Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 土木工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/94391
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor曾惠斌zh_TW
dc.contributor.advisorHui-Ping Tserngen
dc.contributor.author林威丞zh_TW
dc.contributor.authorWei-Cheng Linen
dc.date.accessioned2024-08-15T17:14:14Z-
dc.date.available2024-08-16-
dc.date.copyright2024-08-15-
dc.date.issued2024-
dc.date.submitted2024-08-08-
dc.identifier.citationIcc. (2012). International building code. International Code Council, Washington, D.C.
Kam, W. Y., & Pampanin, S. (2011). The seismic performance of RC buildings in the 22 February 2011 Christchurch earthquake. Structural Concrete, 12(4), 223-233. https://doi.org/10.1002/suco.201100044
Li, B. X., & Mosalam, K. M. (2013). Seismic Performance of Reinforced-Concrete Stairways during the 2008 Wenchuan Earthquake. Journal of Performance of Constructed Facilities, 27(6), 721-730. https://doi.org/10.1061/(asce)cf.1943-5509.0000382
蕭江碧、葉祥海、許茂雄、蔡克銓、丁育群(1999)。九二一集集大地震全面勘災報告:建築物震害調查。國家地震工程研究中心。
Wang, X., & Hutchinson, T. C. (2018). Computational assessment of the seismic behavior of steel stairs. Engineering Structures, 166, 376-386. https://doi.org/10.1016/j.engstruct.2018.03.074
Naeim, F. (2007). Dynamics of Structures—Theory and Applications to Earthquake Engineering (3rd ed.). Earthquake Spectra, 23(2), 263-492. https://doi.org/10.1193/1.2720354
Chopra, A. K. (2012). Dynamics of structures: Theory and applications to earthquake engineering. Prentice Hall.
內政部國土管理署(2024)。建築物混凝土結構設計規範。
內政部國土管理署(2024)。建築物耐震設計規範及解說。
厲娓娓(2022)。研議國內建築工程推廣應用預鑄技術及獎勵機制。建築簡訊,116。
Wang, X., Astroza, R., Hutchinson, T. C., Conte, J. P., & Restrepo, J. I. (2015). Dynamic characteristics and seismic behavior of prefabricated steel stairs in a full-scale five-story building shake table test program. Earthquake Engineering & Structural Dynamics, 44(14), 2507-2527. https://doi.org/10.1002/eqe.2595
Sorosh, S., Hutchinson, T. C., Ryan, K. L., Smith, K., Belvin, R., & Black, C. (2024). High-fidelity finite element modeling of the seismic response of prefabricated steel stairs. Earthquake Engineering & Structural Dynamics, 53(8), 2491-2510. https://doi.org/10.1002/eqe.4117
Li, B. X., & Mosalam, K. M. (2013). Seismic Performance of Reinforced-Concrete Stairways during the 2008 Wenchuan Earthquake. Journal of Performance of Constructed Facilities, 27(6), 721-730. https://doi.org/10.1061/(asce)cf.1943-5509.0000382
Cong, S. P., Zhang, Z., Zheng, Q., & Xu, Z. F. (2021). Seismic behavior of reinforced concrete frame staircase with separated slab stairs. Structures, 34, 4284-4296. https://doi.org/10.1016/j.istruc.2021.10.026
Pencík, J., Lavicky, M., Král, P., & Havírová, Z. (2015). Analysis of Behaviour of Prefabricated Staircases with One-Sided Suspended Stairs. Drvna Industrija, 66(2), 147-156. https://doi.org/10.5552/drind.2015.1338
Zhang, C., Ding, C., Zhou, Y., Wang, G. Y., Shi, F., & Huang, W. Y. (2023). Seismic behavior of prefabricated reinforced concrete stair isolated by high damping rubber bearings. Bulletin of Earthquake Engineering, 21(2), 1325-1352. https://doi.org/10.1007/s10518-022-01548-z
Zhang, C., Huang, Z. Q., Zhou, Y., Wang, G. Y., Yu, T. H., & Huang, W. Y. (2024). Seismic performance of novel low-damage stair system: Precast reinforced concrete stair isolated with a sliding joint. Engineering Structures, 298, 15, Article 117061. https://doi.org/10.1016/j.engstruct.2023.117061
Inman, D. J., Farrar, C. R., Junior, V. L., & Junior, V. S. (2005). Damage prognosis: For aerospace, civil, and mechanical systems. Wiley.
Staszewski, W. J., & Worden, K. (2009). Signal processing for damage detection. In Encyclopedia of Structural Health Monitoring. Wiley.
Farrar, C. R., & Worden, K. (2006). An introduction to structural health monitoring. Philosophical Transactions of the Royal Society, 303-315.
Beck, J. L., & Katafygiotis, L. S. (1992). Probabilistic system identification and health monitoring of structures. In Proceedings of the Tenth World Conference on Earthquake Engineering, Madrid, Spain.
Al-Khalidy, A., Noori, M., Hou, Z., Carmona, R., Yamamoto, S., Masuda, A., & Sone, A. (1997). A study of health monitoring systems of linear structures using wavelet analysis. ASME Journal of Pressure Vessel Technology, 347, 49-58.
Aydin, E., Ozturk, B., Noroozinejad Farsangi, E., & Bogdanovic, A. (2020). Editorial: New trends and developments on structural control & health monitoring. Frontiers in Built Environment, 6, Article 53.
Amezquita-Sanchez, J. P., & Adeli, H. (2016). Signal processing techniques for vibration-based health monitoring of smart structures. Archives of Computational Methods in Engineering, 23(1), 1-15.
Doebling, S. W., Farrar, C. R., & Prime, M. B. (1998). A summary review of vibration-based damage identification methods. Shock and Vibration Digest, 30(2), 91-105.
Chatzi, E. N., & Papadimitriou, C. (2016). Identification methods for structural health monitoring. Springer.
Gopalakrishnan, S., Ruzzene, M., & Hanagud, S. (2011). Computational techniques for structural health monitoring. Springer.
Ay, A. M., & Wang, Y. (2014). Structural damage identification based on self-fitting ARMAX model and multi-sensor data fusion. Structural Health Monitoring, 13(4), 445-460.
Gharehbaghi, V. R., Nguyen, A., Farsangi, E. N., & Yang, T. (2020). Supervised damage and deterioration detection in building structures using an enhanced autoregressive time-series approach. Journal of Building Engineering, 30, Article 101292.
Nikkhoo, A., Karegar, H., Karami Mohammadi, R., & Hajirasouliha, I. (2020). An acceleration-based approach for crack localization in beams subjected to moving oscillators. Journal of Vibration and Control. https://doi.org/1077546320929821
Monavari, B. (2019). SHM-based structural deterioration assessment [Doctoral dissertation, Queensland University of Technology].
Liang, Y., Li, D., & Song, G. (2016). Damage identification of shear buildings using natural frequency-change square ratio vector based on improved restoring force technology. In Proceedings of Earth and Space 2016 (p. 998).
Sha, G., Radzienski, M., Soman, R., Cao, M., Ostachowicz, W., & Xu, W. (2020). Multiple damage detection in laminated composite beams by data fusion of Teager energy operator-wavelet transform mode shapes. Composite Structures, 235, Article 111798.
Kameyama, K., Ohsumi, A., Matsuura, Y., & Sawada, K. (2005). Recursive 4SID-based identification algorithm with fixed input-output data size. International Journal of Innovative Computing, Information and Control, 1(1), 17-33.
Allemang, R. J., & Brown, D. L. (1982). A correlation coefficient for modal vector analysis. In Proceedings of the 1st International Modal Analysis Conference (pp. 110-116). Orlando, FL, November 8-10.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/94391-
dc.description.abstract本文以一地上9層之預鑄鋼筋混凝土樓梯為研究標的,考量預鑄構件、場鑄構件接合部結構行為不同,兩者接合可能有變位較大之特性,研究以Abaqus軟體建置樓梯之有限元素模型,探討其動態特性,以及接合部破壞對應之自然頻率變化。

在數值模擬分析階段,透過模態分析求得自然頻率及模態振型,並為驗證有限元素模型是否可靠,將模型導入地震歷時分析,選擇接合部作為模擬配置之監測點位,採用R4SID系統識別法,識別模型經由監測點位提取之歷時加速度,萃取自然頻率與模態振型,並以誤差指標及模態保證準則(MAC)跟模態分析結果比較,驗證模型為準確可靠。再來本研究以有限元素模型模擬樓梯接合部破壞,透過破壞預埋件以及削減混凝土彈性模數,發現對應樓梯之自然頻率有下降趨勢。

最後本研究針對該實際存在之樓梯進行監測,透過模型振動模擬之資訊以選擇接合部作為有效監測點位,並設計兩種不同之測試方式,分別為微振量測及敲擊測試。經由現地實測所得之自然頻率結果顯示,監測樓梯之接合部可以有效反應動態特性,包括樓梯板與樓板接合部、樓梯板與中間轉台接合部皆獲得良好之頻率識別結果,與模型模態分析所得之自然頻率高度一致。本研究提供可資參考之以樓梯為例的預鑄構件結構健康監測的流程及方法,提供後續學術探討精進相關之結構健康監測流程設計。
zh_TW
dc.description.abstractThis paper investigates a nine-story precast reinforced concrete staircase, focusing on the differing structural behaviors at the connections of precast and cast-in-place components, which may exhibit larger displacements. The study utilizes Abaqus software to construct a finite element model of the staircase to explore its dynamic characteristics and the corresponding changes in natural frequencies due to connection failure.

During the numerical simulation phase, modal analysis is performed to obtain natural frequencies and mode shapes. To verify the reliability of the finite element model, the model is subjected to seismic time-history analysis. The joints are selected as monitoring points for simulation configuration. The R4SID system identification method is used to extract natural frequencies and mode shapes from the time-history acceleration data obtained at the monitoring points. The results are compared with modal analysis outcomes using error indices and the Modal Assurance Criterion (MAC) to validate the model's accuracy and reliability. The study then simulates connection failure in the staircase finite element model by degrading embedded components and reducing the elastic modulus of concrete, revealing a downward trend in the corresponding natural frequencies.

Finally, the actual staircase is monitored based on information from the vibration simulation model, selecting the connections as effective monitoring points. Two different testing methods, ambient vibration testing and impact testing, are designed. The natural frequency results obtained from field measurements show that monitoring the connections of the staircase can effectively reflect the dynamic characteristics. Both the connections between the staircase slabs and floor slabs and the connections between the staircase slabs and intermediate landings yield good frequency identification results, highly consistent with the natural frequencies obtained from the model's modal analysis. This study provides a procedure and methodology for structural health monitoring of precast components using staircases as an example, contributing to the advancement of structural health monitoring process design in future academic research.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-08-15T17:14:14Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2024-08-15T17:14:14Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents誌謝 i
摘要 ii
Abstract iii
目次 v
圖次 viii
表次 xi
第一章 緒論 1
1.1 研究背景與動機 1
1.2 研究目的 4
1.3 研究範圍與限制 5
1.3.1 研究範圍 5
1.3.2 研究限制 5
1.4 研究架構 6
第二章 文獻回顧 7
2.1 樓梯之結構行為 7
2.1.1 樓梯動態特性 8
2.1.2 樓梯耐震行為 9
2.2 結構健康監測 11
2.2.1 響應類型(靜態或動態) 12
2.2.2 數值計算(基於模型或基於訊號) 12
2.2.3 激振(環境振動或強制振動) 13
2.2.4 訊號處理(時間域、頻率域或時頻域) 13
2.3 基於振動的監測與分析 14
2.3.1 模態分析 14
2.3.2 自然頻率 15
2.3.3 模態振型 15
2.3.4 模態保證準則 15
2.3.5 R4SID系統識別法 16
2.4 小結 17
第三章 預鑄RC樓梯之有限元素模型 19
3.1 Abaqus有限元素分析軟體 19
3.2 模型建置說明 20
3.3 幾何外型 23
3.4 接合部設計 27
3.5 模型材料設計 29
3.6 邊界條件 30
第四章 數值模擬分析 32
4.1 模態分析 32
4.2 模型驗證 36
4.2.1 輸入地震波 37
4.2.2 模擬監測點位配置 38
4.2.3 判斷指標 39
4.2.4 判斷結果 41
4.3 樓梯接合部破壞模擬 45
4.3.1 Abaqus混凝土塑性損傷模型 45
4.3.2 設定破壞區域及程度 46
4.3.3 模擬結果討論 50
第五章 預鑄RC樓梯自然頻率之現地實測 51
5.1 前置作業 51
5.2 實驗設計 52
5.3 實測結果 56
第六章 結論與建議 62
參考文獻 66
-
dc.language.isozh_TW-
dc.subject預鑄構件zh_TW
dc.subject鋼筋混凝土zh_TW
dc.subject樓梯zh_TW
dc.subject模態分析zh_TW
dc.subject數值模擬zh_TW
dc.subject結構健康監測zh_TW
dc.subject系統識別zh_TW
dc.subjectReinforced Concreteen
dc.subjectSystem Identificationen
dc.subjectStructural Health Monitoringen
dc.subjectNumerical Simulationen
dc.subjectModel Analysisen
dc.subjectStaircaseen
dc.subjectPrecast Componentsen
dc.title預鑄構件結構健康監測之初步研究─以樓梯振動模擬為例zh_TW
dc.titlePreliminary Study on Structural Health Monitoring of Precast Components: Staircase Vibration Simulation as an Exampleen
dc.typeThesis-
dc.date.schoolyear112-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee黃盈樺;詹瀅潔;林偲妘zh_TW
dc.contributor.oralexamcommitteeYing-Hua Huang;Ying-Chieh Chan;Szu-Yun Linen
dc.subject.keyword預鑄構件,鋼筋混凝土,樓梯,模態分析,數值模擬,結構健康監測,系統識別,zh_TW
dc.subject.keywordPrecast Components,Reinforced Concrete,Staircase,Model Analysis,Numerical Simulation,Structural Health Monitoring,System Identification,en
dc.relation.page68-
dc.identifier.doi10.6342/NTU202403974-
dc.rights.note同意授權(全球公開)-
dc.date.accepted2024-08-12-
dc.contributor.author-college工學院-
dc.contributor.author-dept土木工程學系-
顯示於系所單位:土木工程學系

文件中的檔案:
檔案 大小格式 
ntu-112-2.pdf4.08 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved