請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/94432完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 鄭石通 | zh_TW |
| dc.contributor.advisor | Shih-Tong Jeng | en |
| dc.contributor.author | 洪育翎 | zh_TW |
| dc.contributor.author | Yu-Ling Hung | en |
| dc.date.accessioned | 2024-08-15T17:28:00Z | - |
| dc.date.available | 2024-08-16 | - |
| dc.date.copyright | 2024-08-15 | - |
| dc.date.issued | 2024 | - |
| dc.date.submitted | 2024-08-08 | - |
| dc.identifier.citation | Afkhami-Sarvestani, R., Serek, M., and Winkelmann, T. (2012). Protoplast Isolation and Culture from Streptocarpus, Followed by Fusion with Saintpaulia ionantha Protoplasts.
Alaba, S., Piszczalka, P., Pietrykowska, H., Pacak, A.M., Sierocka, I., Nuc, P.W., Singh, K., Plewka, P., Sulkowska, A., Jarmolowski, A., Karlowski, W.M., and Szweykowska-Kulinska, Z. (2015). The liverwort Pellia endiviifolia shares microtranscriptomic traits that are common to green algae and land plants. New Phytol 206, 352-367. Allen, E., Xie, Z., Gustafson, A.M., and Carrington, J.C. (2005). microRNA-directed phasing during trans-acting siRNA biogenesis in plants. Cell 121, 207-221. Arif, M.A., Top, O., Csicsely, E., Lichtenstern, M., Beheshti, H., Adjabi, K., and Frank, W. (2022). DICER-LIKE1a autoregulation based on intronic microRNA processing is required for stress adaptation in Physcomitrium patens. Plant J 109, 227-240. Arif, M.A., Fattash, I., Ma, Z., Cho, S.H., Beike, A.K., Reski, R., Axtell, M.J., and Frank, W. (2012). DICER-LIKE3 activity in Physcomitrella patens DICER-LIKE4 mutants causes severe developmental dysfunction and sterility. Molecular Plant 5, 1281-1294. Axtell, M.J. (2013). Classification and comparison of small RNAs from plants. Annu Rev Plant Biol 64, 137-159. Axtell, M.J., and Bowman, J.L. (2008). Evolution of plant microRNAs and their targets. Trends Plant Sci 13, 343-349. Axtell, M.J., Snyder, J.A., and Bartel, D.P. (2007). Common functions for diverse small RNAs of land plants. Plant Cell 19, 1750-1769. Axtell, M.J., Westholm, J.O., and Lai, E.C. (2011). Vive la difference: biogenesis and evolution of microRNAs in plants and animals. Genome Biol 12, 221. Axtell, M.J., Jan, C., Rajagopalan, R., and Bartel, D.P. (2006). A two-hit trigger for siRNA biogenesis in plants. Cell 127, 565-577. Bak, S., Beisson, F., Bishop, G., Hamberger, B., Hofer, R., Paquette, S., and Werck-Reichhart, D. (2011). Cytochromes p450. Arabidopsis Book 9, e0144. Bartel, D.P. (2004). MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116, 281-297. Berruezo, F., de Souza, F.S.J., Picca, P.I., Nemirovsky, S.I., Martinez Tosar, L., Rivero, M., Mentaberry, A.N., and Zelada, A.M. (2017). Sequencing of small RNAs of the fern Pleopeltis minima (Polypodiaceae) offers insight into the evolution of the microrna repertoire in land plants. PLoS One 12, e0177573. Bonnet, E., Van de Peer, Y., and Rouze, P. (2006). The small RNA world of plants. New Phytol 171, 451-468. Bowman, J.L., Kohchi, T., Yamato, K.T., Jenkins, J., Shu, S., Ishizaki, K., Yamaoka, S., Nishihama, R., Nakamura, Y., Berger, F., Adam, C., Aki, S.S., Althoff, F., Araki, T., Arteaga-Vazquez, M.A., Balasubrmanian, S., Barry, K., Bauer, D., Boehm, C.R., Briginshaw, L., Caballero-Perez, J., Catarino, B., Chen, F., Chiyoda, S., Chovatia, M., Davies, K.M., Delmans, M., Demura, T., Dierschke, T., Dolan, L., Dorantes-Acosta, A.E., Eklund, D.M., Florent, S.N., Flores-Sandoval, E., Fujiyama, A., Fukuzawa, H., Galik, B., Grimanelli, D., Grimwood, J., Grossniklaus, U., Hamada, T., Haseloff, J., Hetherington, A.J., Higo, A., Hirakawa, Y., Hundley, H.N., Ikeda, Y., Inoue, K., Inoue, S.I., Ishida, S., Jia, Q., Kakita, M., Kanazawa, T., Kawai, Y., Kawashima, T., Kennedy, M., Kinose, K., Kinoshita, T., Kohara, Y., Koide, E., Komatsu, K., Kopischke, S., Kubo, M., Kyozuka, J., Lagercrantz, U., Lin, S.S., Lindquist, E., Lipzen, A.M., Lu, C.W., De Luna, E., Martienssen, R.A., Minamino, N., Mizutani, M., Mizutani, M., Mochizuki, N., Monte, I., Mosher, R., Nagasaki, H., Nakagami, H., Naramoto, S., Nishitani, K., Ohtani, M., Okamoto, T., Okumura, M., Phillips, J., Pollak, B., Reinders, A., Rovekamp, M., Sano, R., Sawa, S., Schmid, M.W., Shirakawa, M., Solano, R., Spunde, A., Suetsugu, N., Sugano, S., Sugiyama, A., Sun, R., Suzuki, Y., Takenaka, M., Takezawa, D., Tomogane, H., Tsuzuki, M., Ueda, T., Umeda, M., Ward, J.M., Watanabe, Y., Yazaki, K., Yokoyama, R., Yoshitake, Y., Yotsui, I., Zachgo, S., and Schmutz, J. (2017). Insights into Land Plant Evolution Garnered from the Marchantia polymorpha Genome. Cell 171, 287-304 e215. Braybrook, S.A., and Kuhlemeier, C. (2010). How a plant builds leaves. Plant Cell 22, 1006-1018. Carthew, R.W., and Sontheimer, E.J. (2009). Origins and Mechanisms of miRNAs and siRNAs. Cell 136, 642-655. Chen, H.M., Chen, L.T., Patel, K., Li, Y.H., Baulcombe, D.C., and Wu, S.H. (2010). 22-Nucleotide RNAs trigger secondary siRNA biogenesis in plants. Proceedings of the National Academy of Sciences of the United States of America 107, 15269-15274. Chen, X. (2009). Small RNAs and their roles in plant development. Annu Rev Cell Dev Biol 25, 21-44. Chitwood, D.H., Nogueira, F.T., Howell, M.D., Montgomery, T.A., Carrington, J.C., and Timmermans, M.C. (2009). Pattern formation via small RNA mobility. Genes Dev 23, 549-554. Cho, S.H., Coruh, C., and Axtell, M.J. (2012). miR156 and miR390 regulate tasiRNA accumulation and developmental timing in Physcomitrella patens. The Plant Cell 24, 4837-4849. Chuck, G., Candela, H., and Hake, S. (2009). Big impacts by small RNAs in plant development. Curr Opin Plant Biol 12, 81-86. Cuperus, J.T., Carbonell, A., Fahlgren, N., Garcia-Ruiz, H., Burke, R.T., Takeda, A., Sullivan, C.M., Gilbert, S.D., Montgomery, T.A., and Carrington, J.C. (2010). Unique functionality of 22-nt miRNAs in triggering RDR6-dependent siRNA biogenesis from target transcripts in Arabidopsis. Nat Struct Mol Biol 17, 997-1003. D'Ario, M., Griffiths-Jones, S., and Kim, M. (2017). Small RNAs: Big Impact on Plant Development. Trends Plant Sci 22, 1056-1068. de Felippes, F.F., Marchais, A., Sarazin, A., Oberlin, S., and Voinnet, O. (2017). A single miR390 targeting event is sufficient for triggering TAS3-tasiRNA biogenesis in Arabidopsis. Nucleic Acids Research 45, 5539-5554. Ding, B., Xia, R., Lin, Q., Gurung, V., Sagawa, J.M., Stanley, L.E., Strobel, M., Diggle, P.K., Meyers, B.C., and Yuan, Y.W. (2020). Developmental Genetics of Corolla Tube Formation: Role of the tasiRNA-ARF Pathway and a Conceptual Model. Plant Cell 32, 3452-3468. Dong, Y., Liu, J., Li, P.W., Li, C.Q., Lu, T.F., Yang, X., and Wang, Y.Z. (2018). Evolution of Darwin's Peloric Gloxinia (Sinningia speciosa) Is Caused by a Null Mutation in a Pleiotropic TCP Gene. Mol Biol Evol 35, 1901-1915. Douglas, R.N., Wiley, D., Sarkar, A., Springer, N., Timmermans, M.C., and Scanlon, M.J. (2010). ragged seedling2 Encodes an ARGONAUTE7-like protein required for mediolateral expansion, but not dorsiventrality, of maize leaves. Plant Cell 22, 1441-1451. Duran-Figueroa, N., and Vielle-Calzada, J.P. (2010). ARGONAUTE9-dependent silencing of transposable elements in pericentromeric regions of Arabidopsis. Plant Signal Behav 5, 1476-1479. Eklund, D.M., Ishizaki, K., Flores-Sandoval, E., Kikuchi, S., Takebayashi, Y., Tsukamoto, S., Hirakawa, Y., Nonomura, M., Kato, H., Kouno, M., Bhalerao, R.P., Lagercrantz, U., Kasahara, H., Kohchi, T., and Bowman, J.L. (2015). Auxin Produced by the Indole-3-Pyruvic Acid Pathway Regulates Development and Gemmae Dormancy in the Liverwort Marchantia polymorpha. Plant Cell 27, 1650-1669. Endo, Y., Iwakawa, H.O., and Tomari, Y. (2013). Arabidopsis ARGONAUTE7 selects miR390 through multiple checkpoints during RISC assembly. EMBO Rep 14, 652-658. Fei, Q., Xia, R., and Meyers, B.C. (2013). Phased, secondary, small interfering RNAs in posttranscriptional regulatory networks. The Plant Cell 25, 2400-2415. Flores-Sandoval, E., Eklund, D.M., and Bowman, J.L. (2015). A Simple Auxin Transcriptional Response System Regulates Multiple Morphogenetic Processes in the Liverwort Marchantia polymorpha. PLOS Genetics 11, e1005207. Gaal, D.J., Dufresne, S.J., and Maravolo, N.C. (1982). Transport of <sup>14</sup>C-indoleacetic Acid in the Hepatic Marchantia polymorpha. The Bryologist 85, 410-418. Garcia, D., Collier, S.A., Byrne, M.E., and Martienssen, R.A. (2006). Specification of leaf polarity in Arabidopsis via the trans-acting siRNA pathway. Curr Biol 16, 933-938. Ghosh, T.K., Kaneko, M., and Takezawa, D. (2016). Transient Assays of Gemmalings of the Liverwort Marchantia polymorpha for Studies of Abscisic Acid-induced Gene Expression. 低温生物工学会誌 62, 57-60. Guo, L., Ma, M., Wu, L., Zhou, M., Li, M., Wu, B., Li, L., Liu, X., Jing, R., Chen, W., and Zhao, H. (2022). Modified expression of TaCYP78A5 enhances grain weight with yield potential by accumulating auxin in wheat (Triticum aestivum L.). Plant Biotechnol J 20, 168-182. Han, M.H., Goud, S., Song, L., and Fedoroff, N. (2004). The Arabidopsis double-stranded RNA-binding protein HYL1 plays a role in microRNA-mediated gene regulation. Proc Natl Acad Sci U S A 101, 1093-1098. Hasing, T., Rinaldi, E., Manrique, S., Colombo, L., Haak, D.C., Zaitlin, D., and Bombarely, A. (2019). Extensive phenotypic diversity in the cultivated Florist’s Gloxinia, Sinningia speciosa (Lodd.) Hiern, is derived from the domestication of a single founder population. Plants, People, Planet 1, 363-374. Heisel, S.E., Zhang, Y., Allen, E., Guo, L., Reynolds, T.L., Yang, X., Kovalic, D., and Roberts, J.K. (2008). Characterization of unique small RNA populations from rice grain. PLoS One 3, e2871. Henderson, I.R., Zhang, X., Lu, C., Johnson, L., Meyers, B.C., Green, P.J., and Jacobsen, S.E. (2006). Dissecting Arabidopsis thaliana DICER function in small RNA processing, gene silencing and DNA methylation patterning. Nat Genet 38, 721-725. Hoshino, Y., Nakano, M., and Mii, M. (1995). Plant regeneration from cell suspension-derived protoplasts of Saintpaulia ionantha Wendl. Plant Cell Rep 14, 341-344. Hsu, H.C., Wang, C.N., Liang, C.H., Wang, C.C., and Kuo, Y.F. (2017). Association between Petal Form Variation and CYC2-like Genotype in a Hybrid Line of Sinningia speciosa. Front Plant Sci 8, 558. Huang, H., Wang, Z., Cheng, J., Zhao, W., Li, X., Wang, H., Zhang, Z., and Sui, X. (2013). An efficient cucumber (Cucumis sativus L.) protoplast isolation and transient expression system. Scientia Horticulturae 150, 206-212. Ishizaki, K., Chiyoda, S., Yamato, K.T., and Kohchi, T. (2008). Agrobacterium-mediated transformation of the haploid liverwort Marchantia polymorpha L., an emerging model for plant biology. Plant and Cell Physiology 49, 1084-1091. Ishizaki, K., Nishihama, R., Ueda, M., Inoue, K., Ishida, S., Nishimura, Y., Shikanai, T., and Kohchi, T. (2015). Development of Gateway Binary Vector Series with Four Different Selection Markers for the Liverwort Marchantia polymorpha. PLoS One 10, e0138876. Ito, T., and Meyerowitz, E.M. (2000). Overexpression of a gene encoding a cytochrome P450, CYP78A9, induces large and seedless fruit in arabidopsis. The Plant Cell 12, 1541-1550. Iwakawa, H., Melkonian, K., Schluter, T., Jeon, H.W., Nishihama, R., Motose, H., and Nakagami, H. (2021). Agrobacterium-Mediated Transient Transformation of Marchantia Liverworts. Plant Cell Physiol 62, 1718-1727. Jiang, L., Yoshida, T., Stiegert, S., Jing, Y., Alseekh, S., Lenhard, M., Perez-Alfocea, F., and Fernie, A.R. (2021). Multi-omics approach reveals the contribution of KLU to leaf longevity and drought tolerance. Plant Physiol 185, 352-368. Jones-Rhoades, M.W. (2012). Conservation and divergence in plant microRNAs. Plant Mol Biol 80, 3-16. Kato, H., Yasui, Y., and Ishizaki, K. (2020). Gemma cup and gemma development in Marchantia polymorpha. New Phytologist 228, 459-465. Katsumata, T., Fukazawa, J., Magome, H., Jikumaru, Y., Kamiya, Y., Natsume, M., Kawaide, H., and Yamaguchi, S. (2011). Involvement of the CYP78A subfamily of cytochrome P450 monooxygenases in protonema growth and gametophore formation in the moss Physcomitrella patens. Bioscience, Biotechnology, and Biochemistry 75, 331-336. Kim, V.N. (2008). Sorting out small RNAs. Cell 133, 25-26. Krasnikova, M.S., Goryunov, D.V., Troitsky, A.V., Solovyev, A.G., Ozerova, L.V., and Morozov, S.Y. (2013). Peculiar evolutionary history of miR390-guided TAS3-like genes in land plants. The Scientific World Journal 2013, 924153. Kubota, A., Ishizaki, K., Hosaka, M., and Kohchi, T. (2013). Efficient Agrobacterium-mediated transformation of the liverwort Marchantia polymorpha using regenerating thalli. Bioscience, Biotechnology, and Biochemistry 77, 167-172. Kumar, S., Stecher, G., Li, M., Knyaz, C., and Tamura, K. (2018). MEGA X: Molecular Evolutionary Genetics Analysis across Computing Platforms. Mol Biol Evol 35, 1547-1549. Kuo, W.-H., Hung, Y.-L., Wu, H.-W., Pan, Z.-J., Hong, C.-Y., and Wang, C.-N. (2018). Shoot regeneration process and optimization of Agrobacterium-mediated transformation in Sinningia speciosa. Plant Cell, Tissue and Organ Culture (PCTOC) 134, 301-316. Li, J., Liao, X., Zhou, S., Liu, S., Jiang, L., and Wang, G. (2018). Efficient protoplast isolation and transient gene expression system for Phalaenopsis hybrid cultivar ‘Ruili Beauty’. In Vitro Cellular & Developmental Biology - Plant 54, 87-93. Li, J., Yue, L., Shen, Y., Sheng, Y., Zhan, X., Xu, G., and Xing, B. (2017). Phenanthrene-responsive microRNAs and their targets in wheat roots. Chemosphere 186, 588-598. Li, X., Bian, H., Song, D., Ma, S., Han, N., Wang, J., and Zhu, M. (2013). Flowering time control in ornamental gloxinia (Sinningia speciosa) by manipulation of miR159 expression. Ann Bot 111, 791-799. Liang, C., Wang, X., He, H., Xu, C., and Cui, J. (2023). Beyond Loading: Functions of Plant ARGONAUTE Proteins. Int J Mol Sci 24. Lin, H.Y., Chen, J.C., and Fang, S.C. (2018). A Protoplast Transient Expression System to Enable Molecular, Cellular, and Functional Studies in Phalaenopsis orchids. Front Plant Sci 9, 843. Lin, P.C., Lu, C.W., Shen, B.N., Lee, G.Z., Bowman, J.L., Arteaga-Vazquez, M.A., Liu, L.Y., Hong, S.F., Lo, C.F., Su, G.M., Kohchi, T., Ishizaki, K., Zachgo, S., Althoff, F., Takenaka, M., Yamato, K.T., and Lin, S.S. (2016). Identification of miRNAs and Their Targets in the Liverwort Marchantia polymorpha by Integrating RNA-Seq and Degradome Analyses. Plant and Cell Physiology 57, 339-358. Lin, S.S., and Bowman, J.L. (2018). MicroRNAs in Marchantia polymorpha. New Phytologist 220, 409-416. Lin, Y.C., Li, W., Chen, H., Li, Q., Sun, Y.H., Shi, R., Lin, C.Y., Wang, J.P., Chen, H.C., Chuang, L., Qu, G.Z., Sederoff, R.R., and Chiang, V.L. (2014). A simple improved-throughput xylem protoplast system for studying wood formation. Nat Protoc 9, 2194-2205. Lin, Y.Y., Fang, M.M., Lin, P.C., Chiu, M.T., Liu, L.Y., Lin, C.P., and Lin, S.S. (2013). Improving initial infectivity of the Turnip mosaic virus (TuMV) infectious clone by an mini binary vector via agro-infiltration. Botanical Studies 54, 22. Luo, L., Yang, X., Guo, M., Lan, T., Yu, Y., Mo, B., Chen, X., Gao, L., and Liu, L. (2021). TRANS-ACTING SIRNA3-derived short interfering RNAs confer cleavage of mRNAs in rice. Plant Physiology. Luo, Q.J., Mittal, A., Jia, F., and Rock, C.D. (2012). An autoregulatory feedback loop involving PAP1 and TAS4 in response to sugars in Arabidopsis. Plant Mol Biol 80, 117-129. Maravolo, N.C. (1976). Polarity and Localization of Auxin Movement in the Hepatic, Marchantia polymorpha. American Journal of Botany 63, 526-531. Marin, E., Jouannet, V., Herz, A., Lokerse, A.S., Weijers, D., Vaucheret, H., Nussaume, L., Crespi, M.D., and Maizel, A. (2010). miR390, Arabidopsis TAS3 tasiRNAs, and their AUXIN RESPONSE FACTOR targets define an autoregulatory network quantitatively regulating lateral root growth. Plant Cell 22, 1104-1117. Marx, V. (2016). Plants: a tool box of cell-based assays. Nat Methods 13, 551-554. Mi, S., Cai, T., Hu, Y., Chen, Y., Hodges, E., Ni, F., Wu, L., Li, S., Zhou, H., Long, C., Chen, S., Hannon, G.J., and Qi, Y. (2008). Sorting of small RNAs into Arabidopsis argonaute complexes is directed by the 5' terminal nucleotide. Cell 133, 116-127. Miyoshi, K., Ahn, B.O., Kawakatsu, T., Ito, Y., Itoh, J., Nagato, Y., and Kurata, N. (2004). PLASTOCHRON1, a timekeeper of leaf initiation in rice, encodes cytochrome P450. Proc Natl Acad Sci U S A 101, 875-880. Montgomery, T.A., Howell, M.D., Cuperus, J.T., Li, D., Hansen, J.E., Alexander, A.L., Chapman, E.J., Fahlgren, N., Allen, E., and Carrington, J.C. (2008a). Specificity of ARGONAUTE7-miR390 interaction and dual functionality in TAS3 trans-acting siRNA formation. Cell 133, 128-141. Montgomery, T.A., Yoo, S.J., Fahlgren, N., Gilbert, S.D., Howell, M.D., Sullivan, C.M., Alexander, A., Nguyen, G., Allen, E., Ahn, J.H., and Carrington, J.C. (2008b). AGO1-miR173 complex initiates phased siRNA formation in plants. Proceedings of the National Academy of Sciences of the United States of America 105, 20055-20062. Morozov, S.Y., Milyutina, I.A., Erokhina, T.N., Ozerova, L.V., Troitsky, A.V., and Solovyev, A.G. (2018). TAS3 miR390-dependent loci in non-vascular land plants: towards a comprehensive reconstruction of the gene evolutionary history. PeerJ 6, e4636. Nanjareddy, K., Arthikala, M.-K., Blanco, L., Arellano, E.S., and Lara, M. (2016). Protoplast isolation, transient transformation of leaf mesophyll protoplasts and improved Agrobacterium-mediated leaf disc infiltration of Phaseolus vulgaris: tools for rapid gene expression analysis. BMC Biotechnology 16, 53. Nelson, D.R. (2018). Cytochrome P450 diversity in the tree of life. Biochimica et Biophysica Acta - Proteins and Proteomics 1866, 141-154. Nien, Y.-C. (2018). Global analysis of small RNAs for controlling floral symmetry in Sinningia speciosa. In Institute of Ecology and Evolutionary Biology (National Taiwan University). Niu, Q.W., Lin, S.S., Reyes, J.L., Chen, K.C., Wu, H.W., Yeh, S.D., and Chua, N.H. (2006). Expression of artificial microRNAs in transgenic Arabidopsis thaliana confers virus resistance. Nat Biotechnol 24, 1420-1428. Oh, M.-H., and Kim, S.-G. (1994). Plant regeneration from petal protoplast culture ofPetunia hybrida. Plant Cell, Tissue and Organ Culture 36, 275-283. Ohyama, K. (1996). Chloroplast and mitochondrial genomes from a liverwort, Marchantia polymorpha--gene organization and molecular evolution. Biosci Biotechnol Biochem 60, 16-24. Ohyama, K., Fukuzawa, H., Kohchi, T., Sano, T., Sano, S., Shirai, H., Umesono, K., Shiki, Y., Takeuchi, M., Chang, Z., and et al. (1988). Structure and organization of Marchantia polymorpha chloroplast genome. I. Cloning and gene identification. J Mol Biol 203, 281-298. Olmedo-Monfil, V., Duran-Figueroa, N., Arteaga-Vazquez, M., Demesa-Arevalo, E., Autran, D., Grimanelli, D., Slotkin, R.K., Martienssen, R.A., and Vielle-Calzada, J.P. (2010). Control of female gamete formation by a small RNA pathway in Arabidopsis. Nature 464, 628-632. Page, M.T., Parry, M.A.J., and Carmo-Silva, E. (2019). A high-throughput transient expression system for rice. Plant Cell Environ 42, 2057-2064. Pegler, J.L., Oultram, J.M.J., Curtin, S.J., Grof, C.P.L., and Eamens, A.L. (2019). Further Disruption of the TAS3 Pathway via the Addition of the AGO7 Mutation to the DRB1, DRB2 or DRB4 Mutations Severely Impairs the Reproductive Competence of Arabidopsis thaliana. Agronomy 9, 680. Pietrykowska, H., Sierocka, I., Zielezinski, A., Alisha, A., Carrasco-Sanchez, J.C., Jarmolowski, A., Karlowski, W.M., and Szweykowska-Kulinska, Z. (2022). Biogenesis, conservation, and function of miRNA in liverworts. J Exp Bot 73, 4528-4545. Plavskin, Y., Nagashima, A., Perroud, P.F., Hasebe, M., Quatrano, R.S., Atwal, G.S., and Timmermans, M.C. (2016). Ancient trans-Acting siRNAs Confer Robustness and Sensitivity onto the Auxin Response. Dev Cell 36, 276-289. Pratt, A.J., and MacRae, I.J. (2009). The RNA-induced silencing complex: a versatile gene-silencing machine. J Biol Chem 284, 17897-17901. Rajagopalan, R., Vaucheret, H., Trejo, J., and Bartel, D.P. (2006). A diverse and evolutionarily fluid set of microRNAs in Arabidopsis thaliana. Genes & Development 20, 3407-3425. Ren, R., Gao, J., Lu, C., Wei, Y., Jin, J., Wong, S.M., Zhu, G., and Yang, F. (2020). Highly Efficient Protoplast Isolation and Transient Expression System for Functional Characterization of Flowering Related Genes in Cymbidium Orchids. Int J Mol Sci 21. Shen, B., Zhang, W., Zhang, J., Zhou, J., Wang, J., Chen, L., Wang, L., Hodgkins, A., Iyer, V., Huang, X., and Skarnes, W.C. (2014). Efficient genome modification by CRISPR-Cas9 nickase with minimal off-target effects. Nat Methods 11, 399-402. Shimamura, M. (2016). Marchantia polymorpha: Taxonomy, Phylogeny and Morphology of a Model System. Plant Cell Physiol 57, 230-256. Skog, L.E. (1984). A REVIEW OF CHROMOSOME NUMBERS IN THE GESNERIACEAE. Selbyana 7, 252-273. Song, L., Han, M.H., Lesicka, J., and Fedoroff, N. (2007). Arabidopsis primary microRNA processing proteins HYL1 and DCL1 define a nuclear body distinct from the Cajal body. Proc Natl Acad Sci U S A 104, 5437-5442. Stemmer, W.P., Crameri, A., Ha, K.D., Brennan, T.M., and Heyneker, H.L. (1995). Single-step assembly of a gene and entire plasmid from large numbers of oligodeoxyribonucleotides. Gene 164, 49-53. Sugano, S.S., Nishihama, R., Shirakawa, M., Takagi, J., Matsuda, Y., Ishida, S., Shimada, T., Hara-Nishimura, I., Osakabe, K., and Kohchi, T. (2018). Efficient CRISPR/Cas9-based genome editing and its application to conditional genetic analysis in Marchantia polymorpha. PLoS One 13, e0205117. Takeda, A., Iwasaki, S., Watanabe, T., Utsumi, M., and Watanabe, Y. (2008). The mechanism selecting the guide strand from small RNA duplexes is different among argonaute proteins. Plant Cell Physiol 49, 493-500. Talmor-Neiman, M., Stav, R., Klipcan, L., Buxdorf, K., Baulcombe, D.C., and Arazi, T. (2006). Identification of trans-acting siRNAs in moss and an RNA-dependent RNA polymerase required for their biogenesis. The Plant Journal 48, 511-521. Tamura, K., Nei, M., and Kumar, S. (2004). Prospects for inferring very large phylogenies by using the neighbor-joining method. Proc Natl Acad Sci U S A 101, 11030-11035. Tsuboyama-Tanaka, S., and Kodama, Y. (2015). AgarTrap-mediated genetic transformation using intact gemmae/gemmalings of the liverwort Marchantia polymorpha L. J Plant Res 128, 337-344. Tsuboyama, S., and Kodama, Y. (2014). AgarTrap: a simplified Agrobacterium-mediated transformation method for sporelings of the liverwort Marchantia polymorpha L. Plant Cell Physiol 55, 229-236. Tsuzuki, M., Nishihama, R., Ishizaki, K., Kurihara, Y., Matsui, M., Bowman, J.L., Kohchi, T., Hamada, T., and Watanabe, Y. (2016). Profiling and Characterization of Small RNAs in the Liverwort, Marchantia polymorpha, Belonging to the First Diverged Land Plants. Plant Cell Physiol 57, 359-372. Vasav, A.P., and Barvkar, V.T. (2019). Phylogenomic analysis of cytochrome P450 multigene family and their differential expression analysis in Solanum lycopersicum L. suggested tissue specific promoters. BMC Genomics 20, 116. Vaucheret, H., Vazquez, F., Crete, P., and Bartel, D.P. (2004). The action of ARGONAUTE1 in the miRNA pathway and its regulation by the miRNA pathway are crucial for plant development. Genes Dev 18, 1187-1197. Vazquez, F., Vaucheret, H., Rajagopalan, R., Lepers, C., Gasciolli, V., Mallory, A.C., Hilbert, J.L., Bartel, D.P., and Crete, P. (2004). Endogenous trans-acting siRNAs regulate the accumulation of Arabidopsis mRNAs. Molecular Cell 16, 69-79. Voinnet, O. (2008). Use, tolerance and avoidance of amplified RNA silencing by plants. Trends Plant Sci 13, 317-328. Wang, J.W., Schwab, R., Czech, B., Mica, E., and Weigel, D. (2008). Dual effects of miR156-targeted SPL genes and CYP78A5/KLUH on plastochron length and organ size in Arabidopsis thaliana. The Plant Cell 20, 1231-1243. Westermann, J., Koebke, E., Lentz, R., Hulskamp, M., and Boisson-Dernier, A. (2020). A Comprehensive Toolkit for Quick and Easy Visualization of Marker Proteins, Protein-Protein Interactions and Cell Morphology in Marchantia polymorpha. Front Plant Sci 11, 569194. Williams, L., Carles, C.C., Osmont, K.S., and Fletcher, J.C. (2005). A database analysis method identifies an endogenous trans-acting short-interfering RNA that targets the Arabidopsis ARF2, ARF3, and ARF4 genes. Proceedings of the National Academy of Sciences of the United States of America 102, 9703-9708. Willmann, M.R., and Poethig, R.S. (2007). Conservation and evolution of miRNA regulatory programs in plant development. Curr Opin Plant Biol 10, 503-511. Winkelmann, T., and Grunewaldt, J. (1995a). Genotypic variability for protoplast regeneration in Saintpaulia ionantha (H. Wendl.). Plant Cell Rep 14, 704-707. Winkelmann, T., and Grunewaldt, J. (1995b). Analysis of protoplast-derived plants of Saintpaulia ionantha H. Wendl. Plant Breeding 114, 346-350. Wu, F.H., Shen, S.C., Lee, L.Y., Lee, S.H., Chan, M.T., and Lin, C.S. (2009). Tape-Arabidopsis Sandwich - a simpler Arabidopsis protoplast isolation method. Plant Methods 5, 16. Wu, J.-Z., Liu, Q., Geng, X.-S., Li, K.-M., Luo, L.-J., and Liu, J.-P. (2017). Highly efficient mesophyll protoplast isolation and PEG-mediated transient gene expression for rapid and large-scale gene characterization in cassava (Manihot esculenta Crantz). BMC Biotechnology 17, 29. Xia, R., Xu, J., and Meyers, B.C. (2017). The Emergence, Evolution, and Diversification of the miR390-TAS3-ARF Pathway in Land Plants. The Plant Cell 29, 1232-1247. Xie, Z., Allen, E., Fahlgren, N., Calamar, A., Givan, S.A., and Carrington, J.C. (2005). Expression of Arabidopsis MIRNA genes. Plant Physiol 138, 2145-2154. Yan, J., Cai, X., Luo, J., Sato, S., Jiang, Q., Yang, J., Cao, X., Hu, X., Tabata, S., Gresshoff, P.M., and Luo, D. (2010). The REDUCED LEAFLET genes encode key components of the trans-acting small interfering RNA pathway and regulate compound leaf and flower development in Lotus japonicus. Plant Physiol 152, 797-807. Yang, L., Liu, Z., Lu, F., Dong, A., and Huang, H. (2006). SERRATE is a novel nuclear regulator in primary microRNA processing in Arabidopsis. Plant J 47, 841-850. Yang, M., Lu, H., Xue, F., and Ma, L. (2019). Identifying High Confidence microRNAs in the Developing Seeds of Jatropha curcas. Scientific Reports 9, 4510. Yang, Z., Sakai, M., Sayama, H., Shimeno, T., Yamaguchi, K., and Watanabe, N. (2009). Elucidation of the biochemical pathway of 2-phenylethanol from shikimic acid using isolated protoplasts of rose flowers. J Plant Physiol 166, 887-891. Yoo, S.D., Cho, Y.H., and Sheen, J. (2007). Arabidopsis mesophyll protoplasts: a versatile cell system for transient gene expression analysis. Nat Protoc 2, 1565-1572. Yoshikawa, M., Peragine, A., Park, M.Y., and Poethig, R.S. (2005). A pathway for the biogenesis of trans-acting siRNAs in Arabidopsis. Genes & Development 19, 2164-2175. You, C., Cui, J., Wang, H., Qi, X., Kuo, L.Y., Ma, H., Gao, L., Mo, B., and Chen, X. (2017). Conservation and divergence of small RNA pathways and microRNAs in land plants. Genome Biol 18, 158. Zaitlin, D., and Pierce, A.J. (2010). Nuclear DNA content in Sinningia (Gesneriaceae); intraspecific genome size variation and genome characterization in S. speciosa. Genome 53, 1066-1082. Zhang, B., Pan, X., Cannon, C.H., Cobb, G.P., and Anderson, T.A. (2006). Conservation and divergence of plant microRNA genes. Plant J 46, 243-259. Zhang, J., Fu, X.X., Li, R.Q., Zhao, X., Liu, Y., Li, M.H., Zwaenepoel, A., Ma, H., Goffinet, B., Guan, Y.L., Xue, J.Y., Liao, Y.Y., Wang, Q.F., Wang, Q.H., Wang, J.Y., Zhang, G.Q., Wang, Z.W., Jia, Y., Wang, M.Z., Dong, S.S., Yang, J.F., Jiao, Y.N., Guo, Y.L., Kong, H.Z., Lu, A.M., Yang, H.M., Zhang, S.Z., Van de Peer, Y., Liu, Z.J., and Chen, Z.D. (2020). The hornwort genome and early land plant evolution. Nature Plants 6, 107-118. Zhou, M., Peng, H., Wu, L., Li, M., Guo, L., Chen, H., Wu, B., Liu, X., Zhao, H., Li, W., and Ma, M. (2022). TaKLU Plays as a Time Regulator of Leaf Growth via Auxin Signaling. Int J Mol Sci 23. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/94432 | - |
| dc.description.abstract | 植物的微型核酸 (miRNAs) 在後轉錄層級調控目標基因的表現,控制著植物生長發育的過程。其中,保守性的miRNAs在植物發育的所有方面幾乎都發揮了至關重要的作用。本論文的研究展示保守的miR390在基礎陸地植物地錢中的分子調控機制及功能並建立了開花植物中花瓣原生質體暫時性轉殖系統,為研究miR390調控開花相關基因提供了一個技術平台。在第二章中,研究顯示在地錢中miR390透過裁切TAS3轉錄本產生轉導性短干擾RNAs (tasiRNAs),從中找到一個大量表現的tasiRNA,tasi78A,並預測到其目標基因為一個細胞色素P450基因,MpCYP78A101。同時還預測到MpCYP78A101受到另一個miRNA, miR11700共同調控。透過暫時性轉殖系統驗證了tasi78A及miR11700負向調控MpCYP78A101,並且可能通過調控生長素訊息來影響地錢的無性生殖器官孢芽 (gemma) 以及有性生殖器官的生長發育。第三章則是建立了開花植物苦苣苔屬中大岩桐的花瓣原生質體暫時性轉殖系統,將切成條狀的花瓣浸泡在1.5%纖維素酶 (cellulase) 和 0.4% 離析酶 (macerozyme) 的酵素溶液中六小時,可獲得高產量的花瓣原生質體,並達到41.4%的轉殖效率。本論文對於保守的miR390從基礎陸地植物到開花植物在演化上、基因調控機制及功能性將有更全面的了解。 | zh_TW |
| dc.description.abstract | Plant microRNAs (miRNAs) regulate target gene expression at the post-transcriptional level and control the growth and development of plants. Among them, conserved miRNAs play key roles in plant development, with functions spanning almost all aspects. This study unveils the molecular regulatory mechanisms and functions of the conserved miR390 in the basal land plant, Marchantia polymorpha. Moreover, a petal protoplast transient transformation system in flowering plant was established, providing a technical platform for investigating miR390 regulation of flowering-related genes. In Chapter 2, we demonstrated that miR390 generates trans-acting short-interfering RNAs (tasiRNAs) by cleaving TAS3 transcripts in M. polymorpha. Among these tasiRNAs, one highly expressed tasiRNA, tasi78A, was identified, and its target gene was predicted to be a cytochrome P450 gene, MpCYP78A101. Moreover, we further predicted that MpCYP78A101 is co-regulated by another miRNA, miR11700. Using a transient transformation system, we validated that tasi78A and miR11700 negatively regulate MpCYP78A101 and potentially affect the development of asexual reproductive organs (gemmae) and sexual organs through auxin signaling. In Chapter 3, we established a petal protoplast transient transformation system in the flowering plant Gloxinia (Sinningia speciosa). By immersing petal strips in an enzyme solution containing 1.5% cellulase and 0.4% macerozyme for 6 hours, we obtained high yields of petal protoplasts and achieved a transformation efficiency of 41.4%. This study provides a further understanding of the evolution, gene regulatory mechanisms, and functional roles of conserved miR390 from basal land plants to flowering plants. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-08-15T17:28:00Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2024-08-15T17:28:00Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 致謝 I
摘要 II Abstract III Content IV Chapter 1 Literature review 1 1.1 Introduction 2 1.2 RNA silencing 2 1.2.1 Biogenesis and types of small RNAs 2 1.2.2 The conservation of miRNA 3 1.3 The knowledge of miR390 4 1.3.1 miR390 specifically loads into AGO7 4 1.3.2 The regulatory mechanism and function of miR390 4 1.3.3 The conservation of miR390/TAS3 module 5 1.4 The miR390/TAS3 module in bryophytes 6 1.4.1 The possible diverse function for miR390/TAS3 module in bryophytes 6 1.4.2 Advantages of studying M. polymorpha 7 1.4.3 Recent study of small RNA-mediated gene silencing pathway and miR390/TAS3 module in M. polymorpha 8 1.5 MiR390/TAS3 module in floral symmetry 11 1.5.1 Recent study of miR390/TAS3 module in Sinningia speciosa 11 1.5.2 Transient transformation system 12 1.6 Aim of this study 14 Chapter 2 Dual regulation of cytochrome P450 gene expression by two distinct small RNAs, a novel tasiRNA and miRNA, in Marchantia polymorpha. 16 2.1 Abstract 17 2.2 Introduction 18 2.3 Materials and Methods 21 2.3.1 Plant materials and growth conditions 21 2.3.2 Gene construction 21 2.3.3 Plant transformation and gene knock-out 22 2.3.4 Small RNA detection 22 2.3.5 MpAGO1-IP 23 2.3.6 Small RNA deep sequencing 23 2.3.7 Promoter-reporter assays 24 2.3.8 Small RNA target identification 24 2.3.9 Real-time RT–PCR and stem-loop qRT-PCR 25 2.3.10 Transient expression by agroinfiltration 26 2.3.11 Transient expression by agropenetration in M. polymorpha 26 2.3.12 Auxin sensitivity assay 27 2.3.13 Cell size quantification 28 2.3.14 Phylogenetic tree of CYP78 and CYP98 families 28 2.4 Results 28 2.4.1 miR390/TAS3/MpARF2 pathway in M. polymorpha 28 2.4.2 MpTAS3-derived tasiRNAs are mainly processed from the 3'-end phasing positions 1 and 2 of MpTAS3 transcripts 30 2.4.3 A novel tasi78A regulates MpCYP78A101 31 2.4.4 miR390 leads to the production of tasiRNAs in M. polymorpha 32 2.4.5 MpCYP78A101 was regulated by both tasi78A and miR11700 33 2.4.6 Promoter assay for MIR390, MpTAS3, MIR11700, and MpCYP78A101 34 2.4.7 Tasi78A negatively regulates MpCYP78A101 in M. polymorpha 35 2.4.8 miR11700 may regulate MpCYP78A101 at the reproductive stage in M. polymorpha 35 2.4.9 Evaluation of the regulatory relationships between tasi78A, miR11700, and MpCYP78A101 in M. polymorpha 37 2.4.10 The dcl4ge, mir390ge, and mir390/11700ge mutants display NAA less sensitive phenotype 38 2.4.11 Target sites of tasi78A and miR11700 in CYP78 homologs during land plant evolution 39 2.5 Discussion 40 2.6 Conclusion 46 2.7 Tables and Figures 47 Figure 1. Target prediction of miR390 and tasiARF and the role of MpDCL4 in tasiRNA biogenesis in M. polymorpha. 47 Figure 2. MpTAS3-derived phased 21-nucleotide (nt) tasiRNAs and their corresponding targets in M. polymorpha. 49 Figure 3. Small RNA expression patterns of miR390, tasiARF, and tasi78A in the mir390ge mutants and MIR390OE plants. 51 Figure 4. Target prediction of mi11700 and the reporter assays of amiR-tasi78A, miR11700, and MpCYP78A101 in Nicotiana benthamiana. 52 Figure 5. Expression patterns of the MIR390/MpTAS3 module, MIR11700, and MpCYP78A101 in M. polymorpha. 54 Figure 6. Phenotypic observations and reporter assays of 78ARepYFP in the amiR-TASI78AOE plants. 56 Figure 7. Phenotypic observations and expression analysis of the mir11700ge mutants and MIR11700OE plants. 57 Figure 8. Phenotypic observations and reporter assays of 11700RepYFP in the mir390/11700ge mutants and MIR390/11700OE plants. 59 Figure 9. NAA treatment of dcl4ge, mir390ge, mir390/11700ge mutants, and amiR-TASI78AOE plants. 61 Figure 10. Phylogenetic tree of CYP78 homologs. 63 Figure 11. Illustration of the miR390/TAS3 regulatory module in Arabidopsis and M. polymorpha. 64 2.8 Supplementary Tables and Figures 65 Supplementary Table S1. The primer sets used for gene construction in this study 65 Supplementary Figure S1. MpTAS3-derived phased 21-nucleotide tasiRNAs. 67 Supplementary Figure S2. Alignments and target plots of tasi78A and its targets in M. polymorpha. 68 Supplementary Figure S3. Alignments and target plots of tasiRNAs from 3'-end phasing position 2 and the targets in M. polymorpha. 73 Supplementary Figure S4. Boxplot of quantified YFP intensity of the confocal images. 74 Supplementary Figure S5. Phenotypic observations and expressional analysis of the mir390ge mutants and MIR390 plants. 75 Supplementary Figure S6. Boxplot of thallus width and sexual organ number of mir11700ge mutants and MIR11700 plants at reproductive stage. 76 Supplementary Figure S7. qRT-PCR of MpCYP78A101 in the mir390/11700ge mutants by using 2-week-old thallus. 77 Supplementary Figure S8. Boxplot of the area of NAA-treated thallus. 78 Supplementary Figure S9. Alignments of tasi78A and CYP78 homologs. 79 Supplementary Figure S10. Alignments of miR11700 and CYP78 homologs. 80 2.9 Appendix 81 Appendix 1. CRISPR/Cas9-mediated mutation on MpDCL4. 81 Appendix 2. Expression patterns of MIR11700 and MpCYP78A101 in the male sexual organs of M. polymorpha. 83 Appendix 3. Phenotypic observations of dcl4ge, mir390ge, mir390/11700ge mutants, and amiR-TASI78AOE plants 84 Appendix 4. NAA treatment of dcl4ge, mir390ge, mir390/11700ge mutants, and amiR-TASI78AOE plants. 85 Chapter 3 Development of a petal protoplast transfection system for Sinningia speciosa 86 3.1 Abstract 87 3.2 Introduction 88 3.3 Material and Methods 90 3.3.1 Plant growth conditions 90 3.3.2 Petal protoplast isolation 90 3.3.3 DNA transfection 91 3.4 Results 92 3.4.1 Petal protoplast isolation and protoplast yield 92 3.4.2 DNA transformation into petal protoplasts form S. speciosa 93 3.5 Discussion 95 3.5.1 Moderate yields and transfection efficiency of S. speciosa petal protoplasts 95 3.6 Tables and Figures 97 Table 1 Comparison of protoplast isolation condition in different species. 97 Figure 1 Effect of osmotic pressure (mannitol concentration) on protoplast yield from petal in S. speciosa. 99 Figure 2 Transfection efficiency of transfected Sinningia speciosa ‘ES’ petal protoplasts. 100 3.7 Appendix 101 Appendix 1. Reagents and Equipment required to perform the isolation and transfection of S. speciosa petal protoplasts. 101 Reference 103 Appendix 115 | - |
| dc.language.iso | en | - |
| dc.subject | miR390/TAS3 | zh_TW |
| dc.subject | tasiRNA 生合成 | zh_TW |
| dc.subject | 生長素訊息 | zh_TW |
| dc.subject | MpCYP78A101 | zh_TW |
| dc.subject | 地錢 | zh_TW |
| dc.subject | 大岩桐 | zh_TW |
| dc.subject | 原生質體 | zh_TW |
| dc.subject | MpCYP78A101 | en |
| dc.subject | tasiRNA biogenesis | en |
| dc.subject | auxin signaling | en |
| dc.subject | protoplast | en |
| dc.subject | Sinningia speciosa | en |
| dc.subject | Marchantia polymorpha | en |
| dc.subject | miR390/TAS3 | en |
| dc.title | 地錢細胞色素P450受tasiRNA及微型核酸雙調控機制研究及大岩桐花瓣原生質體暫時性表達系統之建立 | zh_TW |
| dc.title | Dual regulation of cytochrome P450 expression by tasiRNA and microRNA in Marchantia polymorpha and the establishment of Sinningia petal protoplast transient expression system | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 112-2 | - |
| dc.description.degree | 博士 | - |
| dc.contributor.coadvisor | 林詩舜;王俊能 | zh_TW |
| dc.contributor.coadvisor | Shih-Shun Lin;Chun-Neng Wang | en |
| dc.contributor.oralexamcommittee | 西浜竜一;小松愛乃;吳素幸;陳荷明;邱子珍 | zh_TW |
| dc.contributor.oralexamcommittee | Ryuichi Nishihama;Aino Komatsu;Shu-Hsing Wu;Ho-Ming Chen;Tzyy-Jen Chiou | en |
| dc.subject.keyword | miR390/TAS3,tasiRNA 生合成,生長素訊息,MpCYP78A101,地錢,大岩桐,原生質體, | zh_TW |
| dc.subject.keyword | miR390/TAS3,tasiRNA biogenesis,auxin signaling,MpCYP78A101,Marchantia polymorpha,Sinningia speciosa,protoplast, | en |
| dc.relation.page | 115 | - |
| dc.identifier.doi | 10.6342/NTU202404007 | - |
| dc.rights.note | 同意授權(全球公開) | - |
| dc.date.accepted | 2024-08-12 | - |
| dc.contributor.author-college | 生命科學院 | - |
| dc.contributor.author-dept | 植物科學研究所 | - |
| 顯示於系所單位: | 植物科學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-112-2.pdf | 5.74 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
