; Heeger, A. J. Polyacetylene, (CH)x: The Prototype Conducting Polymer. Annu. Rev. Phys. Chem. 1982, 33 (1), 443-469. (7) Ateh, D. D.; Navsaria, H. A.; Vadgama, P. Polypyrrole-based conducting polymers and interactions with biological tissues. J R Soc Interface 2006, 3 (11), 741-752. (8) Promsuwan, K.; Meng, L. Y.; Suklim, P.; Limbut, W.; Thavarungkul, P.; Kanatharana, P.; Mak, W. C. Bio-PEDOT: Modulating Carboxyl Moieties in Poly(3,4-ethylenedioxythiophene) for Enzyme-Coupled Bioelectronic Interfaces. ACS Appl. Mater. Interfaces 2020, 12 (35), 39841-39849. (9) Groenendaal, L.; Jonas, F.; Freitag, D.; Pielartzik, H.; Reynolds, J. R. Poly(3,4-ethylenedioxythiophene) and Its Derivatives: Past, Present, and Future. Adv. Mater. 2000, 12 (7), 481-494. (10) McCullough, R. D. The Chemistry of Conducting Polythiophenes. Adv. Mater. 1998, 10 (2), 93-116. (11) Rivnay, J.; Owens, R. M.; Malliaras, G. G. The Rise of Organic Bioelectronics. Chem. Mater. 2013, 26 (1), 679-685. (12) Luo, S.-C. Conducting Polymers as Biointerfaces and Biomaterials: A Perspective for a Special Issue of Polymer Reviews. Polymer Reviews 2013, 53 (3), 303-310. (13) Guo, J.; Fang, G.; Wang, S.; Wang, J. Quartz crystal microbalance sensor based on 11-mercaptoundecanoic acid self-assembly and amidated nano-titanium film for selective and ultrafast detection of phosphoproteins in food. Food Chem. 2021, 344, 128656. (14) Hsiao, Y. S.; Luo, S. C.; Hou, S.; Zhu, B.; Sekine, J.; Kuo, C. W.; Chueh, D. Y.; Yu, H. H.; Tseng, H. R.; Chen, P. 3D bioelectronic interface: capturing circulating tumor cells onto conducting polymer-based micro/nanorod arrays with chemical and topographical control. Small 2014, 10 (15), 3012-3017. (15) Inal, S.; Rivnay, J.; Suiu, A. O.; Malliaras, G. G.; McCulloch, I. Conjugated Polymers in Bioelectronics. Acc. Chem. Res. 2018, 51 (6), 1368-1376. (16) Lin, C. H.; Lin, J. H.; Chen, C. F.; Ito, Y.; Luo, S. C. Conducting polymer-based sensors for food and drug analysis. J. Food Drug Anal. 2021, 29 (4), 544-558. (17) Luo, S. C.; Ali, E. M.; Tansil, N. C.; Yu, H. H.; Gao, S.; Kantchev, E. A. B.; Ying, J. Y. Poly(3,4-ethylenedioxythiophene) (PEDOT) nanobiointerfaces: Thin, ultrasmooth, and functionalized PEDOT films with in vitro and in vivo biocompatibility. Langmuir 2008, 24 (15), 8071-8077. (18) Richardson-Burns, S. M.; Hendricks, J. L.; Foster, B.; Povlich, L. K.; Kim, D. H.; Martin, D. C. Polymerization of the conducting polymer poly(3,4-ethylenedioxythiophene) (PEDOT) around living neural cells. Biomaterials 2007, 28 (8), 1539-1552. (19) Luo, S.-C.; Sekine, J.; Zhu, B.; Zhao, H.; Nakao, A.; Yu, H.-h. Polydioxythiophene Nanodots, Nonowires, Nano-Networks, and Tubular Structures: The Effect of Functional Groups and Temperature in Template-Free Electropolymerization. ACS Nano 2012, 6 (4), 3018-3026. (20) Chin, M.; Tada, S.; Tsai, M. H.; Ito, Y.; Luo, S. C. Strategy to Immobilize Peptide Probe Selected through In Vitro Ribosome Display for Electrochemical Aptasensor Application. Anal. Chem. 2020, 92 (16), 11260-11267. (21) Khodagholy, D.; Gelinas, J. N.; Thesen, T.; Doyle, W.; Devinsky, O.; Malliaras, G. G.; Buzsaki, G. NeuroGrid: recording action potentials from the surface of the brain. Nat. Neurosci. 2015, 18 (2), 310-315. (22) Abidian, M. R.; Corey, J. M.; Kipke, D. R.; Martin, D. C. Conducting-Polymer Nanotubes Improve Electrical Properties, Mechanical Adhesion, Neural Attachment, and Neurite Outgrowth of Neural Electrodes. Small. 2010, 6 (3), 421-429. (23) Han, M.; Yildiz, E.; Kaleli, H. N.; Karaz, S.; Eren, G. O.; Dogru-Yuksel, I. B.; Senses, E.; Sahin, A.; Nizamoglu, S. Tissue-Like Optoelectronic Neural Interface Enabled by PEDOT:PSS Hydrogel for Cardiac and Neural Stimulation. Adv. Healthc. Mater. 2022, 11 (8), e2102160. (24) Huang, J. J.; Lin, C. H.; Tanaka, Y.; Yamamoto, A.; Luo, S. C.; Tanaka, M. Manipulation of Surface Hydration States by Tuning the Oligo(Ethylene Glycol) Moieties on PEDOT to Achieve Platelet‐Resistant Bioelectrode Applications. Adv. Mater. Interfaces 2022, 9 (33). (25) Kardela, J. H.; Millichamp, I. S.; Ferguson, J.; Parry, A. L.; Reynolds, K. J.; Aldred, N.; Clare, A. S. Nonfreezable Water and Polymer Swelling Control the Marine Antifouling Performance of Polymers with Limited Hydrophilic Content. ACS Appl. Mater. Interfaces 2019, 11 (33), 29477-29489. (26) Schlenoff, J. B. Zwitteration: coating surfaces with zwitterionic functionality to reduce nonspecific adsorption. Langmuir 2014, 30 (32), 9625-9636. (27) Higaki, Y.; Furusawa, R.; Otsu, T.; Yamada, N. L. Zwitterionic Poly(carboxybetaine) Brush/Albumin Conjugate Films: Structure and Lubricity. Langmuir 2022, 38 (30), 9278-9284. (28) Schonemann, E.; Koc, J.; Karthauser, J. F.; Ozcan, O.; Schanzenbach, D.; Schardt, L.; Rosenhahn, A.; Laschewsky, A. Sulfobetaine Methacrylate Polymers of Unconventional Polyzwitterion Architecture and Their Antifouling Properties. Biomacromolecules 2021, 22 (4), 1494-1508. (29) Morisaku, T.; Watanabe, J.; Konno, T.; Takai, M.; Ishihara, K. Hydration of phosphorylcholine groups attached to highly swollen polymer hydrogels studied by thermal analysis. Polymer 2008, 49 (21), 4652-4657. (30) Azuma, T.; Ohmori, R.; Teramura, Y.; Ishizaki, T.; Takai, M. Nano-structural comparison of 2-methacryloyloxyethyl phosphorylcholine- and ethylene glycol-based surface modification for preventing protein and cell adhesion. Colloids Surf., B 2017, 159, 655-661. (31) Sin, M.-C.; Chen, S.-H.; Chang, Y. Hemocompatibility of zwitterionic interfaces and membranes. Polymer Journal 2014, 46 (8), 436-443. (32) Shao, Q.; Jiang, S. Molecular understanding and design of zwitterionic materials. Adv. Mater. 2015, 27 (1), 15-26. (33) Chen, S. F.; Li, L. Y.; Zhao, C.; Zheng, J. Surface hydration: Principles and applications toward low-fouling/nonfouling biomaterials. POLYMER 2010, 51 (23), 5283-5293. (34) Higaki, Y.; Kobayashi, M.; Takahara, A. Hydration State Variation of Polyzwitterion Brushes through Interplay with Ions. Langmuir 2020, 36 (31), 9015-9024. (35) He, M.; Gao, K.; Zhou, L.; Jiao, Z.; Wu, M.; Cao, J.; You, X.; Cai, Z.; Su, Y.; Jiang, Z. Zwitterionic materials for antifouling membrane surface construction. Acta Biomater. 2016, 40, 142-152. (36) Lewis, A. L. Phosphorylcholine-based polymers and their use in the prevention of biofouling. Colloids Surf., B 2000, 18 (3), 261-275. (37) Reisch, A.; Voegel, J. C.; Gonthier, E.; Decher, G.; Senger, B.; Schaaf, P.; Mesini, P. J. Polyelectrolyte Multilayers Capped with Polyelectrolytes Bearing Phosphorylcholine and Triethylene Glycol Groups: Parameters Influencing Antifouling Properties. Langmuir 2009, 25 (6), 3610-3617. (38) Visova, I.; Smolkova, B.; Uzhytchak, M.; Vrabcova, M.; Chafai, D. E.; Houska, M.; Pastucha, M.; Skladal, P.; Farka, Z.; Dejneka, A.; et al. Functionalizable Antifouling Coatings as Tunable Platforms for the Stress-Driven Manipulation of Living Cell Machinery. Biomolecules 2020, 10 (8). (39) Wu, X. X.; He, Y.; Lai, G. C.; Zeng, R.; Tu, M. Biomimetic phosphorylcholine-modified bacterial cellulose membranes with cell fouling resistance. CELLULOSE 2020, 27 (17), 10061-10075. (40) Goda, T.; Miyahara, Y. Electrodeposition of Zwitterionic PEDOT Films for Conducting and Antifouling Surfaces. Langmuir 2019, 35 (5), 1126-1133. (41) Yu, X.; Liu, Z.; Janzen, J.; Chafeeva, I.; Horte, S.; Chen, W.; Kainthan, R. K.; Kizhakkedathu, J. N.; Brooks, D. E. Polyvalent choline phosphate as a universal biomembrane adhesive. Nat. Mater. 2012, 11 (5), 468-476. (42) Gao, W.; Feng, Y. K.; Lu, J.; Khan, M.; Guo, J. T. Biomimetic surface modification of polycarbonateurethane film via phosphorylcholine-graft for resisting platelet adhesion. Macromol. Res. 2012, 20 (10), 1063-1069. (43) Kojima, C.; Katayama, R.; Nguyen, T. L.; Oki, Y.; Tsujimoto, A.; Yusa, S.; Shiraishi, K.; Matsumoto, A. Different antifouling effects of random and block copolymers comprising 2-methacryloyloxyethyl phosphorylcholine and dodecyl methacrylate. Eur. Polym. J. 2020, 136. (44) Xue, Q.; Cao, H.; Meng, F. N.; Quan, M.; Gong, Y. K. Cell membrane mimetic coating immobilized by mussel-inspired adhesion on commercial ultrafiltration membrane to enhance antifouling performance. J. Membr. Sci. 2017, 528, 1-11. (45) Liu, Q.; Singha, P.; Handa, H.; Locklin, J. Covalent Grafting of Antifouling Phosphorylcholine-Based Copolymers with Antimicrobial Nitric Oxide Releasing Polymers to Enhance Infection-Resistant Properties of Medical Device Coatings. Langmuir 2017, 33 (45), 13105-13113. (46) Zeng, R.; Guo, K.; Wang, Z. H.; Tu, M.; Zhao, J. H.; Wang, J. Synthesis and self-assembly of biomimetic phosphorylcholine-bound chitosan derivatives. React. Funct. Polym. 2012, 72 (10), 745-751. (47) Gong, Y. K.; Liu, L. P.; Messersmith, P. B. Doubly Biomimetic Catecholic Phosphorylcholine Copolymer: A Platform Strategy for Fabricating Antifouling Surfaces. Macromol. Biosci. 2012, 12 (7), 979-985. (48) Jia, L.; Xu, J. P.; Wang, H.; Ji, J. A. Polyamidoamine dendrimers surface-engineered with biomimetic phosphorylcholine as potential drug delivery carriers. Colloids Surf., B 2011, 84 (1), 49-54. (49) Hiraguchi, Y.; Nagahashi, K.; Shibayama, T.; Hayashi, T.; Yano, T. A.; Kushiro, K.; Takai, M. Effect of the distribution of adsorbed proteins on cellular adhesion behaviors using surfaces of nanoscale phase-reversed amphiphilic block copolymers. Acta Biomater. 2014, 10 (7), 2988-2995. (50) Ren, X.; Feng, Y.; Guo, J.; Wang, H.; Li, Q.; Yang, J.; Hao, X.; Lv, J.; Ma, N.; Li, W. Surface modification and endothelialization of biomaterials as potential scaffolds for vascular tissue engineering applications. Acta Biomater. 2015, 44 (15), 5680-5742. (51) Chen, S.; Zheng, J.; Li, L.; Jiang, S. Strong Resistance of Phosphorylcholine Self-Assembled Monolayers to Protein Adsorption: Insights into Nonfouling Properties of Zwitterionic Materials. J. Am. Chem. Soc. 2005, 127 (41), 14473-14478. (52) Fuchs, A. V.; Ritz, S.; Putz, S.; Mailander, V.; Landfester, K.; Ziener, U. Bioinspired phosphorylcholine containing polymer films with silver nanoparticles combining antifouling and antibacterial properties. Biomater. Sci. 2013, 1 (5), 470-477. (53) Goda, T.; Tabata, M.; Sanjoh, M.; Uchimura, M.; Iwasaki, Y.; Miyahara, Y. Thiolated 2-methacryloyloxyethyl phosphorylcholine for an antifouling biosensor platform. CHEMICAL COMMUNICATIONS 2013, 49 (77), 8683-8685. (54) Ko du, Y.; Patel, M.; Jung, B. K.; Park, J. H.; Jeong, B. Phosphorylcholine-Based Zwitterionic Biocompatible Thermogel. Biomacromolecules 2015, 16 (12), 3853-3862. (55) Shimizu, T.; Goda, T.; Minoura, N.; Takai, M.; Ishihara, K. Super-hydrophilic silicone hydrogels with interpenetrating poly(2-methacryloyloxyethyl phosphorylcholine) networks. Biomaterials 2010, 31 (12), 3274-3280. (56) Goda, T.; Toya, M.; Matsumoto, A.; Miyahara, Y. Poly(3,4-ethylenedioxythiophene) Bearing Phosphorylcholine Groups for Metal-Free, Antibody-Free, and Low-Impedance Biosensors Specific for C-Reactive Protein. ACS Appl. Mater. Interfaces 2015, 7 (49), 27440-27448. (57) Liu, X. M.; Xiao, T. F.; Wu, F.; Shen, M. Y.; Zhang, M. N.; Yu, H. H.; Mao, L. Q. Ultrathin Cell-Membrane-Mimic Phosphorylcholine Polymer Film Coating Enables Large Improvements for InVivo Electrochemical Detection. Angew. Chem., Int. Ed. 2017, 56 (39), 11802-11806. (58) Gerard, M.; Chaubey, A.; Malhotra, B. D. Application of conducting polymers to biosensors. Biosens. Bioelectron. 2002, 17 (5), 345-359. (59) Someya, T.; Bao, Z.; Malliaras, G. G. The rise of plastic bioelectronics. Nature 2016, 540 (7633), 379-385. (60) Hackett, A. J.; Malmström, J.; Travas-Sejdic, J. Functionalization of conducting polymers for biointerface applications. Prog. Polym. Sci. 2017, 70, 18-33. (61) Bernardeschi, I.; Greco, F.; Ciofani, G.; Marino, A.; Mattoli, V.; Mazzolai, B.; Beccai, L. A soft, stretchable and conductive biointerface for cell mechanobiology. Biomed. Microdevices 2015, 17 (2), 46. (62) Zhang, Y. Q.; Lin, H. A.; Pan, Q. C.; Qian, S. H.; Zhang, S. H.; Qiu, G.; Luo, S. C.; Yu, H. H.; Zhu, B. Tunable Protein/Cell Binding and Interaction with Neurite Outgrowth of Low-Impedance Zwitterionic PEDOTs. ACS Appl. Mater. Interfaces 2020, 12 (10), 12362-12372. (63) Braig, D.; Nero, T. L.; Koch, H. G.; Kaiser, B.; Wang, X.; Thiele, J. R.; Morton, C. J.; Zeller, J.; Kiefer, J.; Potempa, L. A.; et al. Transitional changes in the CRP structure lead to the exposure of proinflammatory binding sites. Nat. Commun. 2017, 8, 14188. (64) Goda, T.; Miyahara, Y. Engineered zwitterionic phosphorylcholine monolayers for elucidating multivalent binding kinetics of C-reactive protein. Acta Biomater. 2016, 40, 46-53. (65) Potempa, L. A.; Yao, Z. Y.; Ji, S. R.; Filep, J. G.; Wu, Y. Solubilization and purification of recombinant modified C-reactive protein from inclusion bodies using reversible anhydride modification. Biophys. Rep. 2015, 1, 18-33. (66) Wu, J. G.; Wei, S. C.; Luo, S. C. In Situ Probing Unusual Protein Adsorption Behavior on Electrified Zwitterionic Conducting Polymers. Adv. Mater. Interfaces 2020, 7 (15). (67) Chen, Y.; Luo, S. C. Synergistic Effects of Ions and Surface Potentials on Antifouling Poly(3,4-ethylenedioxythiophene): Comparison of Oligo(Ethylene Glycol) and Phosphorylcholine. Langmuir 2019, 35 (5), 1199-1210. (68) Ishihara, K. Blood-Compatible Surfaces with Phosphorylcholine-Based Polymers for Cardiovascular Medical Devices. Langmuir 2019, 35 (5), 1778-1787. (69) Ishihara, K. Biomimetic materials based on zwitterionic polymers toward human-friendly medical devices. Sci. Technol. Adv. Mater. 2022, 23 (1), 498-524. (70) Mondal, J. A.; Nihonyanagi, S.; Yamaguchi, S.; Tahara, T. Three distinct water structures at a zwitterionic lipid/water interface revealed by heterodyne-detected vibrational sum frequency generation. J. Am. Chem. Soc. 2012, 134 (18), 7842-7850. (71) Spori, D. M.; Drobek, T.; Zürcher, S.; Ochsner, M.; Sprecher, C.; Mühlebach, A.; Spencer, N. D. Beyond the Lotus Effect: Roughness Influences on Wetting over a Wide Surface-Energy Range. Langmuir 2008, 24 (10), 5411-5417. (72) Yamamoto, M.; Nishikawa, N.; Mayama, H.; Nonomura, Y.; Yokojima, S.; Nakamura, S.; Uchida, K. Theoretical Explanation of the Lotus Effect: Superhydrophobic Property Changes by Removal of Nanostructures from the Surface of a Lotus Leaf. Langmuir 2015, 31 (26), 7355-7363. (73) Yu, L.; Tang, P.; Nie, C.; Hou, Y.; Haag, R. Well-Defined Nanostructured Biointerfaces: Strengthened Cellular Interaction for Circulating Tumor Cells Isolation. Adv. Healthcare Mater. 2021, 10 (11), e2002202. (74) Blackman, L. D.; Gunatillake, P. A.; Cass, P.; Locock, K. E. S. An introduction to zwitterionic polymer behavior and applications in solution and at surfaces. Chem. Soc. Rev. 2019, 48 (3), 757-770. (75) Chang, B.; Zhang, M.; Qing, G.; Sun, T. Dynamic biointerfaces: from recognition to function. Small 2015, 11 (9-10), 1097-1112. (76) Velev, O. D.; Kaler, E. W. In Situ Assembly of Colloidal Particles into Miniaturized Biosensors. Langmuir 1999, 15 (11), 3693-3698. (77) Jiang, P. Wafer-scale fabrication of periodic polymer attolitre microvial arrays. Chem. Commun. 2005, (13), 1699-1701. (78) Fustin, C.-A.; Glasser, G.; Spiess, H. W.; Jonas, U. Parameters Influencing the Templated Growth of Colloidal Crystals on Chemically Patterned Surfaces. Langmuir 2004, 20 (21), 9114-9123. (79) Park, J. Y.; Pernites, R.; Estillore, N.; Hyakutake, T.; Ponnapati, R.; Tiu, B. D.; Nishide, H.; Advincula, R. C. Capsulation of carbon nanotubes on top of colloidally templated and electropolymerized polythiophene arrays. Chem. Commun. 2011, 47 (31), 8871-8873. (80) Pernites, R. B.; Felipe, M. J.; Foster, E. L.; Advincula, R. C. Colloidally templated two-dimensional conducting polymer arrays and SAMs: binary composition patterning and chemistry. ACS Appl. Mater. Interfaces 2011, 3 (3), 817-827. (81) Lin, W. F.; Swartz, L. A.; Li, J. R.; Liu, Y.; Liu, G. Y. Particle Lithography Enables Fabrication of Multicomponent Nanostructures. J. Phys. Chem. C 2013, 117 (44), 23279-23285. (82) Guang, J.; Lu, M.; Liu, Y.; Fan, R.; Wang, C.; Li, R.; Liang, Y.; Peng, W. Flexible and Speedy Preparation of Large-Scale Polystyrene Monolayer through Hemispherical-Depression-Assisted Self-Assembling and Vertical Lifting. ACS Appl. Polym. Mater. 2023, 5 (4), 2674-2683. (83) Tagaya, M.; Ikoma, T.; Hanagata, N.; Tanaka, J. Analytical Investigation of Protein Mediation Between Biomaterials and Cells. Materials Express 2012, 2 (1), 1-22. (84) Tagaya, M. In situ QCM-D study of nano-bio interfaces with enhanced biocompatibility. Polymer Journal 2015, 47 (9), 599-608. (85) Penna, M. J.; Mijajlovic, M.; Biggs, M. J. Molecular-level understanding of protein adsorption at the interface between water and a strongly interacting uncharged solid surface. J. Am. Chem. Soc. 2014, 136 (14), 5323-5331. (86) Walker, C.; Mojares, E.; Del Rio Hernandez, A. Role of Extracellular Matrix in Development and Cancer Progression. Int. J. Mol. Sci. 2018, 19 (10). (87) Khalili, A. A.; Ahmad, M. R. A Review of Cell Adhesion Studies for Biomedical and Biological Applications. Int. J. Mol. Sci. 2015, 16 (8), 18149-18184. (88) Fruh, S. M.; Schoen, I.; Ries, J.; Vogel, V. Molecular architecture of native fibronectin fibrils. Nat. Commun. 2015, 6, 7275. (89) Arnoldini, S.; Moscaroli, A.; Chabria, M.; Hilbert, M.; Hertig, S.; Schibli, R.; Behe, M.; Vogel, V. Novel peptide probes to assess the tensional state of fibronectin fibers in cancer. Nat. Commun. 2017, 8 (1), 1793. (90) Erdogan, B.; Ao, M.; White, L. M.; Means, A. L.; Brewer, B. M.; Yang, L.; Washington, M. K.; Shi, C.; Franco, O. E.; Weaver, A. M.; et al. Cancer-associated fibroblasts promote directional cancer cell migration by aligning fibronectin. J. Cell Biol. 2017, 216 (11), 3799-3816. (91) Han, Z.; Lu, Z. R. Targeting Fibronectin for Cancer Imaging and Therapy. J. Mater. Chem. B, 2017, 5 (4), 639-654. (92) Tanaka, M.; Kobayashi, S.; Murakami, D.; Aratsu, F.; Kashiwazaki, A.; Hoshiba, T.; Fukushima, K. Design of Polymeric Biomaterials: The “Intermediate Water Concept”. Bull. Chem. Soc. Jpn. 2019, 92 (12), 2043-2057. (93) Tanaka, M.; Hayashi, T.; Morita, S. The roles of water molecules at the biointerface of medical polymers. Polymer Journal 2013, 45 (7), 701-710. (94) Tanaka, M.; Morita, S.; Hayashi, T. Role of Interfacial Water in Determining the Interactions of Proteins and Cells with Hydrated Materials. Colloids Surf., B 2021, 198, 111449. (95) Nakada, M.; Ishida, H.; Furushima, Y. Structural and Dynamical Characterisation of Intermediate Water Interacting Polyvinyl Pyrrolidone. Materialia 2020, 12. (96) Kang, B.; Tang, H.; Zhao, Z.; Song, S. Hofmeister Series: Insights of Ion Specificity from Amphiphilic Assembly and Interface Property. ACS Omega 2020, 5 (12), 6229-6239. (97) Gregory, K. P.; Elliott, G. R.; Robertson, H.; Kumar, A.; Wanless, E. J.; Webber, G. B.; Craig, V. S. J.; Andersson, G. G.; Page, A. J. Understanding specific ion effects and the Hofmeister series. Phys. Chem. Chem. Phys. 2022, 24 (21), 12682-12718. (98) Light, T. P.; Corbett, K. M.; Metrick, M. A., 2nd; MacDonald, G. Hofmeister Ion-Induced Changes in Water Structure Correlate with Changes in Solvation of an Aggregated Protein Complex. Langmuir 2016, 32 (5), 1360-1369. (99) Rana, B.; Fairhurst, D. J.; Jena, K. C. Ion-Specific Water-Macromolecule Interactions at the Air/Aqueous Interface: An Insight into Hofmeister Effect. J. Am. Chem. Soc. 2023, 145 (17), 9646-9654. (100) Qiu, M.; Sun, P.; Han, K.; Pang, Z.; Du, J.; Li, J.; Chen, J.; Wang, Z. L.; Mai, W. Tailoring water structure with high-tetrahedral-entropy for antifreezing electrolytes and energy storage at -80 degrees C. Nat. Commun. 2023, 14 (1), 601. (101) Kou, R.; Zhang, J.; Wang, T.; Liu, G. Interactions between Polyelectrolyte Brushes and Hofmeister Ions: Chaotropes versus Kosmotropes. Langmuir 2015, 31 (38), 10461-10468. (102) Guan, L.; Xu, H.; Huang, D. The investigation on states of water in different hydrophilic polymers by DSC and FTIR. J. Polym. Res. 2010, 18 (4), 681-689. (103) Zhao, J.; Wang, J. Direct Anionic Effect on Water Structure and Indirect Anionic Effect on Peptide Backbone Hydration State Revealed by Thin-Layer Infrared Spectroscopy. J. Phys. Chem. B 2018, 122 (1), 68-76. (104) Seki, T.; Chiang, K. Y.; Yu, C. C.; Yu, X.; Okuno, M.; Hunger, J.; Nagata, Y.; Bonn, M. The Bending Mode of Water: A Powerful Probe for Hydrogen Bond Structure of Aqueous Systems. J. Phys. Chem. Lett. 2020, 11 (19), 8459-8469. (105) Perakis, F.; Marco, L. D.; Shalit, A.; Tang, F.; Kann, Z. R.; Kuhne, T. D.; Torre, R.; Bonn, M.; Nagata, Y. Vibrational Spectroscopy and Dynamics of Water. Chem. Rev. 2016, 116 (13), 7590-7607. (106) Pennathur, A. K.; Tseng, C.; Salazar, N.; Dawlaty, J. M. Controlling Water Delivery to an Electrochemical Interface with Surfactants. J. Am. Chem. Soc. 2023, 145 (4), 2421-2429. (107) Ghassemizadeh, R.; Moore, B.; Momose, T.; Walter, M. Stability and IR Spectroscopy of Zwitterionic Form of beta-Alanine in Water Clusters. J Phys. Chem. B 2019, 123 (20), 4392-4399. (108) Brubach, J. B.; Mermet, A.; Filabozzi, A.; Gerschel, A.; Roy, P. Signatures of the hydrogen bonding in the infrared bands of water. J. Chem. Phys. 2005, 122 (18), 184509. (109) Morita, S.; Tanaka, M.; Ozaki, Y. Time-Resolved In Situ ATR-IR Observations of the Process of Sorption of Water into a Poly(2-methoxyethyl acrylate) Film. Langmuir 2007, 23 (7), 3750-3761. (110) Osawa, M.; Tsushima, M.; Mogami, H.; Samjeské, G.; Yamakata, A. Structure of Water at the Electrified Platinum−Water Interface: A Study by Surface-Enhanced Infrared Absorption Spectroscopy. J. Phys. Chem. C 2008, 112 (11), 4248-4256. (111) Chen, X.; Hua, W.; Huang, Z.; Allen, H. C. Interfacial Water Structure Associated with Phospholipid Membranes Studied by Phase-Sensitive Vibrational Sum Frequency Generation Spectroscopy. J. Am. Chem. Soc. 2010, 132 (32), 11336-11342. (112) Eneh, C. I.; Bolen, M. J.; Suarez-Martinez, P. C.; Bachmann, A. L.; Zimudzi, T. J.; Hickner, M. A.; Batys, P.; Sammalkorpi, M.; Lutkenhaus, J. L. Fourier transform infrared spectroscopy investigation of water microenvironments in polyelectrolyte multilayers at varying temperatures. Soft Matter 2020, 16 (9), 2291-2300. (113) Ikemoto, Y.; Harada, Y.; Tanaka, M.; Nishimura, S. N.; Murakami, D.; Kurahashi, N.; Moriwaki, T.; Yamazoe, K.; Washizu, H.; Ishii, Y.; et al. Infrared Spectra and Hydrogen-Bond Configurations of Water Molecules at the Interface of Water-Insoluble Polymers under Humidified Conditions. J. Phys. Chem. B 2022, 126 (22), 4143-4151. (114) Li, S.; Wu, L.; Zhang, X.; Jiang, X. The Structure of Water Bonded to Phosphate Groups at the Electrified Zwitterionic Phospholipid Membranes/Aqueous Interface. Angew. Chem. Int. Ed. Engl. 2020, 59 (16), 6627-6630. (115) Zhu, B.; Luo, S. C.; Zhao, H.; Lin, H. A.; Sekine, J.; Nakao, A.; Chen, C.; Yamashita, Y.; Yu, H. H. Large Enhancement in Neurite Outgrowth on a Cell Membrane-mimicking Conducting Polymer. Nat. Commun. 2014, 5, 4523. (116) Easley, A. D.; Ma, T.; Eneh, C. I.; Yun, J.; Thakur, R. M.; Lutkenhaus, J. L. A Practical Guide to Quartz Crystal Microbalance with Dissipation Monitoring of Thin Polymer Films. Journal of Polymer Science 2021, 60 (7), 1090-1107. (117) Dudchenko, A. V.; Bengani-Lutz, P.; Asatekin, A.; Mauter, M. S. Foulant Adsorption to Heterogeneous Surfaces with Zwitterionic Nanoscale Domains. ACS Appl. Polym. Mater. 2020, 2 (11), 4709-4718. (118) Wu, J. G.; Wei, S. C.; Chen, Y.; Chen, J. H.; Luo, S. C. Critical Study of the Recognition between C-Reactive Protein and Surface-Immobilized Phosphorylcholine by Quartz Crystal Microbalance with Dissipation. Langmuir 2018, 34 (3), 943-951. (119) Ozeki, T.; Morita, M.; Yoshimine, H.; Furusawa, H.; Okahata, Y. Hydration and Energy Dissipation Measurements of Biomolecules on a Piezoelectric Quartz Oscillator by Admittance Analyses. Anal. Chem. 2007, 79 (1), 79-88. (120) Uhlig, M. R.; Garcia, R. In Situ Atomic-Scale Imaging of Interfacial Water under 3D Nanoscale Confinement. Nano Lett. 2021, 21 (13), 5593-5598. (121) Fukuma, T.; Garcia, R. Atomic- and Molecular-Resolution Mapping of Solid-Liquid Interfaces by 3D Atomic Force Microscopy. ACS Nano 2018, 12 (12), 11785-11797. (122) Oras, S.; Vlassov, S.; Berholts, M.; Lohmus, R.; Mougin, K. Tuning adhesion forces between functionalized gold colloidal nanoparticles and silicon AFM tips: role of ligands and capillary forces. Beilstein J. Nanotechnol. 2018, 9, 660-670. (123) Dupont-Gillain, C. C.; Jacquemart, I. Patterned collagen layers on polystyrene: direct probing using AFM in the adhesion mapping mode. Surface Science 2003, 539 (1), 145-154. (124) Garcia, R. Nanomechanical mapping of soft materials with the atomic force microscope: methods, theory and applications. Chem. Soc. Rev. 2020. (125) Lin, C. H.; Tang, X.; Chen, P.; Luo, S. C. Unraveling the Adhesion Behavior of Different Cell Lines on Biomimetic PEDOT Interfaces: The Role of Surface Morphology and Antifouling Properties. ACS Appl. Bio. Mater. 2023, 6 (12), 5695-5707. (126) Chang, Y.-Y.; Huang, H.-L.; Chen, Y.-C.; Hsu, J.-T.; Shieh, T.-M.; Tsai, M.-T. Biological Characteristics of the MG-63 Human Osteosarcoma Cells on Composite Tantalum Carbide/Amorphous Carbon Films. PLOS ONE 2014, 9 (4), e95590. (127) Chow, T. S. Wetting of rough surfaces. J. Phys.: Condens.Matter 1998, 10 (27), L445. (128) Elmer-Dixon, M. M.; Xie, Z.; Alverson, J. B.; Priestley, N. D.; Bowler, B. E. Curvature-Dependent Binding of Cytochrome c to Cardiolipin. J. Am. Chem. Soc. 2020, 142 (46), 19532-19539. (129) Mohammadyani, D.; Yanamala, N.; Samhan-Arias, A. K.; Kapralov, A. A.; Stepanov, G.; Nuar, N.; Planas-Iglesias, J.; Sanghera, N.; Kagan, V. E.; Klein-Seetharaman, J. Structural characterization of cardiolipin-driven activation of cytochrome c into a peroxidase and membrane perturbation. Biochim. Biophys. Acta, Biomembr. 2018, 1860 (5), 1057-1068. (130) Hristova, S. H.; Zhivkov, A. M. Isoelectric point of free and adsorbed cytochrome c determined by various methods. Colloids Surf., B 2019, 174, 87-94. (131) Abeyrathne, E. D.; Lee, H. Y.; Ahn, D. U. Sequential separation of lysozyme, ovomucin, ovotransferrin, and ovalbumin from egg white. Poult. Sci. 2014, 93 (4), 1001-1009. (132) López-Bernabeu, S.; Huerta, F.; Morallón, E.; Montilla, F. Direct Electron Transfer to Cytochrome c Induced by a Conducting Polymer. J. Phys. Chem. C 2017, 121 (29), 15870-15879. (133) Dowling, D. P.; Miller, I. S.; Ardhaoui, M.; Gallagher, W. M. Effect of surface wettability and topography on the adhesion of osteosarcoma cells on plasma-modified polystyrene. J. Biomater. Appl. 2011, 26 (3), 327-347. (134) Rafiee, K.; Naffakh-Moosavy, H.; Tamjid, E. The effect of laser frequency on roughness, microstructure, cell viability and attachment of Ti6Al4V alloy. Mater. Sci. Eng., C 2020, 109, 110637. (135) Gentile, F.; Tirinato, L.; Battista, E.; Causa, F.; Liberale, C.; di Fabrizio, E. M.; Decuzzi, P. Cells preferentially grow on rough substrates. Biomaterials 2010, 31 (28), 7205-7212. (136) Kumar, S.; Ye, F.; Dobretsov, S.; Dutta, J. Nanocoating Is a New Way for Biofouling Prevention. Frontiers in Nanotechnology 2021, 3. (137) Jiang, X.; Shao, Y.; Li, J.; Wu, M.; Niu, Y.; Ruan, X.; Yan, X.; Li, X.; He, G. Bioinspired Hybrid Micro/Nanostructure Composited Membrane with Intensified Mass Transfer and Antifouling for High Saline Water Membrane Distillation. ACS Nano 2020, 14 (12), 17376-17386. (138) Lin, C.-H.; Wang, C.-Y.; Li, J.-R.; Luo, S.-C. Nanostructured Effect on Antifouling Conducting Polymers through Interfacial Adhesive Interaction and Protein Adsorption. ACS Appl. Polym. Mater. 2023, 5 (12), 10105-10115. (139) Murakami, D.; Jinnai, H.; Takahara, A. Wetting transition from the Cassie-Baxter state to the Wenzel state on textured polymer surfaces. Langmuir 2014, 30 (8), 2061-2067. (140) Abdelsalam, M. E.; Bartlett, P. N.; Kelf, T.; Baumberg, J. Wetting of Regularly Structured Gold Surfaces. Langmuir 2005, 21 (5), 1753-1757. (141) Olubowale, O. H.; Biswas, S.; Azom, G.; Prather, B. L.; Owoso, S. D.; Rinee, K. C.; Marroquin, K.; Gates, K. A.; Chambers, M. B.; Xu, A.; et al. "May the Force Be with You!" Force-Volume Mapping with Atomic Force Microscopy. ACS Omega 2021, 6 (40), 25860-25875. (142) Jeyachandran, Y. L.; Mielczarski, E.; Rai, B.; Mielczarski, J. A. Quantitative and Qualitative Evaluation of Adsorption/Desorption of Bovine Serum Albumin on Hydrophilic and Hydrophobic Surfaces. Langmuir 2009, 25 (19), 11614-11620. (143) Wu, J. G.; Wei, S. C.; Luo, S. C. In Situ Probing Unusual Protein Adsorption Behavior on Electrified Zwitterionic Conducting Polymers. Advanced Materials Interfaces 2020, 7 (15). (144) Goda, T.; Ishihara, K.; Miyahara, Y. Critical update on 2-methacryloyloxyethyl phosphorylcholine (MPC) polymer science. J. Appl. Polym. Sci. 2015, 132 (16), n/a-n/a. (145) Xin Chen, T. Y., Sho Kataoka, and Paul S. Cremer. Specific Ion Effects on Interfacial Water Structure near Macromolecules. J. Am. Chem. Soc. 2007, 129, 12272-12279. (146) Inoue, K. I.; Singh, P. C.; Nihonyanagi, S.; Yamaguchi, S.; Tahara, T. Cooperative Hydrogen-Bond Dynamics at a Zwitterionic Lipid/Water Interface Revealed by 2D HD-VSFG Spectroscopy. J. Phys. Chem. Lett. 2017, 8 (20), 5160-5165. (147) Suominen, M.; Damlin, P.; Kvarnström, C. Electrolyte effects on formation and properties of PEDOT-graphene oxide composites. Electrochimica Acta 2019, 307, 214-223. (148) Seki, Y.; Takahashi, M.; Takashiri, M. Effects of different electrolytes and film thicknesses on structural and thermoelectric properties of electropolymerized poly(3,4-ethylenedioxythiophene) films. RSC Adv. 2019, 9 (28), 15957-15965. (149) Mitraka, E.; Jafari, M. J.; Vagin, M.; Liu, X.; Fahlman, M.; Ederth, T.; Berggren, M.; Jonsson, M. P.; Crispin, X. Oxygen-induced doping on reduced PEDOT. J. Mater. Chem. A, 2017, 5 (9), 4404-4412. (150) Bahry, T.; Cui, Z.; Deniset-Besseau, A.; Gervais, M.; Sollogoub, C.; Bui, T.-T.; Remita, S. An alternative radiolytic route for synthesizing conducting polymers in an organic solvent. New Journal of Chemistry 2018, 42 (11), 8704-8716. (151) Toth, P. S.; Janaky, C.; Berkesi, O.; Tamm, T.; Visy, C. On the unexpected cation exchange behavior, caused by covalent bond formation between PEDOT and Cl- ions: extending the conception for the polymer-dopant interactions. J. Phys. Chem. B 2012, 116 (18), 5491-5500. (152) Sandoval, A. P.; Suarez-Herrera, M. F.; Feliu, J. M. IR and electrochemical synthesis and characterization of thin films of PEDOT grown on platinum single crystal electrodes in [EMMIM]Tf2N ionic liquid. Beilstein J. Org. Chem. 2015, 11, 348-357. (153) Kvarnström, C.; Neugebauer, H.; Blomquist, S.; Ahonen, H. J.; Kankare, J.; Ivaska, A. In situ spectroelectrochemical characterization of poly(3,4-ethylenedioxythiophene). Electrochimica Acta 1999, 44 (16), 2739-2750. (154) Damlin, P.; Kvarnström, C.; Ivaska, A. Electrochemical synthesis and in situ spectroelectrochemical characterization of poly(3,4-ethylenedioxythiophene) (PEDOT) in room temperature ionic liquids. J. Electroanal. Chem. 2004, 570 (1), 113-122. (155) Petsagkourakis, I.; Riera-Galindo, S.; Ruoko, T. P.; Strakosas, X.; Pavlopoulou, E.; Liu, X.; Braun, S.; Kroon, R.; Kim, N.; Lienemann, S.; et al. Improved Performance of Organic Thermoelectric Generators Through Interfacial Energetics. Adv. Sci. 2023, e2206954. (156) Chen, Y.; Zhang, Y.-H.; Zhao, L.-J. ATR-FTIR spectroscopic studies on aqueous LiClO4, NaClO4, and Mg(ClO4)2 solutions. Phys. Chem. Chem. Phys. 2004, 6 (3). (157) Ataka, K.-i.; Osawa, M. In Situ Infrared Study of Water−Sulfate Coadsorption on Gold(111) in Sulfuric Acid Solutions. Langmuir 1998, 14 (4), 951-959. (158) Ataka, K.-i.; Yotsuyanagi, T.; Osawa, M. Potential-Dependent Reorientation of Water Molecules at an Electrode/Electrolyte Interface Studied by Surface-Enhanced Infrared Absorption Spectroscopy. J. Phys. Chem. 1996, 100 (25), 10664-10672. (159) Liu, Y.; Xia, X. H. Thermally Driven Transformation of Water Clustering Structures at Self-Assembled Monolayers. Langmuir 2021, 37 (39), 11493-11498. (160) Morita, S.; Tanaka, M. Effect of sodium chloride on hydration structures of PMEA and P(MPC-r-BMA). Langmuir 2014, 30 (35), 10698-10703. (161) Zhang, Z.; Moxey, M.; Alswieleh, A.; Morse, A. J.; Lewis, A. L.; Geoghegan, M.; Leggett, G. J. Effect of Salt on Phosphorylcholine-based Zwitterionic Polymer Brushes. Langmuir 2016, 32 (20), 5048-5057. (162) Zhang, Z.; Morse, A. J.; Armes, S. P.; Lewis, A. L.; Geoghegan, M.; Leggett, G. J. Nanoscale contact mechanics of biocompatible polyzwitterionic brushes. Langmuir 2013, 29 (34), 10684-10692. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/94440 | - |
| dc.description.abstract | 生醫傳感的發展高度依賴於生物分子與介面之間複雜的交互關係。這些交互作用將影響傳感器的設計、選擇性和穩定性,進而影響傳感器的效能。而這些作用機制需要考慮到非常表層的水,或是因奈米結構而產生的表面力學性質改變;本研究中,我們將透過物理及化學的方法去剖析材料表面、生物分子與環境之間的關係。
因為具有良好的生物相容性、接近生物組織的機械性質、與在水中穩定的導電等優勢,導電高分子(conducting polymer, CP)中的聚(3,4-乙烯二氧噻吩)(poly(3,4-ethylenedioxythiophene), PEDOT)被廣泛應用在電化學生物傳感當中。PEDOT可以靈活的官能化與控制表面形貌,形成多變的奈米結構來調節生物分子與材料間相互作用。具有磷酸膽鹼基的PEDOT (PEDOT-PC) 是衍生於細胞膜上的親水磷脂質端,賦予導電高分子抗沾黏的特性並防止非特定性生物分子的吸附以維持平台的效率和可靠性。 第一節將探討PEDOT 的奈米結構及官能化與生物分子的交相作用。透過調控EDOT-PC在電化學溶液中的組成比,可以獲得不同抗沾黏程度的表面,而改變電聚合條件也可以得到不同的表面結構。利用石英晶體微天平與耗散量測(quartz crystal microbalance with dissipation, QCM-D)來測量帶有不同等電點蛋白質與平台間的作用力,等電點由低到高為牛血清白蛋白(bovine serum albumin, BSA)、溶菌酶(lysozyme, LYZ)和細胞色素c(cytochrome c, cyt c),而為了連結到生物端的應用,同時也加入了人類纖連蛋白(fibronectin, FN);此外為了觀測界面上細胞的貼附,我們選擇骨肉瘤細胞(MG-63)、源自子宮頸癌細胞的海拉細胞(HeLa)以及從小鼠胚胎分離的纖維細胞NIH/3T3作為三種細胞源。經由分析細胞數量與細胞核大小可以得知,當表面上有足夠的 PC可以顯著改變細胞貼附的反應,包括附著量的減少、細胞核形態的改變和收縮,最後引起細胞凋亡。這個研究可以了解細胞如何與不同形貌的 PEDOT 相互作用以及抗沾黏表面對細胞型態的影響。 第二部分,我們透過膠體微影技術(colloidal lithography, CL)製備出具有規整奈米結構的導電高分子表面。在此研究中,我們採用原子力顯微鏡(atomic force microscope, AFM)的PeakForce Tapping與力曲線陣列(force−volume)模式來探討這些表面的力學性質,這個技術可以得到精確的力-距離二維陣列並同時提供力的變化和樣品表面形貌,每一點都有獨立的力曲線被記錄下來。接著,我們也利用QCM-D研究材料表面蛋白質吸附行為,除了BSA、LYZ和cyt c作為非特定性吸附蛋白質外,同時還加入了C反應蛋白(C-reactive protein, CRP),該蛋白質表現出對PC特定性結合的特性,以進一步觀察奈米結構對生物分子吸附的效應。AFM 結果顯示出奈米結構的表面會誘發更強的吸附力,提高一般表面的蛋白質吸附;相反的,具有雙親性官能基的PEDOT-PC表面呈現出非常微弱的相互作用。從蛋白質吸附的結果來看,奈米結構削弱了PEDOT-PC的抗沾黏效果,這與水接觸角的結果相符,說明規則的奈米結構可以減弱PC官能基保留住水層的能力。這項研究的結果提供更多物理性的探討,同時評估了奈米結構對抗沾黏的影響。 論文的第三部分專注在探討水分子在導電高分子中的動態行為。材料界面上水分子的表現在各個科學領域中扮演著關鍵角色。為了量測PEDOT及其衍生物中的水分子的狀態,我們採用了原位傅立葉變換紅外光譜(in−situ FT-IR)和差示掃描量熱法(differential scanning calorimetry, DSC)作為分析方法。DSC能夠量化材料中的三種不同狀態的水:非凍結水(non-freezing water, NFW)、中間水(intermediate water, IW)和結晶水(free water, FW)。霍夫梅斯特級數提供了離子與水親和力的排序。過氯酸根的存在會提高水構成四面體結構的能障,屬於會“破壞水結構”的陰離子類別。相反的,“穩定水結構”的陰離子,如硫酸根,表現出較高的水合傾向,並與周圍的水分子形成穩定的結構。通過電位控制結合紅外光譜,我們監測了水在高分子中OH伸展(stretching)的變化與吸附/脫附的現象。對於富含羥基的PEDOT-OH,硫酸根離子明顯影響了吸附水,因為羥基與水有較強的相互作用。然而,過氯酸根離子對PEDOT-OH中的水分子的行為影響不大。對於包含雙親性的導電高分子PEDOT-PC來說,作為有效的抗沾黏表面,非凍結水和中間水普遍存在PC官能基當中,在暴露於鹽類時保護高分子內的水分子而不引起脫水。OH伸展的峰形的變化可以用高斯函數來分析,並可以解析不同的結構的水在光譜顯示的獨特結果。在此章節中,我們闡述了水分子的結構特徵並展示了可藉由電位控制來調節離子、導電高分子和水之間的相互作用。 | zh_TW |
| dc.description.abstract | The development of biomedical sensing highly relies on the complex interactions between biomolecules and interfaces. These interactions affect the design, selectivity, and stability of sensors, which in turn influence the efficiency and sensitivity. These mechanisms need to consider factors such as the interfacial water or changes in surface mechanical properties due to nanostructures. In this study, we used physical and chemical methods to analyze the relationships between the interface of material and biomolecules.
Owing to the advantage of biocompatibility and intrinsic conductivity, the poly(3,4-ethylenedioxythiophene) (PEDOT) interface is promising for electrochemical biosensing and modulating biomolecules−interface interaction. As a result, PEDOT has been used as a conductive substrate for organic electrochemical devices. With the flexibility for functionalization and morphology control, derivatives of PEDOT can obtain multipurpose applications. The functionalization of PEDOT with phosphorylcholine (PC) groups (PEDOT-PC) mimics the hydrophilic headgroup found in cell membranes and gives the coating exceptional antifouling ability. Antifouling plays a critical role in maintaining the efficiency and reliability of various biomedical applications to prevent the binding of undesirable biomolecules in recent biotechnology. The first part includes a thorough investigation into how biomolecules interact with different types of PEDOT concerning surface functionalization and structure. We controlled the structure of PEDOT platforms and gradually increased the degrees of antifouling by controlling the electrochemical conditions. The protein binding behavior was measured by quartz crystal microbalance with dissipation (QCM-D) beforehand. We utilized a range of proteins, including bovine serum albumin (BSA), lysozyme (LYZ), and cytochrome c (cyt c), for their distinct isoelectric points to evaluate the binding affinity to PEDOT films. Moreover, a multifunctional adhesive glycoprotein protein, fibronectin (FN), was also included. We also evaluated the cell adhesion behavior on PEDOT interfaces. MG-63 osteosarcoma cell, HeLa derived from the cervical cancer cell, and fibroblast NIH/3T3 were chosen as three cell lines. By assessing the number of cells and measuring the size of their nuclei, sufficient PC contents dramatically changed the adhesive response, including the attached number, morphologies, and cell nuclei shrinkage. Finally, over 70% of the feeding ratio of PEDOT-PC can cause cell apoptosis. In the next part, we created a precisely defined PEDOT nanopattern enriched with antifouling PC moieties (PEDOT-PC) in comparison to PEDOT functionalized with hydroxyl groups (PEDOT-OH) to explore the nanostructure effects at the interfaces. We obtained well-defined nanopatterned PEDOT films using a colloidal lithography (CL) approach. We employed atomic force microscopy (AFM) to investigate the adhesion effect of periodic nanostructures in aqueous solutions. Real-time and quantitative adhesion between the AFM tip and sample was assessed through force-volume mapping. Additionally, we examined the protein adsorption behaviors at these interfaces using QCM-D with BSA, LYZ, and cyt-c, which act as non-specific binding proteins. The C-reactive protein (CRP) was included due to its specific affinity to the PC functional groups. AFM probing nearly the interface revealed that the nanostructured surfaces induced higher adhesion forces than pristine PEDOT-OH films, while the PEDOT-PC coating exhibited minimal interaction during tip scanning. Furthermore, the protein adsorption tests indicated that the nanostructures compromised the antifouling properties of PEDOT-PC films, consistent with water contact angle (WCA) measurements. The periodic structure increased the energy barrier, destroying the retention of a continuous water layer captured by the PC moieties. The results further provided more physical investigation of the nanostructure effect on CP interfaces. Finally, in the third section, we focused on the dynamic water molecule structures of CPs. To assess the hydration state of PEDOT and its derivatives, we employed in-situ Fourier transform infrared spectroscopy (FT-IR) and differential scanning calorimetry (DSC) as robust analytical techniques. DSC enabled the quantification of three distinct states of water within the CPs: non-freezing water (NFW), intermediate water (IW), and free water (FW). The Hofmeister series offers a systematic ranking of ion−water affinities. The formation of a hydrogen bonding network within water is hindered in the presence of ClO4−, which belongs to the category of "structure−breaking" anions. Conversely, "structure−making" anions like SO42− exhibit high hydration tendencies and establish stable associations with water molecules. We effectively monitored the adsorption/desorption phenomena through precise potential control and observed changes in the OH stretching bands when in contact with different salts. For CPs enriched with hydroxyl groups, SO42− ions noticeably influenced the adsorbed water due to their strong interaction. In contrast, ClO4− ions didn’t significantly perturb the water structure in PEDOT-OH. In the case of PEDOT-PC, NFW and IW exhibited strong affinities to PC, thereby protecting water molecules within the polymer when exposed to salts. The FT-IR results were analyzed via Gaussian fitting of the sub-bands within the OH stretching region, revealing distinctive changes in spectral shape corresponding to different water states. In this study, the interactions between ions, CPs, and water can be modulated by the applied potential at the CP interfaces, adding a broader dimension to our understanding of these systems. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-08-15T17:31:39Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2024-08-15T17:31:45Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | CONTENTS
口試委員會審定書 i 誌謝 ii 中文摘要 iii ABSTRACT v CONTENTS viii LIST OF FIGURES xi LIST OF TABLES xxiii Chapter 1 Introduction 1 1.1 Antifouling Conducting Polymer 1 1.1.1 The development of conducting polymers (CPs) 1 1.1.2 PEDOT and the derivates 4 1.1.3 Antifouling and zwitterionic polymer 6 1.1.4 The application of phosphorylcholine (PC)-based polymers 8 1.2 Biointerface 11 1.2.1 Fabrication of nanostructured biointerface 11 1.2.2 Biomolecules on biointerface: protein and cell 12 1.3 Dynamic Water Structure 15 1.3.1 The importance of water−interface interactions 15 1.3.2 Ionic effect 17 1.3.3 Characterization 19 1.4 Motivation and Objective 21 Chapter 2 Materials and Methods 24 2.1 Chemicals 24 2.2 Electropolymerization of PEDOTs Films 25 2.2.1 Solvent effect and electrochemical conditions for EDOT polymerization 25 2.2.2 PS nanosphere self-assembly on air-water interface. 27 2.3 Cell Culture and Statistical Analysis 28 2.3.1 Cell culture and visualization by immunofluorescence 28 2.3.2 Statistical analysis 29 2.4 Characterization 29 2.4.1 Contact angle 29 2.4.2 X-ray photoelectron spectroscope (XPS) 30 2.4.3 Scanning electron microscope (SEM) 30 2.4.4 In-situ Fourier-transform infrared spectroscopy (In-situ FT-IR) 30 2.4.5 Differential scanning calorimetry (DSC) 31 2.4.6 Quartz crystal microbalance with dissipation monitoring (QCM-D) 31 2.4.7 Atomic force microscope (AFM) 33 Chapter 3 Results and Discussion 35 3.1 Adhesion Behavior of Different Cell Lines on Biomimetic PEDOT Interfaces 35 3.1.1 Characterization of copolymer film. 36 3.1.2 The behavior of proteins binding on smooth and filamentous CP film. 40 3.1.3 Cell adhesion behavior of MG-63. 46 3.1.4 Cell adhesion behavior of HeLa. 50 3.1.5 Cell adhesion behavior of NIH/3T3. 53 3.2 Adhesive Interaction and Protein Adsorption on Well-Defined PEDOT Nanopattern 59 3.2.1 Surface characterization of PEDOT nanopattern of 200 nm and 50 nm PS nanosphere-masked PEDOT-OH/PEDOT-PC films. 60 3.2.2 PFQNM mapping on the bowl−shape surface in liquid to evaluate the adhesive force 65 3.2.3 Nonspecific Protein Binding on Patterned CP Interface 75 3.2.4 Specific protein binding CRP on the patterned interface 78 3.3 In-situ FTIR for Investigating the Water Adsorption Behavior on Functionalized Conducting Polymer 81 3.3.1 The surface characteristics and water content measurement in CP. 82 3.3.2 The in-situ spectroelectrochemical characterization of PEDOT 85 3.3.3 The salt effect on water adsorption behavior at the polymer-water interface. 87 3.3.4 The sub-band intensity variation of O-H stretching with potential scanning in different electrolytes 93 Chapter 4 Conclusion 101 4.1 Adhesion Behavior of Different Cell Lines on Biomimetic PEDOT Interfaces 101 4.2 Adhesive Interaction and Protein Adsorption on Well-Defined PEDOT Nanopattern 102 4.3 Water Adsorption Behavior on Functionalized Conducting Polymer 103 Chapter 5 Future Perspective 106 REFERENCE 109 Appendix 128 LIST OF FIGURES Figure 1.1 (a) Chemical structures of common conducting polymers. (b) Examples of doping states of PA and (c) PEDOT.16 3 Figure 1.2 The scanning electron microscope (SEM) images from (a) to (f) demonstrated the variation of PEDOT structures that electropolymerized in different conditions (temperature, voltage, and polymerization time).19 5 Figure 1.3 A scheme of surface modification for peptide-immobilized PEDOT-based aptasensor.20 5 Figure 1.4 The fabrication process of the PEDOT:PSS hydrogel-integrated optoelectronic biointerface.23 6 Figure 1.5 Some of the well-known zwitterionic functional groups and a siloxane modified with sulfobetaine group.26 7 Figure 1.6 (a) The synthesis process of antifouling and conducting polymer films. (b) The preparation of antifouling CP interface via electrode-deposition.40 7 Figure 1.7 The schematic illustration of dopamine detection and the SEM images of PEDOT-PC coated carbon fiber elctrode.57 9 Figure 1.8 The optical microscope images presented that PC-12 cells were only attached to the cell-binding stripes (without PC); the number of attached cells and the alignment could be altered when the width of the stripes became narrow. 62 9 Figure 1.9 The CRP sensing template with the electrodepositing copolymer poly(EDOT-co-EDOT-PC) on the QCM chip. The binding behavior can be in−situ monitored by QCM-D. The BSA showed the antifouling ability of PEDOT-PC film, while CRP can bind to the PC ligands to form a rigid protein layer in the presence of calcium ions. 10 Figure 1.10 Schematic representation of the hydration state of PC groups of PMPC.69 11 Figure 1.11 A diagram of the stepwise cell adhesion process.83, 84 13 Figure 1.12 The peptide adsorption process involves three steps: (1) diffusion to a preference place and orientation; (2) anchoring via a hydrophilic group to the water layer on the solid interface; and (3) the lock-down process forming a fully adsorbed peptide through a of stepwise rearrangement.85 14 Figure 1.13 FN is a crucial role in cancer survival, invasion, and metastasis. A schematic microenvironmental feature of FN for the metastasis formation.91 15 Figure 1.14 Schematic illustration of the water−polymer−cell interaction process at polymer surface.95 17 Figure 1.15 Schematic illustrating the design concept for an electrolyte proposed by Qiu et al.100 The relationship of Gibbs free energy, entropy, and ionic effect have been considered for designing anti-freezing electrolytes. 18 Figure 1.16 The ion−water−macromolecule interactions followed by the Hofmeister series. The SFG spectra show anion−specific variation in the OH region intensity. The bar chart demonstrated the amplitudes that fit by the Lorentzian function to the 3440 cm−1 peak of the SFG spectra.99 19 Figure 1.17 An illustration of the three distinct waters at the zwitterionic lipid/water interface by heterodyne-detected vibrational SFG.70 20 Figure 1.18 Li et al. proposed the Ca2+-induced potential difference spectra of the 1-dodecane-thiol monolayer and the PC phospholipid membranes with the −0.1 V (OCP) as the background.114 21 Figure 2.1 CV curve of the electropolymerization of PEDOT, PEDOT-PC, and poly(EDOT-co-EDOT-PC). The potential used for copolymerization was set at 1.05 V (vs. Ag/AgCl) (a). The CV curve for further deposition of PEDOT-PC on thin film (b). The CV curve for further deposition of PEDOT-PC on filamentous film (c). 26 Figure 2.2 QCM-D readout of frequency and dissipation of 3rd, 5th, and 7th overtone with the tests on three proteins: (a) BSA, (b) LYZ, and (c) cyt c. 33 Figure 3.1 Schematic of the experimental processes. First, the CP platform was fabricated by electropolymerization, including the supporting layer and the poly(EDOT-co-EDOT-PC) layer (cell adhesive layer). After the preparation, three different cell lines were seeded on each platform to observe the adhesion behavior. 36 Figure 3.2 Electrochemical impedance spectroscopy (EIS) (a) and bode plot (b) of a gold substrate and different feeding ratios of PC on PEDOT-OH films, respectively. It is evident that the CP coatings significantly increase the ionic conductivity of the membrane, resulting in a noticeable decrease in impedance. 38 Figure 3.3 The XPS spectra of elements of P 2p and N 1s on CP films. (a) and (b) showed the P 2p and N 1s spectrum of smooth copolymer film with different feeding ratios of EDPT-PC monomer. (c) and (d) showed the results of the filamentous film, respectively. XPS spectra reveal that the intensities increase with the amount of phosphorus and nitrogen on copolymer films. 39 Figure 3.4 Characterization and surface properties of PEDOT copolymer films. (a) The surface topography of smooth PEDOT-OH film (left) and filamentous PEDOT film as two supporting layers. The scale bar is 2 μm. (a) SEM images of both substrates after electropolymerized different feeding ratios of PEDOT-PC: 0% (left), 50% (middle), and 70% (right). The scale bar is 100 nm. (c) WCAs of the supporting layer and poly(EDOT-co-EDOT-PC) copolymer films. 40 Figure 3.5 The bar chart of frequency drops of three proteins on different CP films. The feeding ratios of PC were chosen at 0, 30, 50, and 100%. The concentration of the three proteins was 1 mg mL−1 in the PBS buffer. 41 Figure 3.6 The nonspecific protein binding test on polymer thin films was measured by QCM-D with BSA, LYZ, and cyt c. The frequency drops obviously when the density of PC functional groups increases. The concentration of the three proteins was 1 mg mL−1 in the PBS buffer. 43 Figure 3.7 The nonspecific protein binding test on filamentous polymer films was measured by QCM-D with BSA (a), LYZ (b), and cyt c (c). The concentration of the three proteins was 1 mg mL−1 in the PBS buffer. 45 Figure 3.8 The nonspecific FN binding tests on polymer films were measured by QCM-D. The concentration was 50 μg mL−1. (a) The frequency readout and dissipation on smooth CP film with three feeding ratios of PC: 0% (black), 50% (red), and 100% (blue). (b) The frequency readout and dissipation on filamentous CP film with three feeding ratios of PC. (c) An illustration of non-specific protein binding of charged BSA, LYZ, and cyt c. (d) An illustration of ECM component FN binding on smooth and filamentous CP films. 45 Figure 3.9 MG-63 living imaging and cell counting on smooth CP films. (a) PCM image at the junction of ITO (left side of the long-dashed line) and smooth CP film (right side of the long-dashed line) of feeding PC ratio 50% (a1), 60% (a2), and 70% (a3). The scale bar is 200 μm. (b) Merged fluorescent images on the different ratios of PC-coated smooth films (scale bar 500 μm). (c) Normalized cell number per area (D) A violin plot demonstrated the probability distributions of the nucleus area on each substrate (nucleus area: μm2). 48 Figure 3.10 MG-63 living imaging and cell counting on filamentous CP films. (a) PCM image at the junction of ITO (left side of the long-dashed line) and rough CP film (right side of the long-dashed line) of feeding PC ratio 50% (a1), 60% (a2), and 70% (a3). The scale bar is 200 μm. (b) Merged fluorescent images on the different ratios of PC-coated filamentous films (scale bar 500 μm). (c) Normalized cell number per area (d) A violin plot demonstrated the probability distributions of the nucleus area on each substrate (nucleus area: μm2). 49 Figure 3.11 Normalized MG-63 cell numbers on different % of PC film compared to each ITO slide. The figures showed the preference for cell attachment on the CP side or the ITO side: (a) smooth CP films and (b) filamentous CP films. The cell numbers on the substrates of 60% PC and 70% PC were normalized to their respective total cell number of 50% PC. 49 Figure 3.12 HeLa living imaging and cell counting on smooth CP films. (a) PCM image at the junction of ITO (left side of the long-dashed line) of feeding PC ratio 50% (a1), 60% (a2), and 70% (a3). The scale bar is 200 μm. (b) Merged fluorescent images on the different ratios of PC-coated smooth films (scale bar 200 μm). (c) Normalized cell number per area (d) A violin plot demonstrated the probability distributions of the nucleus area on each substrate (nucleus area: μm2). 51 Figure 3.13 HeLa living imaging and cell counting on filamentous CP films. (a) PCM image at the junction of ITO (left side of the long-dashed line) of feeding PC ratio 50% (a1), 60% (a2), and 70% (a3). The scale bar is 200 μm. (b) Merged fluorescent images on the different ratios of PC-coated smooth films (scale bar 500 μm). (c) Normalized cell number per area (d) A violin plot demonstrated the probability distributions of the nucleus area on each substrate (nucleus area: μm2). 52 Figure 3.14 Normalized HeLa cell numbers on different % of PC film compared to each ITO slide. The figures showed the preference for cell attachment on the CP side or the ITO side: (a) smooth CP films and (b) filamentous CP films. The cell numbers on the substrates of 60% PC and 70% PC were normalized to their respective total cell number of 50% PC. 52 Figure 3.15 NIH/3T3 living imaging and cell counting on smooth films. (a) PCM image at the junction of ITO of living imaging on feeding PC ratio 50% (a1), 60% (a2), and 70% (a3). The scale bar is 200 μm. (b) Merged fluorescent images on the different ratios of PC-coated smooth films (scale bar 200 μm). (c) Normalized cell number per area (d) A violin plot demonstrated the probability distributions of the nucleus area on each substrate (nucleus area: μm2). 54 Figure 3.16 NIH/3T3 living imaging and cell counting on filamentous films. (a) PCM image at the junction of ITO of living imaging on feeding PC ratio 50% (a1), 60% (a2), and 70% (a3). The scale bar is 200 μm. (b) Merged fluorescent images on the different ratios of PC-coated smooth films (scale bar 500 μm). (c) Normalized cell number per area (d) A violin plot demonstrated the probability distributions of the nucleus area on each substrate (nucleus area: μm2). 55 Figure 3.17 Normalized NIH/3T3 cell numbers on different % of PC film compared to each ITO slide. The figures showed the preference for cell attachment on the CP side or the ITO side: (a) smooth CP films and (b) filamentous CP films. The cell numbers on the substrates of 60% PC and 70% PC were normalized to their respective total cell number of 50% PC. 55 Figure 3.18 The phase-contrast microscopic image on CP film of living NIH/3T3 imaging on ITO glass (a), feeding PC ratio 50% on filamentous film (b), 60% (c), and 70% (d). The scale bar is 200 μm. 56 Figure 3.19 Confocal microscopy images of the MG-63 cells cultured on the smooth surface with a feeding ratio of 50% and control experiment ITO (scale bar of 20 μm). The cells were washed three times with PBS and then stained with goat anti-rabbit or goat anti-mouse secondary antibodies at room temperature for 1 hour. DAPI staining is shown in blue, actin cytoskeleton in red and vinculin in green. 58 Figure 3.20 Confocal microscopy images of the MG-63 cells cultured on the smooth surface with a feeding ratio of 50% and control experiment ITO (scale bar of 20 μm). DAPI staining is shown in blue, actin cytoskeleton in red, and paxillin in green. 59 Figure 3.21 The flow chart of the sample preparation and characterization. (a) PS nanospheres are self-assembled at the air−liquid interface into hexagonal arrays and then transferred to a QCM chip. (b) CL is carried out on the PS nanosphere-masked QCM chip via electropolymerized PEDOT-OH. The CP films start to polymerize from the exposed gold, which is not covered by PS nanospheres, and then the film grows between the interspace of the PS nanosphere monolayer. The height of the bowl shape can be readily controlled by electropolymerization conditions. (c) PS nanosphere mask is removed by sonicating in toluene. Solvent washing reveals the CP pattern that remains on the QCM substrate. The template of bowl-shaped PEDOT-OH is used for further AFM characterization (e) and protein binding test. (d) Despite PEDOT-OH, hydrophilic PEDOT-PC is further deposited for a thin layer on PEDOT-OH. (d) The PC-decorated substrate was characterized in the same way as PEDOT-OH. 60 Figure 3.22 The WCA results of three different substrates with PEDOT-OH (light blue) and PEDOT-PC covered (royal). Compared to control thin films, the WCA for surfaces with periodic nanostructures show higher hydrophobicity due to the air trapping inside the cavities. 63 Figure 3.23 The surface morphologies and the cross-section profiles of (a) control PEDOT-OH film, (b) 200 nm PS nanosphere-masked PEDOT-OH film, and (c) 50 nm PS nanosphere-masked PEDOT-OH film. 64 Figure 3.24 Peak force mode mapping of (a) topography and (b) adhesion of 200 nm PS nanosphere-masked PEDOT-OH nanopattern compared to (c) topography and (d) adhesion of PEDOT-PC nanopattern. The area marked with blue indicates the top of the pattern with a lower adhesion force. The pink dots are the cavities region, which presents a higher adhesion force. 67 Figure 3.25 Force-volume mode and retraction force-distance curves on 200 nm PS nanosphere template using AFM. (a), (b) demonstrated the adhesion mapping on PEDOT-OH film, and (c) (d) demonstrated the adhesion mapping on further depositing PEDOT-PC film. A force of 2 nN was applied throughout the measurement process with PFQNM mode in liquid. The resolution was 24 × 24 pixels in 1 μm × 1 μm. The blue force curves were chosen from the bright pixels, and the pink curves were chosen on the dark region of the topography. Ten force-distance curves were shown as (b) and (d). (e) Schematic of the illustration for the contact between AFM tip and air-water interface. 70 Figure 3.26 The topography of 50 nm PS-masked PEDOT-OH film. (b) The adhesion mapping of the 50 nm PS-masked PEDOT-OH film. 71 Figure 3.27 (a) A failure sample of 50 nm PS template. (b) The optimized sample for a well-aligned 50 nm PS template. 72 Figure 3.28 The comparison topography and the adhesion mapping of control CP films (without nanostructure) and 50 nm PS nanosphere-masked PEDOT-OH film. (a) AFM images of the topography on PEDOT-OH film, (b) PEDOT-PC film, and (c) 50 nm PS nanosphere-masked PEDOT-OH film (scan size: 1 × 1 μm2). Each adhesion mapping is shown as (d), (e), and (f). The scale of the adhesion force on (f) 50 nm PS nanosphere-masked PEDOT-OH film is twice higher than the control PEDOT-OH and PEDOT-PC. 74 Figure 3.29 The force retraction curves of the adhesion mapping on PEDOT-OH film before (a) and after BSA blocking (b). 76 Figure 3.30 Statistic results of the frequency drop of three nonspecific binding proteins: (a) BSA, (b) LYZ, and (c) cyt c. The proteins were dissolved in PBS and analyzed with identical conditions (1 mg mL-1) under temperature control (25°C). 76 Figure 3.31 The topography, adhesion mapping, and force histogram of PEDOT-OH film with/without BSA blocking. The 200 nm PS nanosphere-masked PEDOT-OH, and its adhesion mapping without BSA blocking are shown in (a) and (b), respectively. Moreover, the histogram shows the distribution of the adhesion force. Then, the 200 nm PS nanosphere-masked PEDOT-OH, and its adhesion mapping with BSA blocking are shown in (d) and (e). Comparing the histograms (c) and (f), the platform after protein binding shows a lower distribution. 78 Figure 3.32 (a) Statistic of specific CRP binding on different substrates. The black columns represent the frequency readout, and the blue columns represent the dissipation readout. (b) The schematic illustration of specific CRP binding on PEDOT-PC and patterned PEDOT-PC film. 80 Figure 3.33 Real-time frequency and dissipation readouts of CRP binding to the surface measured by QCM-D. These results show the non-specific CRP binding on PEDOT-OH film with three surfaces: (a) flat, (b) 200 nm PS-nanosphere masked PEDOT-OH, and (c) 50 nm PS- nanosphere masked PEDOT-OH. The others showed the specific binding behavior on PEDOT-PC with (d) flat, (e) 200 nm PS nanosphere-masked PEDOT-PC, and (f) 50 nm PS nanosphere-masked PEDOT-PC. 81 Figure 3.34 (a) Experimental setup and the CPs for conducting in situ FT-IR measurements at the CP/electrolyte interface. The applied potential was swept from OCP to −0.5 V, −0.5 V to +0.5 V, and then back to 0 V. (b) The Hofmeister series ranks the anions from kosmotropes to chaotropes. Sulfate ion, chloride ion, and perchlorate ion are chosen for three electrolytes in DI water in this study. 82 Figure 3.35 WCA results of pristine gold, PEDOT, PEDOT-OH, PEDOT-EG3OH, PEDOT-EG3OMe, and PEDOT-PC. 84 Figure 3.36 The DSC thermograms of pure water, PEDOT-OH, PEDOT-EG3OH, PEDOT-EG3OMe, and PEDOT-PC on the heating and cooling scan. The cooling rate was set as 3.0 °C min−1. 85 Figure 3.37 (a) In-situ FT-IR spectra of PEDOT in DI water with 100 mM NaClO4. (b) The schematic presentation of the PEDOT transforming between benzoid structure and quinoid structure. 86 Figure 3.38 SO42– (a) and ClO4– (b) adsorption on CP during a potential sweep from OCP to –0.5 V, –0.5 V to +0.5 V, and finally back to 0 V (vs. Ag/AgCl) at a rate of 2 mV s−1. (Literature reference154-156) 90 Figure 3.39 A spectrum of pure Au film in DI water with 100 mM NaClO4. The series shows no intensity of the O–H stretching band from bulk water. 90 Figure 3.40 Series of infrared spectra of PEDOT in (a) 100 mM Na2SO4, (b) 100 mM NaCl, and (c) 100 mM NaClO4 during the potential sweep from OCP to –0.5 V, –0.5 V to +0.5 V, and then back to 0 V (vs. Ag/AgCl) with a scan rate of 2 mV s−1. 91 Figure 3.41 Series of infrared spectra of PEDOT-OH in (a) 100 mM Na2SO4, (b) 100 mM NaCl, and (c) 100 mM NaClO4 during the potential sweep from OCP to –0.5 V, –0.5 V to +0.5 V, and then back to 0 V (vs. Ag/AgCl) with a scan rate of 2 mV s−1. 91 Figure 3.42 Series of infrared spectra of PEDOT-PC in (a) 100 mM Na2SO4, (b) 100 mM NaCl, and (c) 100 mM NaClO4 during the potential sweep from OCP to –0.5 V, –0.5 V to +0.5 V, and then back to 0 V (vs. Ag/AgCl) with a scan rate of 2 mV s−1. 92 Figure 3.43 The total integrated peak area variation with applied potential of each CP at the O-H stretching region in three electrolytes: (a) PEDOT, (b) PEDOT-OH, and (c) PEDOT-PC. 93 Figure 3.44 The peak fitting results of PEDOT at OH stretching region in three electrolytes by using three Gaussian components: 3295, 3560, and 3590 cm–1. –0.5 V, –0.1 V, and +0.3 V are chosen for three potentials to present the distribution change of the water in different electrolytes. 94 Figure 3.45 The peak fitting results of PEDOT-OH at OH stretching region in three electrolytes by using three Gaussian components: 3295, 3560, and 3590 cm–1. –0.5 V, –0.1 V, and +0.3 V are chosen for three potentials to present the distribution change of the water in different electrolytes. 95 Figure 3.46 The peak fitting results of PEDOT-PC at OH stretching region in three electrolytes by using three Gaussian components: 3295, 3560, and 3590 cm–1. –0.5 V, –0.1 V, and +0.3 V are chosen for three potentials to present the distribution change of the water in different electrolytes. 96 Figure 3.47 The bar chart shows the percentage of the FW, IW, and NFW with their respective relative areas at PEDOT, PEDOT-OH, and PEDOT-PC. 98 Figure 3.48 The series of in-situ FT-IR spectra of (a) PEDOT-OH, (b) PEDOT-EG3OH, and (b) PEDOT-EG3OMe in 100 mM NaClO4, at each potential. 99 Figure 3.49 The schematic illustrations of the behavior of water adsorption in 100 mM Na2SO4 and NaClO4 during the potential sweep of three CPs. 100 Figure 5.1 The western blot analysis of selected proteins three selecting proteins on five substrates. 107 Figure 5.2 Two-dimensional force maps of nanoscale water bridges.120 The separation between the hydration layers can be distinguishable on graphite for atomic scale features. 108 LIST OF TABLES Table 2 1 The chemicals and protein used in this study. 24 Table 3 1 Hydrated water contents in each CP (mol mol–1) of PEDOT-OH, PEDOT-PC, PEDOT-EG3OH, and PEDOT-EG3OMe (Wtotal: total water content in per mole of CP; WIW: IW content in per mole of CP; WNFW: NFW content in per mole of CP.) 85 Table 3 2 The table of infrared band assignments and comparison of the absorption bands of PEDOT during structure transformation. 87 | - |
| dc.language.iso | en | - |
| dc.subject | 生物相容介面 | zh_TW |
| dc.subject | 4-乙烯二氧噻吩) | zh_TW |
| dc.subject | 聚(3 | zh_TW |
| dc.subject | 差示掃描量熱法 | zh_TW |
| dc.subject | 兩性離子 | zh_TW |
| dc.subject | 傅立葉轉換紅外光譜 | zh_TW |
| dc.subject | 原子力顯微鏡 | zh_TW |
| dc.subject | 石英晶體微天平與耗散量測 | zh_TW |
| dc.subject | 水結構 | zh_TW |
| dc.subject | differential scanning calorimetry (DSC) | en |
| dc.subject | biocompatible interface | en |
| dc.subject | atomic force microscopy (AFM) | en |
| dc.subject | poly(3 | en |
| dc.subject | water structure | en |
| dc.subject | zwitterion | en |
| dc.subject | 4-ethylenedioxythiophene) (PEDOT) | en |
| dc.title | 物理與化學角度觀察官能化及奈米結構導電高分子界面與水及生物分子之間相互作用 | zh_TW |
| dc.title | Physical and Chemical Insights into Water-Biomolecule-Interface Interactions on Functionalized Nanostructured Conducting Polymers | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 112-2 | - |
| dc.description.degree | 博士 | - |
| dc.contributor.oralexamcommittee | 李介仁;陳建甫;吳恆良;廖尉斯 | zh_TW |
| dc.contributor.oralexamcommittee | Jie-Ren Li;Chien-Fu Chen;Heng-Liang Wu;Wei-Ssu Liao | en |
| dc.subject.keyword | 聚(3,4-乙烯二氧噻吩),兩性離子,水結構,生物相容介面,石英晶體微天平與耗散量測,原子力顯微鏡,傅立葉轉換紅外光譜,差示掃描量熱法, | zh_TW |
| dc.subject.keyword | poly(3,4-ethylenedioxythiophene) (PEDOT),zwitterion,water structure,biocompatible interface,atomic force microscopy (AFM),differential scanning calorimetry (DSC), | en |
| dc.relation.page | 128 | - |
| dc.identifier.doi | 10.6342/NTU202401574 | - |
| dc.rights.note | 未授權 | - |
| dc.date.accepted | 2024-07-31 | - |
| dc.contributor.author-college | 工學院 | - |
| dc.contributor.author-dept | 材料科學與工程學系 | - |
| 顯示於系所單位: | 材料科學與工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-112-2.pdf 未授權公開取用 | 11.07 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
