請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/94409
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 江其衽 | zh_TW |
dc.contributor.advisor | Ci-Ren Jiang | en |
dc.contributor.author | 李泓哲 | zh_TW |
dc.contributor.author | Hung-Che Lee | en |
dc.date.accessioned | 2024-08-15T17:20:11Z | - |
dc.date.available | 2024-08-16 | - |
dc.date.copyright | 2024-08-15 | - |
dc.date.issued | 2024 | - |
dc.date.submitted | 2024-08-05 | - |
dc.identifier.citation | Abrahamsen, P. et al. (1997). A review of Gaussian random fields and correlation functions. Norsk Regnesentral/Norwegian Computing Center.
Abramowitz, M. and Stegun, I. A. (1968). Handbook of mathematical functions with formulas, graphs, and mathematical tables, volume 55. US Government printing office. Allen, G. I. (2013). Multi-way functional principal components analysis. In 2013 5th IEEE International Workshop on Computational Advances in Multi-Sensor Adaptive Processing (CAMSAP), pages 220–223. Berrendero, J. R., Justel, A., and Svarc, M. (2011). Principal components for multivariate functional data. Computational Statistics & Data Analysis, 55(9):2619–2634. Carroll, C., Gajardo, A., Chen, Y., Dai, X., Fan, J., Hadjipantelis, P. Z., Han, K., Ji, H., Mueller, H., and Wang, J.-L. (2020). fdapace: Functional data analysis and empirical dynamics. R package version 0.5. Chen, L.-H. and Jiang, C.-R. (2017). Multi-dimensional functional principal component analysis. Statistics and Computing, 27:1181–1192. Chen, M. G. (2023). Estimating sparsely and irregularly observed multivariate functional data. The ITEA Journal of Test and Evaluation, 44(3). Chen, Y., Härdle, W. K., He, Q., and Majer, P. (2015). Risk related brain regions detected with 3d image fpca. SSRN Electronic Journal. Chiou, J.-M., Chen, Y.-T., and Yang, Y.-F. (2014). Multivariate functional principal component analysis: A normalization approach. Statistica Sinica, 24(4):1571–1596. Consagra, W., Venkataraman, A., and Qiu, X. (2024). Efficient multidimensional functional data analysis using marginal product basis systems. Journal of Computational and Graphical Statistics, 33(2):567–577. Dai, W. and Genton, M. G. (2018). An outlyingness matrix for multivariate functional data classification. Statistica Sinica, 28(4):2435–2454. Di Salvo, F., Ruggieri, M., and Plaia, A. (2015). Functional principal component analysis for multivariate multidimensional environmental data. Environmental and Ecological Statistics, 22:739–757. Happ, C. and Greven, S. (2018). Multivariate functional principal component analysis for data observed on different (dimensional) domains. Journal of the American Statistical Association, 113(522):649–659. Haruna, A., Oga, T., Muro, S., Ohara, T., Sato, S., Marumo, S., Kinose, D., Terada, K., Nishioka, M., Ogawa, E., et al. (2010). Relationship between peripheral airway function and patient-reported outcomes in copd: a cross-sectional study. BMC Pulmonary Medicine, 10:1–7. Huang, J. Z., Shen, H., and Buja, A. (2009). The analysis of two-way functional data using two-way regularized singular value decompositions. Journal of the American Statistical Association, 104(488):1609–1620. Jacques, J. and Preda, C. (2014). Model-based clustering for multivariate functional data. Computational Statistics & Data Analysis, 71:92–106. James, G. M., Hastie, T. J., and Sugar, C. A. (2000). Principal component models for sparse functional data. Biometrika, 87(3):587–602. Kayano, M. and Konishi, S. (2009). Functional principal component analysis via regularized gaussian basis expansions and its application to unbalanced data. Journal of Statistical Planning and Inference, 139(7):2388–2398. Kokoszka, P. (2012). Inference for Functional Data with Applications. Springer New York. Li, C., Xiao, L., and Luo, S. (2020). Fast covariance estimation for multivariate sparse functional data. Stat, 9(1):e245. Li, Y., Huang, C., and Härdle, W. K. (2019). Spatial functional principal component analysis with applications to brain image data. Journal of Multivariate Analysis, 170:263– 274. Mercer, J. (1909). Xvi. functions of positive and negative type, and their connection the theory of integral equations. Philosophical Transactions of the Royal Society of London. Series A, Containing Papers of A Mathematical or Physical Character, 209:415–446. Minasny, B. and McBratney, A. B. (2005). The matérn function as a general model for soil variograms. Geoderma, 128(3-4):192–207. Mondal, P. (2023). Impact of BMI on IOS measures. http://dx.doi.org/10.17632/ rwcvfz9np9.1. Ramsay, J. O. (1982). When the data are functions. Psychometrika, 47:379–396. Ramsay, J. O. and Silverman, B. W. (2005). Functional Data Analysis. Springer. Rice, J. A. and Wu, C. O. (2001). Nonparametric mixed effects models for unequally sampled noisy curves. Biometrics, 57(1):253–259. Schumm, B., Bremer, S., Knödlseder, K., Schönfelder, M., Hain, R., Semmler, L., Lorenz, E., Wackerhage, H., Kähler, C. J., and Jörres, R. (2024). Indices of airway resistance and reactance from impulse oscillometry correlate with aerosol particle emission in different age groups. Scientific Reports, 14(1):4644. Shen, S., Zhou, H., He, K., and Zhou, L. (2023). Principal component analysis of two-dimensional functional data with serial correlation. Journal of Agricultural, Biological and Environmental Statistics. Shi, H., Jiang, S., Ma, D., Beg, M. F., and Cao, J. (2024). Dynamic survival prediction using sparse longitudinal images via multi-dimensional functional principal component analysis. Journal of Computational and Graphical Statistics, pages 1–12. Song, J. and Li, B. (2021). Nonlinear and additive principal component analysis for functional data. Journal of Multivariate Analysis, 181:104–675. Staniswalis, J. G. and Lee, J. J. (1998). Nonparametric regression analysis of longitudinal data. Journal of the American Statistical Association, 93(444):1403–1418. Wang, J.-L., Chiou, J.-M., and Müller, H.-G. (2016). Functional data analysis. Annual Review of Statistics and Its Application, 3(1):257–295. Yao, F., Müller, H.-G., and Wang, J.-L. (2005). Functional data analysis for sparse longitudinal data. Journal of the American Statistical Association, 100(470):577–590. | - |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/94409 | - |
dc.description.abstract | 近來,多變量函數數據愈來愈普遍。由主成分分析擴展而成的函數主成分分析 (FPCA) 是函數數據分析的基礎工具。儘管 FPCA 已經擴展到處理多變量函數數據,在處理多個函數中具有不同值域的稀疏觀測資料時仍存在一些問題。對於多變量函數主成分 (MFPCs) 的估計以及多變量函數主成分分數 (MFPC scores) 的預測,我們整合了先前研究的想法,提出了一個混合的方法。具體上,我們修改Happ and Greven (2018) 中一個連結 FPCA 和多變量 FPCA 的矩陣之元素,利用 FPCA 中的特徵值估計作為對角元素,而非對角區塊內的元素由交叉共變異函數的傅立葉係數與個別單變量 FPCA 的估計特徵函數所組成。對於 MFPC scores 的預測,我們考慮了兩種方法;其一利用上述修改後的矩陣並遵循了Happ and Greven (2018) 的流程,其二採用了Chiou et al. (2014) 的加權最小平方法 (WLS) 的想法。我們所提出的方法在各個實驗設定下至少會與Happ and Greven (2018) 和Chiou et al. (2014) 兩者中的最佳方法一樣好。我們觀察到,以 WLS 估計 MFPC scores 在稀疏資料或是資料的各變數尺度差異大之情況下是適合的,而另一個提出的方法則對於各變數的觀測值數量較不敏感。 | zh_TW |
dc.description.abstract | Data with multiple functional observations has become prevalent recently. Functional principal component analysis (FPCA), extended from principal component analysis, is a fundamental tool in functional data analysis. Although FPCA has been further extended to handle multivariate functional data, issues persist with sparse observations in multivariate functions over different domains. To estimate multivariate functional principal components (MFPCs) and to predict MFPC scores, we integrated the ideas in existing work and proposed a hybrid strategy. Specifically, we modified the elements in the matrix linking FPCA with multivariate FPCA in Happ and Greven (2018), and utilized the estimated eigenvalues in FPCA for the diagonal elements while the off-diagonal blocks consist of the Fourier coefficients of the estimated cross covariance functions represented with the estimated eigenfunctions of each univariate FPCA. To predict the MFPC scores, we considered two approaches; first, we followed Happ and Greven (2018) with the modified matrix, and second, we employed the weighted least squares (WLS) method by Chiou et al. (2014). Our proposed approaches perform at least as the best between Chiou et al. (2014) and Happ and Greven (2018) under various simulation settings. Further, predicting the MFPC scores with the WLS method is more appropriate for sparse data or data with significant different scales between variables, while the other proposed method is less sensitive to the data where the scales of number of observations vary with variables. | en |
dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-08-15T17:20:11Z No. of bitstreams: 0 | en |
dc.description.provenance | Made available in DSpace on 2024-08-15T17:20:11Z (GMT). No. of bitstreams: 0 | en |
dc.description.tableofcontents | Acknowledgements i
摘要 iii Abstract v Contents vii List of Figures ix List of Tables xi Chapter 1 Introduction 1 Chapter 2 Multivariate Functional Principal Component Analysis 7 2.1 Multivariate Functional Data 7 2.2 FPCA 9 2.3 Multivariate FPCA 13 Chapter 3 Estimation of MFPCs and MFPC Scores 17 3.1 Proposed 1: A Simple Modification from Happ and Greven (2018) 19 3.2 Proposed 2: A Weighted Least Squares Approach to Predict the MFPC scores 20 Chapter 4 Simulation Experiments 23 4.1 Simulation Setting 23 4.2 Simulation Results 25 Chapter 5 Real Data Analysis 31 Chapter 6 Conclusion and Discussion 37 References 39 Appendix A — More Details about Simulation Settings 43 Appendix B — More Results about Real Data Analysis 47 | - |
dc.language.iso | en | - |
dc.title | 一種多變量函數主成分分析的混合方法 | zh_TW |
dc.title | A Hybrid Approach for Multivariate Functional Principal Component Analysis | en |
dc.type | Thesis | - |
dc.date.schoolyear | 112-2 | - |
dc.description.degree | 碩士 | - |
dc.contributor.oralexamcommittee | 黃信誠;黃世豪 | zh_TW |
dc.contributor.oralexamcommittee | Hsin-Cheng Huang;Shih-Hao Huang | en |
dc.subject.keyword | 特徵分解,函數數據分析,函數主成分分析,多維度函數數據,多變量函數數據,加權最小平方法, | zh_TW |
dc.subject.keyword | eigendecomposition,functional data analysis,functional principal component analysis,multidimensional functional data,multivariate functional data,weighted least squares, | en |
dc.relation.page | 48 | - |
dc.identifier.doi | 10.6342/NTU202402020 | - |
dc.rights.note | 未授權 | - |
dc.date.accepted | 2024-08-08 | - |
dc.contributor.author-college | 理學院 | - |
dc.contributor.author-dept | 統計與數據科學研究所 | - |
顯示於系所單位: | 統計與數據科學研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-112-2.pdf 目前未授權公開取用 | 5.4 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。