請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/94428完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 馬劍清 | zh_TW |
| dc.contributor.advisor | Chien-Ching Ma | en |
| dc.contributor.author | 陳祈維 | zh_TW |
| dc.contributor.author | Chi-Wei Chen | en |
| dc.date.accessioned | 2024-08-15T17:26:17Z | - |
| dc.date.available | 2024-08-16 | - |
| dc.date.copyright | 2024-08-15 | - |
| dc.date.issued | 2024 | - |
| dc.date.submitted | 2024-08-12 | - |
| dc.identifier.citation | Hill, K. O., Fujii, Y., Johnson, D. C., & Kawasaki, B. S. (1978). Photosensitivity in optical fiber waveguides: Application to reflection filter fabrication. Applied Physics Letters, vol. 32, 647-649.
Hill, K. O., Malo, B., Bilodeau, F., Johnson, D. C., & Albert, J. (1993). Bragg gratings fabricated in monomode photosensitive optical fiber by UV exposure through a phase mask. Applied Physics Letters, vol. 62, 1035-1037. Anderson, D. Z., Mizrahi, V., Erdogan, T., & White, A. E. (1993). Production of in-fiber gratings using a diffractive optical element. Electronics Letters, vol. 29, 566-568. Hill, K. O., & Meltz, G. (1997). Fiber Bragg grating technology fundamentals and overview. Journal of Lightwave Technology, vol. 15, 1263-1276. Kashyap, R. (1999). Fiber Bragg Gratings. Academic press. Erdogan, T. (1997). Fiber grating spectra. Journal of Lightwave Technology, vol. 15, 1277-1294. Nye, J. F. (1957).Physical Properties of Crystals: Their Representation by Tensors and Matrices. Oxford university press. Bertholds, A., & Dandliker, R. (1988). Determination of the individual strain-optic coefficients in single-mode optical fibres. Journal of Lightwave Technology, vol. 6, 17-20. Takahashi, S., & Shibata, S. (1979). Thermal variation of attenuation for optical fibers. Journal of Non-Crystalline Solids, vol. 30, 359-370. Tao, X., Tang, L., Du, W. C., & Choy, C. L. (2000). Internal strain measurement by fiber Bragg grating sensors in textile composites. Composites Science and Technology, vol. 60, 657-669. Kersey, A. D., Berkoff, T. A., & Morey, W. W. (1993). Multiplexed fiber Bragg grating strain-sensor system with a fiber Fabry–Perot wavelength filter. Optics Letters, vol. 18, 1370-1372. Sun, Q., Liu, D., Xia, L., Wang, J., Liu, H., & Shum, P. (2008). Experimental demonstration of multipoint temperature warning sensor using a multichannel matched fiber Bragg grating. Photonics Technology Letters, IEEE, vol. 20, 933-935. Zhao, X., Song, G., Fernandez, M., & Ou, J. (2009). One kind of fiber Bragg grating displacement sensor using micro-elastic spring. Second International Conference on Smart Materials and Nanotechnology in Engineering, 74932X-74932X-6. Biswas, P., Bandyopadhyay, S., Kesavan, K., Parivallal, S., Sundaram, B. A., Ravisankar, K., & Dasgupta, K. (2010). Investigation on packages of fiber Bragg grating for use as embeddable strain sensor in concrete structure. Sensors and Actuators A: Physical, vol. 157, 77-83. Melle, S. M., & Liu, K. (1992). A passive wavelength demodulation system for guided-wave Bragg grating sensors. IEEE Photonics Technology Letters, vol. 4, 516-518. Kersey, A. D., Berkoff, T. A., & Morey, W. W. (1993). Two-channel fiber Bragg-grating strain sensor with high-resolution interferometric wavelength-shift detection. Fibers', vol. 92, 48-55. 葉耀文,馬劍清,"短週期光纖光柵在動態系統的量測與應用",碩士論文,機械工程研究所,台灣大學,2004。 龔瑞清,馬劍清,"開發布拉格光纖光柵感測器於多點與即時量測系統並應用在高速內藏式主軸與銑削工件之溫升、變形及轉速之精密量測",碩士論文,機械工程學研究所,臺灣大學,2017。 凃哲維,馬劍清,"應用布拉格光纖光柵感測器於加工系統之溫升、變形與動態特性之精密量測與遠端監控",碩士論文,機械工程學研究所,臺灣大學,2019。 黃婉瑈,馬劍清,"開發布拉格光纖光柵感測器量測系統於機械加工系統之溫升、變形與振動特性之分析",碩士論文,機械工程學研究所,臺灣大學,2020。 廖尉翔,馬劍清,"布拉格光纖光柵於固體結構多點動態應變及熱學量測之技術開發及資料解析",碩士論文,機械工程學研究所,臺灣大學,2022。 黃柏鈞,黃育熙,"積層製造材料於異向性力學以複合材料薄樑結構進行振動特性分析與應用",碩士論文,機械工程學研究所,臺灣大學,2016。 林均憶,黃育熙,”積層製造之材料量測應用於功能性梯度材料與埋入式感測”,碩士論文,機械工程學研究所,臺灣大學,2021。 J. A. Nelder, R. Mead, A Simplex Method for Function Minimization, The Computer Journal, Volume 7, Issue 4, January 1965, Pages 308–313. 陳竑均,馬劍清,"正交各向異性懸臂版的振動特性與暫態波傳之理論分析、數值計算與實驗量測",碩士論文,機械工程學研究所,臺灣大學,2021。 陳冠瑋,馬劍清,"矩形平板部分浸泡於流場中的振動特性、暫態波傳與反算問題之理論解析、數值計算與實驗量測",博士論文,機械工程學研究所,臺灣大學,2021。 Cuiffo, M.A.; Snyder, J.; Elliott, A.M.; Romero, N.; Kannan, S.; Halada, G.P. Impact of the Fused Deposition (FDM) Printing Process on Polylactic Acid (PLA) Chemistry and Structure. Appl. Sci. 2017, 7, 579. Kantaros, A., & Karalekas, D. (2013, September). Fiber Bragg grating based investigation of residual strains in ABS parts fabricated by fused deposition modeling process. Materials & Design, 50, 44-50. 李奕,馬劍清,”提升數位影像相關法全場量測表現並應用於風機系統結構量測及揚聲器減震材料分析”,碩士論文,機械工程研究所,臺灣大學,2024 | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/94428 | - |
| dc.description.abstract | 基於積層製造材料具正交性的材料特性,本文首先說明正交性材料的本構方程式,推出描述積層製造材料所需的相關工程常數,接著使用熱熔沉積式的3D列印機列印出不同堆疊方式的3D列印試片,並採用不同的材料參數量測方法,包括懸臂梁動態試驗量測、拉伸試驗並搭配實驗室的光纖光柵、數位影像相關法的應變量測技術以及使用Nelder-Mead simplex反算懸臂薄板的材料參數,以量測出特定列印參數下之試片三方向相關之材料常數,並比較各量測方法量測出的材料參數結果,找出最適合量測積層製造材料參數的量測方式。接著利用光纖光柵感測器可同時量測應變與溫升的特性,將其應用於此次3D列印材料之熱學性質量測上,利用單光纖法量測該材料在不同溫度負載下的熱學特性,量測出待測物的熱應變,並使用更高階的溫度擬合模型解釋該材料非線性的變形情形並探討玻璃轉化溫度對於量測結果的影響,進行驗證實驗來驗證假設,最後把光纖光柵埋入3D列印試片當中,監測製程中所產生的殘留應變。
由於光纖光柵具備許多其他感測器沒有的優點,例如:防水、耐酸鹼、抗電磁波干擾、高靈敏度、可同時量測溫升和應變和多點長時間長距離量測,因此本文選用其作為風力發電機基座的多點動態應變訊號量測的感測器,藉由將多段光纖光柵黏貼於風力發電機基座的主要結構上,對該結構施予敲擊訊號以激發出整體結構的動態訊號,經快速傅立葉轉換,獲得整體結構振動時所產生的頻率響應,再由帶通濾波獲得該結構特定頻率下的振型,並結合有限元素的結果,還原出該結構在特定共振頻率下的振型,最後將多段光纖光柵置於水中驗證其在水下的溫度感測能力,作為日後將其應用於海水底下時溫度補償的參考。 | zh_TW |
| dc.description.abstract | Based on the orthotropic material properties of additive manufacturing materials, this study first explains the constitutive equations of orthotropic materials and derives the required engineering constants for characterizing these additive manufacturing materials. Subsequently, a fused deposition modeling 3D printer was used to print 3D printed specimens that have different printing orientations, and various material parameter measurement methods were employed, including dynamic testing of cantilever beams, tensile testing combined with laboratory-developed techniques, such as fiber Bragg gratings(FBG) and digital image correlation(DIC) as well as using Nelder-Mead simplex inverse algorithm to calculate the material parameters of cantilever thin plates. After that, material constants in three directions of the specimen under specific printing parameters were measured, and the results from different measurement methods were compared to find the most suitable method for measuring these additive manufacturing materials. Furthermore, taking advantages of the fiber Bragg grating’s characteristics which could simultaneously measure strain and temperature, FBG sensors were applied to measure the 3D printing specimen’s thermal properties in this study. Next, using single fiber method to measure the material’s thermal properties under different temperature, and a higher-order temperature fitting model was used to explain the nonlinear deformation of the material and discussed the influence of the glass transition temperature on the measurement results. After that, verification experiments were conducted to validate previous assumptions. At last, the FBG sensor was embed into the 3D printed specimen to monitor the generated residual strain during the manufacturing process.
Due to the enormous advantages that fiber Bragg grating sensors over other types of sensors, such as waterproofing, resistance to acidic and alkaline environments, anti-electromagnetic interference, high sensitivity, and the ability to simultaneously measure strain and temperature over multiple points and long distances for a long period, this study employed FBG sensors for multi-point dynamic strain signals measurement on wind turbine generator foundations. By attaching several FBG sensors to the main structure of the wind turbine generator foundation and exerting impact to the structure, the dynamic signals of the structure would be excited and the frequency response of the overall structure could be obtained through FFT signal processing. The mode shapes of certain resonance frequencies could be acquired by using the bandpass filter method. Compared the results with the finite element analysis results, the actual mode shapes of certain resonance frequencies could be reconstructed. Finally, multiple segments of FBG were placed into water to validate the temperature sensing capability in aquatic environments, serving as a reference for temperature compensation for future applications in seawater conditions. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-08-15T17:26:17Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2024-08-15T17:26:17Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 口試委員會審定書
誌謝 i 中文摘要 iii 英文摘要 v 目次 vii 圖次 xi 表次 xxiii 第一章 緒論 1 1.1 研究動機 1 1.2 文獻回顧 3 1.3 論文內容簡介 5 第二章光纖光柵量測原理 9 2.1 光纖光學原理 9 2.2 光纖光柵基本原理 12 2.3 光彈效應與熱光效應 13 2.3.1 光彈效應 13 2.3.2 熱光效應 16 2.4 共振波長飄移理論 17 2.4.1 共振波長飄移原理 17 2.4.2 承受平面應力 19 2.4.3 承受單軸向應力 20 2.4.4 承受溫度影響 21 2.5 光纖光柵的種類 22 2.5.1 短週期光纖光柵(Short Period Fiber Grating) 22 2.5.2 長週期光纖光柵(Long Period Fiber Grating) 23 2.5.3 本文所使用的光纖光柵 24 第三章 積層製造材料之材料性質的量測 31 3.1非等向性材料本構方程式 31 3.1.1 正交性材料之本構方程式 32 3.2 懸臂梁自由振動理論 34 3.2.1 彎曲模態( Bending Mode ) 34 3.2.2 扭轉模態( Torsion Mode ) 36 3.3 正交非等向性薄板之理論解析 38 3.3.1 單一列印方向3D列印薄板之工程常數 38 3.3.2 薄板理論假設與正交非等向性薄板之統御方程式 39 3.3.3 懸臂薄板( CFFF )之邊界條件與其正交非等向性材料穩態解析 41 3.3.4 材料常數反算-Simplex反算 43 3.4 3D列印之異向性性質量測 46 3.4.1 3D列印機與試片性質 46 3.4.2 懸臂梁共振頻量測與理論反算結果 47 3.4.3 拉伸試驗 54 3.4.4 懸臂薄板( CFFF )材料常數反算 62 3.4.5 本節小結 65 3.5 材料破壞檢測 66 3.5.1 數位影像相關法之搜尋演算法 66 3.5.2 3D列印拉伸試驗之破壞位置預測 67 3.5.3 本節小結 69 第四章 積層製造材料之熱學性質量測 127 4.1 光纖光柵之熱學量測簡介 127 4.1.1 波長飄移訊號-純受溫度影響 127 4.1.2 單光纖法和溫升轉換係數 127 4.1.3 光纖光柵之高階溫度轉換係數模型 129 4.1.4 擬合結果之誤差分析 130 4.2 3D列印試片之溫升量測實驗 131 4.2.1 3D列印機與列印線材 131 4.2.2 列印參數設定與實驗架設 132 4.2.3 第一次加熱結果 132 4.2.4 第二次加熱結果 134 4.2.5 第三次加熱結果 135 4.2.6 第四次加熱結果與量測結果探討 136 4.3 加熱驗證實驗 138 4.3.1 試片加熱實驗-溫度低於玻璃轉換溫度(Tg) 138 4.3.2 試片加熱實驗-溫度高於玻璃轉換溫度(Tg) 139 4.3.3 本節小結 140 4.4 3D列印製程殘留應變量測 141 4.4.1 試片設計與列印參數 141 4.4.2 製程殘留應變解析方法 142 4.4.3 以單光纖法量測列印過程之殘留應變 143 4.4.4 本節小結 145 第五章 應用光纖光柵於風力發電機基座與水下量測 179 5.1 風力發電機基座之材料係數量測 179 5.2 風力發電機基座之動態訊號量測 181 5.2.1 光纖光柵分佈情形 181 5.2.2 風力發電機基座之動態量測 182 5.2.3 模態形狀重建 183 5.3 多段光纖光柵之水下溫升感測 185 5.3.1 實驗架設 185 5.3.2 第一次實驗-降溫 186 5.3.3 第二次實驗-一次升降溫循環 186 5.3.4 第三次實驗-隨機升降溫實驗 187 5.3.5 本節小結 187 第六章 結論與未來展望 251 6.1 結論 251 6.2 未來展望 255 參考文獻 257 附錄 261 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 異向性材料 | zh_TW |
| dc.subject | 布拉格光纖光柵 | zh_TW |
| dc.subject | 破壞預測 | zh_TW |
| dc.subject | 材料參數反算 | zh_TW |
| dc.subject | 玻璃轉換溫度 | zh_TW |
| dc.subject | 殘留應變 | zh_TW |
| dc.subject | 積層製造 | zh_TW |
| dc.subject | Orthotropic materials | en |
| dc.subject | Residual strain | en |
| dc.subject | Glass transition temperature | en |
| dc.subject | Inverse calculation of materials | en |
| dc.subject | Damage prediction | en |
| dc.subject | Additive manufacturing | en |
| dc.subject | Fiber Bragg Grating | en |
| dc.title | 應用光纖光柵感測器於積層製造之材料性質量測及風力發電機基座之多點動態特性量測 | zh_TW |
| dc.title | Application of Fiber Bragg Grating Sensor in Measurement of Material Properties of Additive Manufacturing and Multi-Point Dynamic Characteristics of Wind Turbine Foundation | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 112-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 黃育熙;廖展誼;吳亦莊 | zh_TW |
| dc.contributor.oralexamcommittee | Yu-Hsi Huang;Liao-Chan Yi;Yi-Chuang Wu | en |
| dc.subject.keyword | 布拉格光纖光柵,積層製造,異向性材料,材料參數反算,玻璃轉換溫度,殘留應變,破壞預測, | zh_TW |
| dc.subject.keyword | Fiber Bragg Grating,Additive manufacturing,Orthotropic materials,Inverse calculation of materials,Glass transition temperature,Residual strain,Damage prediction, | en |
| dc.relation.page | 289 | - |
| dc.identifier.doi | 10.6342/NTU202403810 | - |
| dc.rights.note | 同意授權(限校園內公開) | - |
| dc.date.accepted | 2024-08-13 | - |
| dc.contributor.author-college | 工學院 | - |
| dc.contributor.author-dept | 機械工程學系 | - |
| 顯示於系所單位: | 機械工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-112-2.pdf 授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務) | 53.24 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
