請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/94396完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 林俊達 | zh_TW |
| dc.contributor.advisor | Guin-Dar Lin | en |
| dc.contributor.author | 劉鎮瑜 | zh_TW |
| dc.contributor.author | Cheng-Yu Liu | en |
| dc.date.accessioned | 2024-08-15T17:15:55Z | - |
| dc.date.available | 2024-08-16 | - |
| dc.date.copyright | 2024-08-15 | - |
| dc.date.issued | 2024 | - |
| dc.date.submitted | 2024-08-01 | - |
| dc.identifier.citation | [1] Peter W Shor. Algorithms for quantum computation: discrete logarithms and factoring. In Proceedings 35th annual symposium on foundations of computer science, pages 124–134. Ieee, 1994.
[2] Peter W Shor. Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer. SIAM review, 41(2):303–332, 1999. [3] David P DiVincenzo. The physical implementation of quantum computation. Fortschritte der Physik: Progress of Physics, 48(9-11):771–783, 2000. [4] Gary J Mooney, Charles D Hill, and Lloyd CL Hollenberg. Entanglement in a 20-qubit superconducting quantum computer. Scientific reports, 9(1):13465, 2019. [5] Michael A Nielsen and Isaac L Chuang. Quantum computation and quantum information. Cambridge university press, 2010. [6] Maximilian Schlosshauer. Quantum decoherence. Physics Reports, 831:1–57, 2019. [7] John Preskill. Quantum computing and the entanglement frontier. arXiv preprint arXiv: 1203.5813, 2012 [8] Juan I Cirac and Peter Zoller. Quantum computations with cold trapped ions. Physical review letters, 74(20):4091, 1995. 79 [9] Anders Sørensen and Klaus Mølmer. Quantum computation with ions in thermal motion. Physical review letters, 82(9):1971, 1999. [10] GJ Milburn, S Schneider, and DFV James. Ion trap quantum computing with warm ions. Fortschritte der Physik: Progress of Physics, 48(9-11):801–810, 2000. [11] Anders Sørensen and Klaus Mølmer. Entanglement and quantum computation with ions in thermal motion. Physical Review A, 62(2):022311, 2000. [12] Mark Saffman, Thad G Walker, and Klaus Mølmer. Quantum information with rydberg atoms. Reviews of modern physics, 82(3):2313, 2010. [13] Chun-ChiWu. By pass entangling gate between a stationary and a flying neutral atom qubits. 2022. [14] CJ Ballance, TP Harty, NM Linke, MA Sepiol, and DM Lucas. High-fidelity quantum logic gates using trapped-ion hyperfine qubits. Physical review letters, 117(6):060504, 2016. [15] SJ Evered, D Bluvstein, M Kalinowski, S Ebadi, T Manovitz, H Zhou, SH Li, AA Geim, TT Wang, N Maskara, et al. High-fidelity parallel entangling gates on a neutral atom quantum computer (2023). arXiv preprint arXiv:2304.05420. [16] JI Cirac and P Zoller. Preparation of macroscopic superpositions in many atom systems. Physical Review A, 50(4):R2799, 1994. [17] Shi-Biao Zheng and Guang-Can Guo. Efficient scheme for two-atom entanglement and quantum information processing in cavity qed. Physical Review Letters, 85(11):2392, 2000. [18] Alexandra Olaya-Castro, Neil F Johnson, and Luis Quiroga. Scheme for on-resonance generation of entanglement in time-dependent asymmetric two-qubit- cavity systems. Physical Review A, 70(2):020301, 2004. [19] Shi-Biao Zheng. Unconventional geometric quantum phase gates with a cavity qed system. Physical Review A, 70(5):052320, 2004. [20] L-M Duan, B Wang, and HJ Kimble. Robust quantum gates on neutral atoms with cavity-assisted photon scattering. Physical Review A, 72(3):032333, 2005. [21] Hiroki Takahashi, Pedro Nevado, and Matthias Keller Mølmer–sørensen entangling gate for cavity qed systems. Journal of Physics B: Atomic, Molecular and Optical Physics, 50(19):195501, 2017. [22] Stephan Welte, Bastian Hacker, Severin Daiss, Stephan Ritter, and Gerhard Rempe. Photon-mediated quantum gate between two neutral atoms in an optical cavity. Phys- ical Review X, 8(1):011018, 2018. [23] Prakash Murali, Dripto M Debroy, Kenneth R Brown, and Margaret Martonosi. Architecting noisy intermediate-scale trapped ion quantum computers. In 2020 ACM/IEEE 47th Annual International Symposium on Computer Architecture (ISCA), pages 529–542. IEEE, 2020. [24] Quantum dynamics of single trapped ions. Reviews of Modern Physics, 75(1):281, 2003. [25] Antoine Browaeys. Quantum simulation of 2d antiferromagnets with hundreds of rydberg atoms. In APS March Meeting Abstracts, volume 2022, pages Y13–001, 2022. [26] David Kielpinski, Chris Monroe, and David J Wineland. Architecture for a large- scale ion-trap quantum computer. Nature, 417(6890):709–711, 2002. [27] Juan M Pino, Jennifer M Dreiling, Caroline Figgatt, John P Gaebler, Steven A Moses, MS Allman, CH Baldwin, Michael Foss-Feig, D Hayes, K Mayer, et al. Demonstration of the trapped-ion quantum ccd computer architecture. Nature, 592(7853):209–213, 2021. [28] Dolev Bluvstein, Harry Levine, Giulia Semeghini, Tout T Wang, Sepehr Ebadi, Marcin Kalinowski, Alexander Keesling, Nishad Maskara, Hannes Pichler, Markus Greiner, et al. A quantum processor based on coherent transport of entangled atom arrays. Nature, 604(7906):451–456, 2022. [29] Morten Kjaergaard, Mollie E Schwartz, Jochen Braumüller, Philip Krantz, Joel I-J Wang, Simon Gustavsson, and William D Oliver. Superconducting qubits: Current state of play. Annual Review of Condensed Matter Physics, 11:369–395, 2020. [30] Hiroki Takahashi, Ezra Kassa, Costas Christoforou, and Matthias Keller. Strong coupling of a single ion to an optical cavity. Physical review letters, 124(1):013602, 2020. [31] Ye Wang, Mark Um, Junhua Zhang, Shuoming An, Ming Lyu, Jing-Ning Zhang, L-M Duan, Dahyun Yum, and Kihwan Kim. Single-qubit quantum memory exceeding ten-minute coherence time. Nature Photonics, 11(10):646–650, 2017. [32] Sylvain De Léséleuc, Daniel Barredo, Vincent Lienhard, Antoine Browaeys, and Thierry Lahaye. Analysis of imperfections in the coherent optical excitation of single atoms to rydberg states. Physical Review A, 97(5):053803, 2018. [33] VM Schäfer, CJ Ballance, K Thirumalai, LJ Stephenson, TG Ballance, AM Steane, and DM Lucas. Fast quantum logic gates with trapped-ion qubits. Nature, 555(7694):75–78, 2018. [34] JJ Garcia-Ripoll, P Zoller, and JI Cirac. Fast and robust two-qubit gates for scalable ion trap quantum computing. arXiv preprint quant-ph/0306006, 2003. [35] Andrew M Steane, G Imreh, JP Home, and Dietrich Leibfried. Pulsed force sequences for fast phase-insensitive quantum gates in trapped ions. New Journal of Physics, 16(5):053049, 2014. [36] Daniel FV James. Quantum dynamics of cold trapped ions with application to quantum computation. Technical report, 1997. [37] Ch Monroe, DM Meekhof, BE King, Steven R Jefferts, Wayne M Itano, David J Wineland, and P Gould. Resolved-sideband raman cooling of a bound atom to the 3d zero-point energy. Physical review letters, 75(22):4011, 1995. [38] Jürgen Eschner, Giovanna Morigi, Ferdinand Schmidt-Kaler, and Rainer Blatt. Laser cooling of trapped ions. JOSA B, 20(5):1003–1015, 2003. [39] Patricia J Lee, Kathy-Anne Brickman, Louis Deslauriers, Paul C Haljan, Lu-Ming Duan, and Christopher Monroe. Phase control of trapped ion quantum gates. Journal of Optics B: Quantum and Semiclassical Optics, 7(10):S371, 2005. [40] Rudolf Grimm, Matthias Weidemüller, and Yurii B Ovchinnikov. Optical dipole traps for neutral atoms. In Advances in atomic, molecular, and optical physics, vol- ume 42, pages 95–170. Elsevier, 2000. [41] Daniel FV James. Quantum dynamics of cold trapped ions with application to quantum computation. Technical report, 1998. [42] Wolfgang Paul. Electromagnetic traps for charged and neutral particles. Reviews of modern physics, 62(3):531, 1990. [43] Sergio Blanes, Fernando Casas, Jose-AngelOteo, and José Ros. The magnus expansion and some of its applications. Physics reports, 470(5-6):151–238, 2009. [44] Harry Levine, Alexander Keesling, Ahmed Omran, Hannes Bernien, Sylvain Schwartz, Alexander S Zibrov, Manuel Endres, Markus Greiner, Vladan Vuletić, and Mikhail D Lukin. High-fidelity control and entanglement of rydberg-atom qubits. Physical review letters, 121(12):123603, 2018. [45] Mark Saffman. Quantum computing with atomic qubits and rydberg interactions: progress and challenges. Journal of Physics B: Atomic, Molecular and Optical Physics, 49(20):202001, 2016. [46] Serge Haroche and Daniel Kleppner. Cavity quantum electrodynamics. Physics Today, 42(1):24–30, 1989. [47] Herbert Walther, Benjamin TH Varcoe, Berthold-Georg Englert, and Thomas Becker. Cavity quantum electrodynamics. Reports on Progress in Physics, 69(5):1325, 2006. [48] Joshua Ramette, Josiah Sinclair, Zachary Vendeiro, Alyssa Rudelis, Marko Cetina, and Vladan Vuletić. Any-to-any connected cavity-mediated architecture for quantum computing with trapped ions or rydberg arrays. PRX Quantum, 3(1):010344, 2022. [49] Christopher C Gerry and Peter L Knight. Introductory quantum optics. Cambridge university press, 2023. [50] S Haroche and JM Raimond. Radiative properties of rydberg states in resonant cavities. In Advances in atomic and molecular physics, volume 20, pages 347–411. Elsevier, 1985. [51] Anthony E Siegman. Lasers. University science books, 1986. [52] E Hagley, X Maitre, G Nogues, C Wunderlich, M Brune, Jean-Michel Raimond, and Serge Haroche. Generation of einstein-podolsky-rosen pairs of atoms. Physical Review Letters, 79(1):1, 1997. [53] E Urban, Todd A Johnson, T Henage, L Isenhower, DD Yavuz, TG Walker, and M Saffman. Observation of rydberg blockade between two atoms. Nature Physics, 5(2):110–114, 2009. [54] Tigrane Cantat-Moltrecht, Rodrigo Cortiñas, Brice Ravon, Paul Méhaignerie, Serge Haroche, Jean-Michel Raimond, Maxime Favier, Michel Brune, and Clément Sayrin. Long-lived circular rydberg states of laser-cooled rubidium atoms in a cryostat. Physical Review Research, 2(2):022032, 2020. [55] Michel Brune, F Schmidt-Kaler, Abdelhamid Maali, J Dreyer, E Hagley, JM Raimond, and S Haroche. Quantum rabi oscillation: A direct test of field quantization in a cavity. Physical review letters, 76(11):1800, 1996. [56] Chi-En Wu, Teodora Kirova, Marcis Auzins, and Yi-Hsin Chen. Rydberg-rydberg interaction strengths and dipole blockade radii in the presence of förster resonances. Optics Express, 31(22):37094–37104, 2023. [57] Fabian Pokorny. Sub-microsecond entangling gate between trapped ions via rydberg interaction. 2020. [58] Yan Wang, Jin-Lei Wu, Jin-Xuan Han, Yong-Yuan Jiang, Yan Xia, and Jie Song. Resilient mølmer-sørensen gate with cavity qed. Physics Letters A, 388:127033, 2021. [59] M Palmero, R Bowler, John P Gaebler, Dietrich Leibfried, and JG Muga. Fast transport of mixed-species ion chains within a paul trap. Physical Review A, 90(5):053408, 2014. [60] RoeeOzeri.Thetrapped-ionqubittoolbox.ContemporaryPhysics,52(6):531–550, 2011. [61] Thomas Kessler, Christian Hagemann, C Grebing,T Legero, UweSterr,FritzRiehle, MJ Martin, L Chen, and J Ye. A sub-40-mhz-linewidth laser based on a silicon single-crystal optical cavity. Nature Photonics, 6(10):687–692, 2012. [62] H-X Yang, J-Y Ma, Y-K Wu, Ye Wang, M-M Cao, W-X Guo, Y-Y Huang, Lu Feng, Z-C Zhou, and L-M Duan. Realizing coherently convertible dual-type qubits with the same ion species. Nature Physics, 18(9):1058–1061, 2022. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/94396 | - |
| dc.description.abstract | 量子計算以指數級速度超越經典計算,可能重塑計算世界。在各種平台中,我們專注於在相同原子態中編碼的量子位元(qubits),這些量子位元具有更高的保真度和移動性,提供了增強的連接性。標準的離子阱(trapped ions)方案依賴於集體運動,而在離子阱,離子穿梭過程需要停停走走和冷卻步驟,不可避免地導致保真度的損失和時間的增加。雷德堡(Rydberg)原子方案也需要在偶極有效範圍內的短程相互作用。光學共振腔可以調節兩個原子的基本糾纏。我們的邏輯閘設計通過改變兩個原子之間相對耦合來實現共振的Tavis-Cummings模型,這取決於它們的軸向位置。此外,通過引入雷射和適當的失諧條件,我們實現了一個有效的共振Tavis-Cummings模型,其相對耦合比由雷射束控制。總體來說,我們通過使兩個遠距離的離子/原子穿過長程腔模來實現CZ閘。離子/原子的穿越性質將糾纏過程與傳輸結合為一個步驟,顯著節省了時間。此外,由於我們的共振模型,我們的邏輯閘時間與非共振模型相比基本上更快,但對高品質共振腔的需求更高。此外,腔體調解的特性使我們的方案適用於各種原子系統,包括雷德堡原子和困離子。然而,對於混合系統,需要額外的設計考慮。 | zh_TW |
| dc.description.abstract | Quantum computing outperforms classical computing with exponential speedup, potentially reshaping the field of computing. Among various platforms, we focus on qubits encoded in identical atomic states, which possess higher fidelity and mobility, providing enhanced connectivity. Standard gate schemes with trapped ions rely on the ion shuttling process. In ion trap, ions require stop-and-go and cooling steps, inevitably leading to a loss of fidelity and increased time consumption. Rydberg atom gate schemes also require short-range interactions, restricted within the dipole effective range. Optical cavity can mediate the fundamental entanglement of two atoms. Our gate design utilises an on-resonance Tavis-Cummings model by altering the relative coupling between two atoms based on their axial position. Furthermore, with laser incorporation and proper detuning conditions, we achieve an effective on-resonance Tavis-Cummings model, with the relative coupling ratio controlled by laser beams. Overall, we achieve a CZ gate by entangling two distant ions/atoms by passing them through a long-range cavity mode. The drive-through nature of ions/atoms combines the entangling process with transportation in a single step, significantly saving time. Also, as of on-resonance model, our gate time is fundamentally faster compared with off-resonance model but accompanied with stronger demand of high Q cavity. Additionally, the cavity-mediated nature makes our scheme applicable to various atomic species, including Rydberg atoms and trapped ions. However, additional design considerations are required for mixed platforms. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-08-15T17:15:55Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2024-08-15T17:15:55Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | Verification Letter from the Oral Examination Committee i
Acknowledgements iii 摘要 v Abstract vii Contents ix List of Figures xi Chapter 1 Introduction 1 1.1 Overview 1 1.2 Trapped ion quantum computing 4 1.3 Rydberg atom quantum computing 19 1.4 Thesisoutline 21 Chapter 2 Cavity-mediated quantum computing 23 2.1 Overview 23 2.2 Cavity as a quantum bus for atoms 24 2.3 Cavity properties 30 Chapter 3 Position-dependence gate scheme 33 3.1 Overview 33 3.2 Model 34 3.3 Setup 39 3.4 Effects of lifetimes of photon losses 40 3.5 A refined version 43 3.6 Conclusion 48 Chapter 4 Laser-cavity Raman gate scheme 51 4.1 Overview 51 4.2 Model 52 4.3 Setup 57 4.4 Effects of finite lifetimes and photon losses 59 4.5 A refined version 61 4.6 Conclusion 63 Chapter 5 Conclusion 67 Appendix A — Derivation of effective Tavis-Cummings model 71 A.1 Derivation of effective Tavis-Cummings model 71 References 79 | - |
| dc.language.iso | en | - |
| dc.subject | 穿越 | zh_TW |
| dc.subject | 糾纏邏輯閘 | zh_TW |
| dc.subject | 腔體 | zh_TW |
| dc.subject | 原子 | zh_TW |
| dc.subject | Atoms | en |
| dc.subject | Cavity | en |
| dc.subject | Drive-through | en |
| dc.subject | Entangling gate | en |
| dc.title | 由腔體介導的原子量子位元的新型穿行糾纏邏輯閘 | zh_TW |
| dc.title | Novel drive-through entangling gate mediated by a cavity for atomic qubits | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 112-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 張銘顯;任祥華 | zh_TW |
| dc.contributor.oralexamcommittee | Ming-Shien Chang ;Hsiang-Hua Jen | en |
| dc.subject.keyword | 糾纏邏輯閘,穿越,原子,腔體, | zh_TW |
| dc.subject.keyword | Entangling gate,Drive-through,Atoms,Cavity, | en |
| dc.relation.page | 86 | - |
| dc.identifier.doi | 10.6342/NTU202401159 | - |
| dc.rights.note | 同意授權(全球公開) | - |
| dc.date.accepted | 2024-08-05 | - |
| dc.contributor.author-college | 理學院 | - |
| dc.contributor.author-dept | 物理學系 | - |
| 顯示於系所單位: | 物理學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-112-2.pdf | 19.94 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
