請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/94430
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 羅弘岳 | zh_TW |
dc.contributor.advisor | Hong-Yueh Lo | en |
dc.contributor.author | 林子喻 | zh_TW |
dc.contributor.author | Tzu-Yu Lin | en |
dc.date.accessioned | 2024-08-15T17:27:16Z | - |
dc.date.available | 2024-08-16 | - |
dc.date.copyright | 2024-08-15 | - |
dc.date.issued | 2024 | - |
dc.date.submitted | 2024-08-13 | - |
dc.identifier.citation | 柯秉辰 (2023). 以 NHWAVE 模擬 N 型波之溯升. 碩士論文, 國立臺灣大學工程科學與海洋工程研究所, 台北.
陳玟諭 (2023). 前導下沉 N 型海嘯波於不同傳遞距離之溯升. 碩士論文, 國立臺灣大學工程科學與海洋工程研究所, 台北. 黃俊瑞 (2022). 前導下沉 N 型海嘯波之傳遞與溯升. 碩士論文, 國立臺灣大學工程科學與海洋工程研究所, 台北. Boussinesq, J. (1872). Théorie des ondes et des remous qui se propagent le long d’un canal rectangulaire horizontal, en communiquant au liquide contenu dans ce canal des vitesses sensiblement pareilles de la surface au fond. Journal de mathématiques pures et appliquées, 17:55–108. Briggs, M., Synolakis, C., Harkins, G., and Hughes, S. (1995). Large scale three-dimensional laboratory measurements of tsunami inundation. Tsunami: Progress in Prediction, Disaster Prevention and Warning, pages 129–149. Chang, Y.-H., Hwang, K.-S., and Hwung, H.-H. (2009). Large-scale laboratory measurements of solitary wave inundation on a 1: 20 slope. Coastal Engineering, 56(10):1022–1034. Devolder, B., Rauwoens, P., and Troch, P. (2017). Application of a buoyancy-modified k-ω SST turbulence model to simulate wave run-up around a monopile subjected to regular waves using OpenFOAM®. Coastal Engineering, 125:81–94. Duncan, J., Philomin, V., Behres, M., and Kimmel, J. (1994). The formation of spilling breaking water waves. Physics of Fluids, 6(8):2558–2560. Fuhrman, D. R. and Madsen, P. A. (2008). Surf similarity and solitary wave runup. Journal of Waterway, Port, Coastal, and Ocean Engineering, 134(3):195–198. Galvin Jr, C. J. (1968). Breaker type classification on three laboratory beaches. Journal of Geophysical Research, 73(12):3651–3659. Geuzaine, C. and Remacle, J.-F. (2009). Gmsh: A 3-D finite element mesh generator with built-in pre-and post-processing facilities. International Journal for Numerical Methods in Engineering, 79(11):1309–1331. Gjevik, B. and Pedersen, G. (1981). Run-up of long waves on an inclined plane. Preprint series. Mechanics and Applied Mathematics http://urn. nb. no/URN: NBN: no-23418. Goring, D. G. (1978). Tsunamis-the propagation of long waves onto a shelf. Ph. D. thesis, California Institute of Technology, Pasadena, California. Greenshields, C. (2020). OpenFOAM v8 User Guide. The OpenFOAM Foundation, London, UK. Grilli, S. T., Svendsen, I. A., and Subramanya, R. (1997). Breaking criterion and characteristics for solitary waves on slopes. Journal of Waterway, Port, Coastal, and Ocean Engineering, 123(3):102–112. Grimshaw, R. (1971). The solitary wave in water of variable depth. part 2. Journal of Fluid Mechanics, 46(3):611–622. Hafsteinsson, H. J., Evers, F. M., and Hager, W. H. (2017). Solitary wave run-up: wave breaking and bore propagation. Journal of Hydraulic Research, 55(6):787–798. Hall, J. V., Watts, G. M., et al. (1953). Laboratory investigation of the vertical rise of solitary waves on impermeable slopes. Engineer Research and Development Center(U.S.). Higuera, P. (2017). olaFlow: CFD for waves [Software]. https://doi.org/10.5281/zenodo.1297013. Higuera, P., Lara, J. L., and Losada, I. J. (2013). Realistic wave generation and active wave absorption for navier–stokes models: Application to openfoam®. Coastal Engineering, 71:102–118. Hirt, C. W. and Nichols, B. D. (1981). Volume of fluid (VOF) method for the dynamics of free boundaries. Journal of Computational Physics, 39(1):201–225. Hsiao, S.-C., Hsu, T.-W., Lin, T.-C., and Chang, Y.-H. (2008). On the evolution and run-up of breaking solitary waves on a mild sloping beach. Coastal Engineering, 55(12):975–988. Jensen, A., Pedersen, G. K., and Wood, D. J. (2003). An experimental study of wave run-up at a steep beach. Journal of Fluid Mechanics, 486:161–188. Kobayashi, N. and Karjadi, E. A. (1994). Surf-similarity parameter for breaking solitary-wave runup. Journal of Waterway, Port, Coastal, and Qcean Engineering, 120(6):645–650. Li, Y. and Raichlen, F. (2001). Solitary wave runup on plane slopes. Journal of Waterway, Port, Coastal, and Ocean Engineering, 127(1):33–44. Li, Y. and Raichlen, F. (2002). Non-breaking and breaking solitary wave run-up. Journal of Fluid Mechanics, 456:295–318. Li, Y. and Raichlen, F. (2003). Energy balance model for breaking solitary wave runup. Journal of Waterway, Port, Coastal, and Ocean Engineering, 129(2):47–59. Liu, P. L.-F., Park, Y. S., and Cowen, E. A. (2007). Boundary layer flow and bed shear stress under a solitary wave. Journal of Fluid Mechanics, 574:449–463. Liu, P. L.-F., Synolakis, C. E., and Yeh, H. H. (1991). Report on the international workshop on long-wave run-up. Journal of Fluid Mechanics, 229:675–688. Lo, H.-Y., Park, Y. S., and Liu, P. L.-F. (2013). On the run-up and back-wash processes of single and double solitary waves—an experimental study. Coastal Engineering, 80:1–14. Lo, P. H.-Y., Chen, W.-Y., and Huang, C.-J. (2024). Laboratory investigation on the runup of leading-depression N-waves on a uniform slope. Coastal Engineering, 189:104479. Menter, F. R. (1994). Two-equation eddy-viscosity turbulence models for engineering applications. AIAA journal, 32(8):1598–1605. Ogino, Y., Hirata, Y., Kihana, S., and Nitta, N. (2018). Numerical simulation of free-flight transfer by a 3D metal transfer model. Quarterly Journal of the Japan Welding Society,36:94–103. Papanicolaou, P. and Raichlen, F. (1987). Wave characteristics in the surf zone. In Making Project Control Systems Work, pages 765–780. ASCE. Langsholt, M. (1981). Experimental study of wave run-up. Master’s thesis. Dept. Mathematics, University of Oslo. Raichlen, F. and Papanicolaou, P. (1988). Some characteristics of breaking waves. Coastal Engineering 1988, pages 377–392. Remacle, J.-F., Henrotte, F., Carrier-Baudouin, T., Béchet, E., Marchandise, E., Geuzaine, C., and Mouton, T. (2013). A frontal Delaunay quad mesh generator using the L∞ norm. International Journal for Numerical Methods in Engineering, 94(5):494–512. Svendsen, I. A. and Grilli, S. T. (1990). Nonlinear waves on steep slopes. Journal of Coastal Research, pages 185–202. Synolakis, C. E. (1987). The runup of solitary waves. Journal of Fluid Mechanics, 185:523–545. Wu, Y.-T., Higuera, P., and Liu, P. L.-F. (2021). On the evolution and runup of a train of solitary waves on a uniform beach. Coastal Engineering, 170:104015. Wu, Y.-T., Liu, P. L.-F., Hwang, K.-S., and Hwung, H.-H. (2018). Runup of laboratory-generated breaking solitary and periodic waves on a uniform slope. Journal of Waterway, Port, Coastal, and Ocean Engineering, 144(6):04018023. Zelt, J. (1991). The run-up of nonbreaking and breaking solitary waves. Coastal Engineering, 15(3):205–246. | - |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/94430 | - |
dc.description.abstract | 本研究透過 OpenFOAM 模擬孤立波之溯升,使用 RANS 方程式以及浮力修正紊流模型 (buoyancy-modified k − ω SST turnulence model),使用相同的入射波條件,傳遞上斜率為 1/2 至 1/100 的斜板,分析斜板斜率對孤立波的影響,分析不同破碎型態的特徵及性質。模擬結果顯示,總能量在溯升期間的消耗隨著斜板越緩消耗百分比越高。同時,崩捲型破碎 (plunging) 顯示出瞬間最劇烈的紊流動能,而溢出型破碎 (spilling) 的破碎總時長最長,無破碎 (no breaking) 及洶湧型破碎 (surging) 的能量消耗則非常低。能量變化圖上,透過動能與位能之間的變化,也可以看到斜板的反射與波浪淺化的現象。此外,前人使用的破碎型態分類標準在本模擬中也適用,僅溢出型 (spilling) 在更陡的斜板上就能夠觀察到。 | zh_TW |
dc.description.abstract | The study simulates the run-up of solitary waves using OpenFOAM, applying the RANS equations and the buoyancy-modified k − ω SST turnulence model.Under identical incident wave conditions, slopes ranging from 1/2 to 1/100 were tested on inclined plates to analyze the impact of slope on solitary waves and to examine the characteristics and properties of different breaking types. The simulation results indicate that the percentage of total energy dissipation during the run-up increases as the slope becomes gentler. Additionally, plunging-type breaking shows the most intense instantaneous turbulent kinetic energy, while spilling-type breaking has the longest total breaking duration. Energy dissipation in non-breaking and surging-type breaking waves is minimal. The energy variation figure reveals the reflection and wave shoaling phenomena on the slope through the changes in kinetic and potential energy. Moreover, the classification standards for breaking types used in previous studies is also applicable in this simulation, except that spilling type can be observed even on steeper slopes. | en |
dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-08-15T17:27:16Z No. of bitstreams: 0 | en |
dc.description.provenance | Made available in DSpace on 2024-08-15T17:27:16Z (GMT). No. of bitstreams: 0 | en |
dc.description.tableofcontents | 致謝 iii
摘要 v Abstract vii 目次 ix 圖次 xiii 表次 xvii 符號列表 xix 第一章 緒論 1 1.1 研究動機與目的 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 文獻回顧 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.3 論文架構 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 第二章 數值模型與孤立波理論 5 2.1 數值模型 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2.1.1 控制方程式 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 2.1.2 紊流模型 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 2.2 孤立波 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 2.2.1 孤立波理論 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 2.2.2 孤立波之造波 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 2.2.3 孤立波之破碎 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 2.2.4 破碎參數 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 第三章 研究方法 13 3.1 網格設定與時間步進 . . . . . . . . . . . . . . . . . . . . . . . . . . 13 3.2 自由液面計算方法 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 3.3 初始條件與邊界條件 . . . . . . . . . . . . . . . . . . . . . . . . . . 16 3.4 海岸線定義與抓取方法 . . . . . . . . . . . . . . . . . . . . . . . . . 18 3.5 能量計算方法 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 第四章 數值模擬驗證 21 4.1 網格敏感性測試 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 4.1.1 波形傳遞 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 4.1.2 海岸線歷時圖 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 4.1.3 溯升結果測試 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 4.1.4 能量敏感性測試 . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 4.1.5 網格敏感性測試總結 . . . . . . . . . . . . . . . . . . . . . . . . 31 4.2 s=1/10 斜板驗證 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 4.2.1 歷時圖與造波方法 . . . . . . . . . . . . . . . . . . . . . . . . . . 32 4.2.2 不同入射波高之溯升高度結果 . . . . . . . . . . . . . . . . . . . 34 4.2.3 影片對比 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 4.3 s=1/19.85 斜板驗證 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 4.3.1 溯升結果散佈圖 . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 4.3.2 波形對比 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 4.4 本章總結 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 第五章 孤立波破碎型態與分析 43 5.1 模擬結果 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 5.2 四種波浪破碎型態 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 5.2.1 無破碎 No Breaking . . . . . . . . . . . . . . . . . . . . . . . . . 46 5.2.2 洶湧型 Surging . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 5.2.3 崩捲型 Plunging . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 5.2.4 溢出型 Spilling . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 5.3 趨勢分析 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 5.3.1 最大紊流動能 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 5.3.2 溯升總時長 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 5.3.3 溯升能量耗散比例 . . . . . . . . . . . . . . . . . . . . . . . . . . 60 第六章 結果與未來展望 63 6.1 結論 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 6.2 未來展望 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 參考文獻 65 | - |
dc.language.iso | zh_TW | - |
dc.title | 以數值模擬分析孤立波之溯升與破碎 | zh_TW |
dc.title | Numerical Study of Solitary Wave Runup and Breaking | en |
dc.type | Thesis | - |
dc.date.schoolyear | 112-2 | - |
dc.description.degree | 碩士 | - |
dc.contributor.oralexamcommittee | 蔡武廷;詹益齊 | zh_TW |
dc.contributor.oralexamcommittee | Wu-Ting Tsai;I-Chi Chan | en |
dc.subject.keyword | 孤立波,OpenFOAM,溯升,破碎形態,浮力修正紊流模型, | zh_TW |
dc.subject.keyword | Solitary waves,OpenFOAM,Runup,Breaking types,Buoyancy-modified k-ω SST model, | en |
dc.relation.page | 69 | - |
dc.identifier.doi | 10.6342/NTU202404030 | - |
dc.rights.note | 同意授權(全球公開) | - |
dc.date.accepted | 2024-08-13 | - |
dc.contributor.author-college | 工學院 | - |
dc.contributor.author-dept | 工程科學及海洋工程學系 | - |
顯示於系所單位: | 工程科學及海洋工程學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-112-2.pdf | 13.08 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。