Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 化學工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/94407
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor林祥泰zh_TW
dc.contributor.advisorShiang-Tai Linen
dc.contributor.author劉俊杰zh_TW
dc.contributor.authorChun-Chieh Liuen
dc.date.accessioned2024-08-15T17:19:33Z-
dc.date.available2024-08-16-
dc.date.copyright2024-08-15-
dc.date.issued2024-
dc.date.submitted2024-08-07-
dc.identifier.citationSloan, E.D., Fundamental principles and applications of natural gas hydrates. Nature, 2003. 426(6964): p. 353-359.
Sloan Jr, E.D. and C.A. Koh, Clathrate hydrates of natural gases, 3rd. 2007: CRC press.
Kvenvolden, K.A. and B.W. Rogers, Gaia's breath—global methane exhalations. Marine and Petroleum Geology, 2005. 22(4): p. 579-590.
Sloan, E.D., Clathrate hydrates: the other common solid water phase. Industrial & Engineering Chemistry Research, 2000. 39(9): p. 3123-3129.
Gornitz, V. and I. Fung, Potential distribution of methane hydrates in the world's oceans. Global Biogeochemical Cycles, 1994. 8(3): p. 335-347.
Dickens, G.R., C.K. Paull, and P. Wallace, Direct measurement of in situ methane quantities in a large gas-hydrate reservoir. Nature, 1997. 385(6615): p. 426-428.
Lee, S.-Y. and G.D. Holder, Methane hydrates potential as a future energy source. Fuel processing technology, 2001. 71(1-3): p. 181-186.
Gbaruko, B., et al., Gas hydrates and clathrates: Flow assurance, environmental and economic perspectives and the Nigerian liquified natural gas project. Journal of Petroleum Science and Engineering, 2007. 56(1-3): p. 192-198.
Gudmundsson, J.S., M. Parlaktuna, and A. Khokhar, Storage of natural gas as frozen hydrate. SPE Production & Facilities, 1994. 9(01): p. 69-73.
Zhang, Y., et al., Solidified hydrogen storage (Solid-HyStore) via clathrate hydrates. Chemical Engineering Journal, 2022. 431: p. 133702.
Moon, S., et al., Critical hydrogen concentration of hydrogen-natural gas blends in clathrate hydrates for blue hydrogen storage. Renewable and Sustainable Energy Reviews, 2021. 141: p. 110789.
Kim, D.-Y., Y. Park, and H. Lee, Tuning clathrate hydrates: Application to hydrogen storage. Catalysis today, 2007. 120(3-4): p. 257-261.
Chapoy, A., R. Anderson, and B. Tohidi, Low-pressure molecular hydrogen storage in semi-clathrate hydrates of quaternary ammonium compounds. Journal of the American chemical society, 2007. 129(4): p. 746-747.
Babu, P., et al., A review of clathrate hydrate based desalination to strengthen energy–water nexus. ACS Sustainable Chemistry & Engineering, 2018. 6(7): p. 8093-8107.
He, T., et al., A novel conceptual design of hydrate based desalination (HyDesal) process by utilizing LNG cold energy. Applied energy, 2018. 222: p. 13-24.
Bhattacharjee, G., et al., Carbon dioxide sequestration: influence of porous media on hydrate formation kinetics. ACS Sustainable Chemistry & Engineering, 2015. 3(6): p. 1205-1214.
Cao, X., et al., Hydrate-based CO2 sequestration technology: Feasibilities, mechanisms, influencing factors, and applications. Journal of Petroleum Science and Engineering, 2022. 219: p. 111121.
Rehman, A.N., et al., Research advances, maturation, and challenges of hydrate-based CO2 sequestration in porous media. ACS Sustainable Chemistry & Engineering, 2021. 9(45): p. 15075-15108.
Hammerschmidt, E., Formation of gas hydrates in natural gas transmission lines. Industrial & engineering chemistry, 1934. 26(8): p. 851-855.
Bishnoi, P. and P.D. Dholabhai, Equilibrium conditions for hydrate formation for a ternary mixture of methane, propane and carbon dioxide, and a natural gas mixture in the presence of electrolytes and methanol. Fluid Phase Equilibria, 1999. 158: p. 821-827.
Dholabhai, P.D., J.S. Parent, and P.R. Bishnoi, Equilibrium conditions for hydrate formation from binary mixtures of methane and carbon dioxide in the presence of electrolytes, methanol and ethylene glycol. Fluid Phase Equilibria, 1997. 141(1-2): p. 235-246.
Koh, C., et al., Mechanisms of gas hydrate formation and inhibition. Fluid Phase Equilibria, 2002. 194: p. 143-151.
Lopez, M.J. and S.S. Mohiuddin, Biochemistry, essential amino acids, in StatPearls [Internet]. 2023, StatPearls Publishing.
Willke, T., Methionine production-a critical review. Applied Microbiology and Biotechnology, 2014. 98(24): p. 9893-9914.
Wu, G., Functional amino acids in nutrition and health. 2013, Springer. p. 407-411.
Majid, A.A., J. Worley, and C.A. Koh, Thermodynamic and kinetic promoters for gas hydrate technological applications. Energy & Fuels, 2021. 35(23): p. 19288-19301.
Lee, Y.-J., et al., Phase Equilibrium Studies of Tetrahydrofuran (Thf)+ Ch4, Thf+ Co2, Ch4+ Co2, and Thf+ Co2+ Ch4 Hydrates. Journal of Chemical & Engineering Data, 2012. 57(12): p. 3543-3548.
Seo, Y.-T., S.-P. Kang, and H. Lee, Experimental determination and thermodynamic modeling of methane and nitrogen hydrates in the presence of THF, propylene oxide, 1, 4-dioxane and acetone. Fluid Phase Equilibria, 2001. 189(1-2): p. 99-110.
Herslund, P.J., et al., Measuring and modelling of the combined thermodynamic promoting effect of tetrahydrofuran and cyclopentane on carbon dioxide hydrates. Fluid Phase Equilibria, 2014. 381: p. 20-27.
Sun, Z.-G., et al., Gas hydrate phase equilibrium data of cyclohexane and cyclopentane. Journal of Chemical & Engineering Data, 2002. 47(2): p. 313-315.
Arjmandi, M., A. Chapoy, and B. Tohidi, Equilibrium data of hydrogen, methane, nitrogen, carbon dioxide, and natural gas in semi-clathrate hydrates of tetrabutyl ammonium bromide. Journal of chemical & engineering data, 2007. 52(6): p. 2153-2158.
Sun, Z.-G. and L. Sun, Equilibrium conditions of semi-clathrate hydrate dissociation for methane+ tetra-n-butyl ammonium bromide. Journal of Chemical & Engineering Data, 2010. 55(9): p. 3538-3541.
Molokitina, N.S., et al., Carbon dioxide hydrate formation with SDS: Further insights into mechanism of gas hydrate growth in the presence of surfactant. Fuel, 2019. 235: p. 1400-1411.
Du, J., H. Li, and L. Wang, Effects of ionic surfactants on methane hydrate formation kinetics in a static system. Advanced Powder Technology, 2014. 25(4): p. 1227-1233.
Veluswamy, H.P., Q.W. Hong, and P. Linga, Morphology study of methane hydrate formation and dissociation in the presence of amino acid. Crystal Growth & Design, 2016. 16(10): p. 5932-5945.
Khandelwal, H., et al., Effect of l-tryptophan in promoting the kinetics of carbon dioxide hydrate formation. Energy & Fuels, 2020. 35(1): p. 649-658.
Cai, Y., et al., CO2 hydrate formation promoted by a natural amino acid l‐methionine for possible application to CO2 capture and storage. Energy Technology, 2017. 5(8): p. 1195-1199.
Zhang, Y.T., et al., Enhanced CO2 hydrate formation via biopromoter coupled with initial stirring activation. Fuel, 2022. 330: p. 9.
Liu, X.J., et al., Comparison of SDS and (L)-Methionine in promoting CO2 hydrate kinetics: Implication for hydrate-based CO2 storage. Chemical Engineering Journal, 2022. 438: p. 13.
Xu, H., et al., Enhanced CO2 hydrate formation using hydrogen-rich stones, L-Methionine and SDS: Insights from kinetic and morphological studies. Energy, 2024. 291: p. 130280.
Rogers, R.E., et al., Catalysis of gas hydrates by biosurfactants in seawater‐saturated sand/clay. The Canadian Journal of Chemical Engineering, 2003. 81(5): p. 973-980.
Heydari, A. and K. Peyvandi, Study of biosurfactant effects on methane recovery from gas hydrate by CO2 replacement and depressurization. Fuel, 2020. 272: p. 117681.
Hockney, R.W. and J.W. Eastwood, Computer simulation using particles. 2021: crc Press.
Lennard-Jones, J.E., Cohesion. Proceedings of the Physical Society, 1931. 43(5): p. 461.
Allen, M.P., Tildesley, D. J, Computer Simulations of Liquids. 1987: Oxford: Oxford Science Publications.
Toukmaji, A.Y. and J.A. Board, Ewald summation techniques in perspective: A survey. Computer Physics Communications, 1996. 95(2-3): p. 73-92.
Gibbs, J.W., Elementary principles in statistical mechanics: developed with especial reference to the rational foundations of thermodynamics. 1902: C. Scribner's sons.
Kittel, C.H.K., Thermal Physics, 2nd. 1980, San Francisco: W.H. Freeman and Company. P 31.
Nosé, S., A molecular dynamics method for simulations in the canonical ensemble. Molecular physics, 1984. 52(2): p. 255-268.
Hoover, W.G., CANONICAL DYNAMICS - EQUILIBRIUM PHASE-SPACE DISTRIBUTIONS. Physical Review A, 1985. 31(3): p. 1695-1697.
Berendsen, H.J.C., et al., MOLECULAR-DYNAMICS WITH COUPLING TO AN EXTERNAL BATH. Journal of Chemical Physics, 1984. 81(8): p. 3684-3690.
Parrinello, M. and A. Rahman, POLYMORPHIC TRANSITIONS IN SINGLE-CRYSTALS - A NEW MOLECULAR-DYNAMICS METHOD. Journal of Applied Physics, 1981. 52(12): p. 7182-7190.
Module, F., Material Studio 5.0. Accelrys Inc., San Diego, CA, 2009.
Pronk, S., et al., GROMACS 4.5: a high-throughput and highly parallel open source molecular simulation toolkit. Bioinformatics, 2013. 29(7): p. 845-854.
Takeuchi, F., et al., Water proton configurations in structures I, II, and H clathrate hydrate unit cells. The Journal of chemical physics, 2013. 138(12).
Hernández, B., et al., Side chain flexibility and protonation states of sulfur atom containing amino acids. Physical Chemistry Chemical Physics, 2011. 13(38): p. 17284-17294.
Haynes, W.M., CRC handbook of chemistry and physics. 2016: CRC press.
Abascal, J.L.F., et al., A potential model for the study of ices and amorphous water:: TIP4P/Ice -: art. no. 234511. Journal of Chemical Physics, 2005. 122(23): p. 9.
Harris, J.G. and K.H. Yung, CARBON DIOXIDES LIQUID-VAPOR COEXISTENCE CURVE AND CRITICAL PROPERTIES AS PREDICTED BY A SIMPLE MOLECULAR-MODEL. Journal of Physical Chemistry, 1995. 99(31): p. 12021-12024.
Jorgensen, W.L. and J. Tirado-Rives, Potential energy functions for atomic-level simulations of water and organic and biomolecular systems. Proceedings of the National Academy of Sciences of the United States of America, 2005. 102(19): p. 6665-6670.
Dodda, L.S., et al., 1.14*CM1A-LBCC: Localized Bond-Charge Corrected CM1A Charges for Condensed-Phase Simulations. Journal of Physical Chemistry B, 2017. 121(15): p. 3864-3870.
Dodda, L.S., et al., LigParGen web server: an automatic OPLS-AA parameter generator for organic ligands. Nucleic Acids Research, 2017. 45(W1): p. W331-W336.
Wang, P.-W., D.T. Wu, and S.-T. Lin, Promotion mechanism for the growth of CO 2 hydrate with urea using molecular dynamics simulations. Chemical Communications, 2021. 57(43): p. 5330-5333.
Rodger, P., T. Forester, and W. Smith, Simulations of the methane hydrate/methane gas interface near hydrate forming conditions. Fluid phase equilibria, 1996. 116(1-2): p. 326-332.
Barnes, B.C., et al., Two-component order parameter for quantifying clathrate hydrate nucleation and growth. Journal of Chemical Physics, 2014. 140(16): p. 6.
Wedekind, J., R. Strey, and D. Reguera, New method to analyze simulations of activated processes. The Journal of chemical physics, 2007. 126(13).
Yuhara, D., et al., Nucleation rate analysis of methane hydrate from molecular dynamics simulations. Faraday Discussions, 2015. 179: p. 463-474.
Walsh, M.R., et al., Methane hydrate nucleation rates from molecular dynamics simulations: Effects of aqueous methane concentration, interfacial curvature, and system size. The Journal of Physical Chemistry C, 2011. 115(43): p. 21241-21248.
Yi, P., C.R. Locker, and G.C. Rutledge, Molecular dynamics simulation of homogeneous crystal nucleation in polyethylene. Macromolecules, 2013. 46(11): p. 4723-4733.
Duan, Z., et al., An improved model for the calculation of CO2 solubility in aqueous solutions containing Na+, K+, Ca2+, Mg2+, Cl−, and SO42−. Marine chemistry, 2006. 98(2-4): p. 131-139.
Allen, M.P., Tildesley, D. J, Computer Simulations of Liquids. 1987: Oxford: Oxford Science Publications.
Nijsing, R., R. Hendriksz, and H. Kramers, Absorption of CO2 in jets and falling films of electrolyte solutions, with and without chemical reaction. Chemical Engineering Science, 1959. 10(1-2): p. 88-104.
Bozzo, A.T., et al., The properties of the hydrates of chlorine and carbon dioxide. Desalination, 1975. 16(3): p. 303-320.
Anderson, G.K., Enthalpy of dissociation and hydration number of carbon dioxide hydrate from the Clapeyron equation. The Journal of Chemical Thermodynamics, 2003. 35(7): p. 1171-1183.
Diamond, L.W., Stability of CO2 clathrate hydrate+ CO2 liquid+ CO2 vapour+ aqueous KCl-NaCl solutions: Experimental determination and application to salinity estimates of fluid inclusions∗. Geochimica et Cosmochimica Acta, 1992. 56(1): p. 273-280.
Shell, M.S., Thermodynamics and statistical mechanics: an integrated approach. 2015: Cambridge University Press.
Lievois, J., et al., Development of an automated, high pressure heat flux calorimeter and its application to measure the heat of dissociation and hydrate numbers of methane hydrate. Fluid phase equilibria, 1990. 59(1): p. 73-97.
Kumełan, J., A.l. Pérez-Salado Kamps, and G. Maurer, Solubility of CO2 in aqueous solutions of methionine and in aqueous solutions of (K2CO3 and methionine). Industrial & engineering chemistry research, 2010. 49(8): p. 3910-3918.
Nighswander, J.A., N. Kalogerakis, and A.K. Mehrotra, Solubilities of carbon dioxide in water and 1 wt.% sodium chloride solution at pressures up to 10 MPa and temperatures from 80 to 200. degree. C. Journal of Chemical and Engineering Data, 1989. 34(3): p. 355-360.
Kirkwood, J.G., Molecular distribution in liquids. Journal of Chemical Physics, 1939. 7(10): p. 919-925.
Skripov, V.P. and A. Skripov, Spinodal decomposition (phase transitions via unstable states). Soviet Physics Uspekhi, 1979. 22(6): p. 389.
Beatty, M.F. and M.F. Beatty, The Moment of Inertia Tensor. Principles of Engineering Mechanics: Volume 2 Dynamics—The Analysis of Motion, 2006: p. 355-404.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/94407-
dc.description.abstract由於甲硫胺酸已被許多研究證實為二氧化碳水合物的促進劑,但目前仍尚未有研究結果表明其促進機制,因此本研究的目的是透過分子動力學(MD)模擬來探討甲硫胺酸對二氧化碳水合物成核和成長過程的影響,並進一步找出其促進機制。我們的模擬包含二氧化碳水合物的成核以及成長兩個部分,關於二氧化碳水合物的成長,從模擬結果可以看出當初始系統的液相中存在低濃度(0.56 wt%)的甲硫胺酸時對二氧化碳水合物的生長過程會有促進效果,而目前有發現甲硫胺酸具有促進效果的研究中所使用的甲硫胺酸濃度也都在1.0 wt%以下,因此我們的模擬結果和實驗結果相當一致。另外,我們觀察到當在模擬過程中甲硫胺酸存在於水合物和液體的界面附近的數量較少時,才能觀察到對二氧化碳水合物的生長的促進效果,同時我們也發現添加甲硫胺酸會增加二氧化碳分子的擴散係數,加快其質傳速率,這應為甲硫胺酸主要的促進原因。
而對於二氧化碳水合物的成核,在我們模擬的溫度和壓力條件下,並未觀察到甲硫胺酸對水合物成核速率有具有統計學意義的促進效果,然而我們發現在壓力為30 bar且過冷溫度約為26 K時,初始液相中含有0.82 wt%甲硫胺酸的系統在成核後水合物的生長速率相較於無添加甲硫胺酸的系統約有36.61%的提升,此濃度和先前二氧化碳水合物生長測試中觀察到的促進現象的甲硫胺酸濃度(0.56 wt%)相當接近,再次表現出了結果的一致性。經過分析後得知,在水合物生長過程中有甲硫胺酸靠近的那一側水合物會生長的較快,顯示出甲硫胺酸對於二氧化碳水合物生長的潛在貢獻。
zh_TW
dc.description.abstractDue to the fact that methionine has been confirmed by many studies as a promoter of CO2 hydrate formation, but the mechanism of this promotion has not yet been clarified, the purpose of this study is to investigate the effect of methionine on the nucleation and growth processes of CO2 hydrate through molecular dynamics (MD) simulations and to further identify its promoting mechanism. Our simulations include both the nucleation and growth of CO2 hydrate. Regarding CO2 hydrate growth, the simulation results show that the presence of low concentrations (0.56 wt%) of methionine in the initial liquid phase of the system promotes the growth of CO2 hydrate. The concentrations of methionine found to have a promoting effect in previous studies are also below 1.0 wt%, indicating a high degree of consistency between our simulation results and experimental findings. Additionally, we observed that the promotion of CO2 hydrate growth is evident when a smaller amount of methionine molecules is present near the hydrate-liquid interface during the simulation process. We also found that the addition of methionine increases the diffusion coefficient of CO2 molecules, accelerating their mass transfer rate, which is likely the main reason for methionine's promoting effect.
For the nucleation of CO2 hydrate, our simulations did not show a statistically significant promoting effect of methionine on the nucleation rate under the temperature and pressure conditions simulated. However, we found that at a pressure of 30 bar and a subcooling temperature of approximately 26 K, the system with 0.82 wt% methionine in the initial liquid phase exhibited a 36.61% increase in the growth rate of hydrate after nucleation compared to the system without methionine. This concentration is very close to the methionine concentration (0.56 wt%) observed to have a promoting effect in previous CO2 hydrate growth tests, again demonstrating consistency in the results. Our analysis results show that during the growth process, the side of the hydrate with methionine nearby grows faster, indicating the potential contribution of methionine to the growth of CO2 hydrate.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-08-15T17:19:33Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2024-08-15T17:19:33Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents致謝 I
中文摘要 II
ABSTRACT IV
CONTENTS VI
LIST OF FIGURES X
LIST OF TABLES XVII
Chapter 1 Introduction 1
1.1 Clathrate Hydrates 1
1.2 Applications of Clathrate Hydrates 3
1.3 Methionine 4
1.4 Clathrate Hydrate Promoters 5
1.5 Motivation 10
Chapter 2 Theory 12
2.1 Molecular Dynamics Simulation 12
2.2 Integration of Equation of Motion 14
2.3 Force Field 14
2.3.1 Overview 14
2.3.2 Non-Bonded Terms 15
2.3.3 Valence Terms 17
2.4 Ensemble 18
2.5 Temperature Thermostat 19
2.6 Pressure Barostat 20
Chapter 3 Computational details 22
3.1 Settings 22
3.2 Models 23
3.3 Force Field 35
3.4 Hydrate Characteristic Determination 37
3.4.1 Four-body Order Parameter 37
3.4.2 Hydrate-liquid Interface Determination 38
3.4.3 Mutually Coordinated Guest order parameter 39
3.4.4 Mean First-Passage Time Method 40
Chapter 4 Results and Discussion 43
4.1 Force Field Validation 43
4.1.1 CO2 Solubility in Water 43
4.1.2 CO2 Diffusivity in Water 44
4.1.3 Heat of Dissociation of CO2 Hydrate 45
4.1.4 Melting Point of CO2 Hydrate 46
4.2 Growth of CO2 Hydrate 47
4.2.1 Determination of Simulation Temperature 47
4.2.2 Determination of Initial Model Structure 50
4.2.3 Determination of CO2 Concentration in Liquid Phase 54
4.2.4 Formal Test of CO2 Hydrate Growth 59
4.3 Effects of Methionine on CO2 Hydrate Growth 62
4.3.1 Amount of Methionine around CO2 Hydrate 62
4.3.2 Diffusivity 65
4.3.3 Radial Distribution Function (RDF) 67
4.4 Nucleation of CO2 Hydrate 71
4.4.1 Determination of CO2 Concentration in Liquid Phase 71
4.4.2 Nucleation of CO2 Hydrate in Single-Phase Systems 72
4.4.3 Nucleation of CO2 Hydrate in Two-Phase Systems 78
4.5 Effects of Methionine on CO2 Hydrate Nucleation 82
4.5.1 Presence of Methionine around CO2 Hydrate 82
Chapter 5 Conclusions 90
Reference 93
-
dc.language.isoen-
dc.title以分子動力學模擬探討甲硫胺酸對二氧化碳水合物生長及成核的促進效果zh_TW
dc.titleInvestigation of the Promotional Effects of Methionine on the Growth and Nucleation of Carbon Dioxide Hydrates via Molecular Dynamics Simulationen
dc.typeThesis-
dc.date.schoolyear112-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee吳台偉;洪英傑zh_TW
dc.contributor.oralexamcommitteeTai-Wei Wu;Ying-Chieh Hungen
dc.subject.keyword分子動力學模擬,二氧化碳水合物,胺基酸,甲硫胺酸,動力學水合物促進劑,zh_TW
dc.subject.keywordMolecular dynamics simulation,Carbon dioxide hydrate,Amino acid,Methionine,Kinetic hydrate promoter,en
dc.relation.page98-
dc.identifier.doi10.6342/NTU202403841-
dc.rights.note同意授權(全球公開)-
dc.date.accepted2024-08-11-
dc.contributor.author-college工學院-
dc.contributor.author-dept化學工程學系-
顯示於系所單位:化學工程學系

文件中的檔案:
檔案 大小格式 
ntu-112-2.pdf5.61 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved