請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/94380完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 許聿廷 | zh_TW |
| dc.contributor.advisor | Yu-Ting Hsu | en |
| dc.contributor.author | 莊博宇 | zh_TW |
| dc.contributor.author | Po-Yu Chuang | en |
| dc.date.accessioned | 2024-08-15T17:10:34Z | - |
| dc.date.available | 2024-08-16 | - |
| dc.date.copyright | 2024-08-15 | - |
| dc.date.issued | 2024 | - |
| dc.date.submitted | 2024-08-08 | - |
| dc.identifier.citation | Anas, A. (1985). The combined equilibrium of travel networks and residential location markets. Regional Science and Urban Economics, 15(1), 1-21.
Arbués, P., Baños, J. F., Mayor, M., & Suárez, P. (2016). Determinants of ground transport modal choice in long-distance trips in Spain. Transportation Research Part A: Policy and Practice, 84, 131-143. Ardeshiri, A. (2014). Evaluating urban services using economic valuation techniques: Towards better urban environmental quality and promotion of sustainable development Newcastle University]. Ardeshiri, A., Ardeshiri, M., Radfar, M., & Shormasty, O. H. (2016). The values and benefits of environmental elements on housing rents. Habitat International, 55, 67-78. Ardeshiri, A., & Vij, A. (2019). Lifestyles, residential location, and transport mode use: A hierarchical latent class choice model. Transportation Research Part a-Policy and Practice, 126, 342-359. https://doi.org/10.1016/j.tra.2019.06.016 Ardeshiri, A., Willis, K., & Ardeshiri, M. (2018). Exploring preference homogeneity and heterogeneity for proximity to urban public services. Cities, 81, 190-202. Ariffian, B., Wilson, A. J., Zarin, H., & Anuar, F. (2015). Measuring the Gen Y Housing Affordability Problem. International Journal of Trade, Economics and Finance, 6, 22-26. https://doi.org/10.7763/IJTEF.2015.V6.435 Balsas, C. J. (2003). Sustainable transportation planning on college campuses. Transport Policy, 10(1), 35-49. Bamberg, S., Ajzen, I., & Schmidt, P. (2003). Choice of travel mode in the theory of planned behavior: The roles of past behavior, habit, and reasoned action. Basic and applied social psychology, 25(3), 175-187. Banerjee, I. (2011). Automobility in India: A Study of Car Acquisition & Ownership Trends in the City of Surat. University of California, Berkeley. Bayoh, I., Irwin, E. G., & Haab, T. (2006). Determinants of residential location choice: How important are local public goods in attracting homeowners to central city locations? Journal of Regional Science, 46(1), 97-120. Ben-Akiva, M., Bowman, J., & Gopinath, D. (2003). TRAVEL DEMAND MODEL SYSTEM FOR THE INFORMATION ERA. IN: TRANSPORT AND INFORMATION SYSTEMS. Classics in Transport Analysis(6). Bhat, C. R., & Guo, J. (2004). A mixed spatially correlated logit model: formulation and application to residential choice modeling. Transportation Research Part B: Methodological, 38(2), 147-168. Bhat, C. R., & Guo, J. Y. (2007). A comprehensive analysis of built environment characteristics on household residential choice and auto ownership levels. Transportation Research Part B: Methodological, 41(5), 506-526. Boyd, B., Chow, M., Johnson, R., & Smith, A. (2003). Analysis of effects of fare-free transit program on student commuting mode shares: BruinGo at University of California at Los Angeles. Transportation Research Record, 1835(1), 101-110. Cao, (Jason), X.-y., Mokhtarian, P. L., & Handy, S. L. (2009). The relationship between the built environment and nonwork travel: A case study of Northern California. Transportation Research Part A: Policy and Practice, 43(5), 548-559. Cao, X., Mokhtarian, P. L., & Handy, S. (2006). Examining the impacts of residential self-selection on travel behavior: Methodologies and empirical findings. Cao, X. J., Xu, Z., & Fan, Y. (2010). Exploring the connections among residential location, self-selection, and driving: Propensity score matching with multiple treatments. Transportation Research Part A: Policy and Practice, 44(10), 797-805. Cao, X. Y. (2015). Heterogeneous effects of neighborhood type on commute mode choice: An exploration of residential dissonance in the Twin Cities. Journal of Transport Geography, 48, 188-196. https://doi.org/10.1016/j.jtrangeo.2015.09.010 Chen, C., Gong, H., & Paaswell, R. (2008). Role of the built environment on mode choice decisions: additional evidence on the impact of density. Transportation, 35, 285-299. Day, J., & Cervero, R. (2010). Effects of residential relocation on household and commuting expenditures in Shanghai, China. International journal of urban and regional research, 34(4), 762-788. De Witte, A., Hollevoet, J., Dobruszkes, F., Hubert, M., & Macharis, C. (2013). Linking modal choice to motility: A comprehensive review. Transportation Research Part A: Policy and Practice, 49, 329-341. Deka, D. (2015). Relationship Between Households' Housing and Transportation Expenditures Examination from Lifestyle Perspective. Transportation Research Record(2531), 26-35. https://doi.org/10.3141/2531-04 -Eluru, N., Chakour, V., & El-Geneidy, A. M. (2012). Travel mode choice and transit route choice behavior in Montreal: insights from McGill University members commute patterns. Public Transport, 4, 129-149. Ettema, D., & Nieuwenhuis, R. (2017). Residential self-selection and travel behaviour: what are the effects of attitudes, reasons for location choice and the built environment? Journal of Transport Geography, 59, 146-155. Ewing, R., & Cervero, R. (2001). Travel and the built environment: a synthesis. Transportation Research Record, 1780(1), 87-114. Fatmi, M. R., & Habib, M. A. (2017). Modelling mode switch associated with the change of residential location. Travel Behaviour and Society, 9, 21-28. https://doi.org/10.1016/j.tbs.2017.07.006 Gardner, B. (2009). Modelling motivation and habit in stable travel mode contexts. Transportation Research Part F: Traffic Psychology and Behaviour, 12(1), 68-76. Guevara, C. A. (2010). Endogeneity and sampling of alternatives in spatial choice models. Unpublished doctoral dissertation) Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA. Guo, J., Feng, T., & Timmermans, H. J. P. (2020). Modeling co-dependent choice of workplace, residence and commuting mode using an error component mixed logit model. Transportation, 47(2), 911-933. https://doi.org/10.1007/s11116-018-9927-y Guo, Y., Peeta, S., & Somenahalli, S. (2017). The impact of walkable environment on single-family residential property values. Journal of transport and land use, 10(1), 241-261. Guo, Y. T., & Peeta, S. (2020). Impacts of personalized accessibility information on residential location choice and travel behavior. Travel Behaviour and Society, 19, 99-111. https://doi.org/10.1016/j.tbs.2019.12.007 Haque, M. B., Choudhury, C., & Hess, S. (2020). Understanding differences in residential location preferences between ownership and renting: A case study of London. Journal of Transport Geography, 88, 15, Article 102866. https://doi.org/10.1016/j.jtrangeo.2020.102866 Haque, M. B., Choudhury, C., Hess, S., & Sourd, R. C. D. (2019). Modelling residential mobility decision and its impact on car ownership and travel mode. Travel Behaviour and Society, 17, 104-119. https://doi.org/10.1016/j.tbs.2019.07.005 Hechter, M., & Kanazawa, S. (1997). Sociological rational choice theory. Annual review of sociology, 23(1), 191-214. Jiao, P. P., Liu, M. Q., & Guo, J. (2015). Integrated Model of Joint Residence-Workplace Location Choice and Commute Behavior Using Latent Class and Mixed Logit Methods. Discrete Dynamics in Nature and Society, 2015, 9, Article 251781. https://doi.org/10.1155/2015/251781 Johnson, M. P., & Heinz, H. (2006). Decision models for affordable housing and sustainable community development. Carnegie Mellon University, 5000, 15213-13890. Kaufmann, V., Bergman, M. M., & Joye, D. (2004). Motility: Mobility as capital. International journal of urban and regional research, 28(4), 745-756. Klöckner, C. A., & Matthies, E. (2004). How habits interfere with norm-directed behaviour: A normative decision-making model for travel mode choice. Journal of environmental psychology, 24(3), 319-327. Ko, J., Lee, S., & Byun, M. (2019). Exploring factors associated with commute mode choice: An application of city-level general social survey data. Transport Policy, 75, 36-46. https://doi.org/10.1016/j.tranpol.2018.12.007 Ko, J., Park, D., & Lee, S. (2011). Transit ridership evaluation using aggregate-level causal analyses of subway mode shares in Seoul, South Korea. Transportation Research Record, 2219(1), 59-68. Ko, J., Park, D., Lim, H., & Hwang, I. C. (2011). Who produces the most CO2 emissions for trips in the Seoul metropolis area? Transportation research part D: transport and environment, 16(5), 358-364. -* Koppelman, F. S., & Wen, C.-H. (1998). Alternative nested logit models: structure, properties and estimation. Transportation Research Part B: Methodological, 32(5), 289-298. Kortum, K., Paleti, R., Bhat, C. R., & Pendyala, R. M. (2012). Joint model of residential relocation choice and underlying causal factors. Transportation Research Record, 2303(1), 28-37. Krizek, K. J., Waddell, P., Trb, Trb, & Trb. (2002). Analysis of lifestyle choices - Neighborhood type, travel patterns, and activity participation. In Traveler Behavior and Values 2002: Planning and Administration (pp. 119-128). Transportation Research Board Natl Research Council. https://doi.org/10.3141/1807-15 Krueger, R., Vij, A., & Rashidi, T. H. (2018). Normative beliefs and modality styles: a latent class and latent variable model of travel behaviour. Transportation, 45, 789-825. Kuhnimhof, T., & Gringmuth, C. (2009). Multiday multiagent model of travel behavior with activity scheduling. Transportation Research Record, 2134(1), 178-185. Lawton, P., Murphy, E., & Redmond, D. (2013). Residential preferences of the ‘creative class’? Cities, 31, 47-56. Lee, B. H., & Waddell, P. (2010). Residential mobility and location choice: a nested logit model with sampling of alternatives. Transportation, 37, 587-601. Lee, B. H., Waddell, P., Wang, L., & Pendyala, R. M. (2009). Operationalizing time-space prism accessibility in a building-level residential choice model: empirical results from the Puget Sound region. Levinson, D. M., & Krizek, K. J. (2007). Planning for place and plexus: Metropolitan land use and transport. Routledge. Li, Y., Guo, Y., Lu, J., & Peeta, S. (2019). Impacts of congestion pricing and reward strategies on automobile travelers’ morning commute mode shift decisions. Transportation Research Part A: Policy and Practice, 125, 72-88. Liao, F. H., Farber, S., & Ewing, R. (2015). Compact development and preference heterogeneity in residential location choice behaviour: A latent class analysis. Urban studies, 52(2), 314-337. Limtanakool, N., Dijst, M., & Schwanen, T. (2006). The influence of socioeconomic characteristics, land use and travel time considerations on mode choice for medium-and longer-distance trips. Journal of Transport Geography, 14(5), 327-341. Macfarlane, G. S., Garrow, L. A., & Mokhtarian, P. L. (2015). The influences of past and present residential locations on vehicle ownership decisions. Transportation Research Part A: Policy and Practice, 74, 186-200. Majid, M. R., Nordin, A. N., & Medugu, I. N. (2014). Influence of housing development designs on household vehicle miles traveled: A case of Iskandar Malaysia. Transportation research part D: transport and environment, 33, 63-73. Matthies, E., Kuhn, S., & Klöckner, C. A. (2002). Travel mode choice of women: the result of limitation, ecological norm, or weak habit? Environment and behavior, 34(2), 163-177. Moekel, R., Spiekermann, K., Schürmann, C., & Wegener, M. (2003). Microsimulation of land use. International Journal of Urban Sciences, 7(1), 14-31. Molin, E., Oppewal, H., & Timmermans, H. (1999). Group-based versus individual-based conjoint preference models of residential preferences: a comparative test. Environment and Planning A, 31(11), 1935-1947. Muth, R. F. (1969). CITIES AND HOUSING; THE SPATIAL PATTERN OF URBAN RESIDENTIAL LAND USE. Næss, P. (2013). Residential location, transport rationales and daily-life travel behaviour: The case of Hangzhou Metropolitan Area, China. Progress in Planning, 79, 5-54. https://doi.org/10.1016/j.progress.2012.05.001 Owen, A., & Levinson, D. M. (2015). Modeling the commute mode share of transit using continuous accessibility to jobs. Transportation Research Part A: Policy and Practice, 74, 110-122. Paleti, R., Bhat, C. R., & Pendyala, R. M. (2013). Integrated model of residential location, work location, vehicle ownership, and commute tour characteristics. Transportation Research Record, 2382(1), 162-172. Pinjari, A. R., Bhat, C. R., & Hensher, D. A. (2009). Residential self-selection effects in an activity time-use behavior model. Transportation Research Part B: Methodological, 43(7), 729-748. Pinjari, A. R., Pendyala, R. M., Bhat, C. R., & Waddell, P. A. (2007). Modeling residential sorting effects to understand the impact of the built environment on commute mode choice. Transportation, 34, 557-573. Pinjari, A. R., Pendyala, R. M., Bhat, C. R., & Waddell, P. A. (2011). Modeling the choice continuum: an integrated model of residential location, auto ownership, bicycle ownership, and commute tour mode choice decisions. Transportation, 38(6), 933-958. https://doi.org/10.1007/s11116-011-9360-y Pisman, A., Allaert, G., & Lombaerde, P. (2011). Urban and suburban lifestyles and residential preferences in a highly urbanized society. Experiences from a case study in Ghent (Flanders, Belgium). Belgeo. Revue belge de géographie(1-2), 89-104. Pivo, G., & Fisher, J. D. (2011). The walkability premium in commercial real estate investments. Real estate economics, 39(2), 185-219. Prashker, J., Shiftan, Y., & Hershkovitch-Sarusi, P. (2008). Residential choice location, gender and the commute trip to work in Tel Aviv. Journal of Transport Geography, 16(5), 332-341. Prato, C. G., Halldórsdóttir, K., & Nielsen, O. A. (2017). Latent lifestyle and mode choice decisions when travelling short distances. Transportation, 44, 1343-1363. Rasouli, S., & Timmermans, H. (2015). Models of bounded rationality under certainty. Bounded rational choice behaviour: Applications in transport, 1-30. Salomon, I., & Ben-Akiva, M. (1983). The use of the life-style concept in travel demand models. Environment and Planning A, 15(5), 623-638. Scheiner, J. (2010). Social inequalities in travel behaviour: trip distances in the context of residential self-selection and lifestyles. Journal of Transport Geography, 18(6), 679-690. Senbil, M., Kitamura, R., & Mohamad, J. (2009). Residential location, vehicle ownership and travel in Asia: a comparative analysis of Kei-Han-Shin and Kuala Lumpur metropolitan areas. Transportation, 36, 325-350. Smith, B., & Olaru, D. (2013). Lifecycle stages and residential location choice in the presence of latent preference heterogeneity. Environment and Planning A, 45(10), 2495-2514. Stanbridge, K., Lyons, G., & Farthing, S. (2004). Travel behaviour change and residential relocation. 3rd international conference of traffic and transport psychology, Nottingham, Thierstein, A., Förster, A., Conventz, S., Erhard, K., & Ottmann, M. (2013). Wohnungsnachfrage im Großraum München. Individuelle Präferenzen, verfügbares Angebot und räumliche Maßstabsebenen. Van Acker, V., Van Wee, B., & Witlox, F. (2010). When transport geography meets social psychology: toward a conceptual model of travel behaviour. Transport Reviews, 30(2), 219-240. Van Acker, V., & Witlox, F. (2010). Car ownership as a mediating variable in car travel behaviour research using a structural equation modelling approach to identify its dual relationship. Journal of Transport Geography, 18(1), 65-74. Vega, A., & Reynolds-Feighan, A. (2009). A methodological framework for the study of residential location and travel-to-work mode choice under central and suburban employment destination patterns. Transportation Research Part A: Policy and Practice, 43(4), 401-419. Verplanken, B., Walker, I., Davis, A., & Jurasek, M. (2008). Context change and travel mode choice: Combining the habit discontinuity and self-activation hypotheses. Journal of environmental psychology, 28(2), 121-127. Vij, A., Carrel, A., & Walker, J. L. (2013). Incorporating the influence of latent modal preferences on travel mode choice behavior. Transportation Research Part A: Policy and Practice, 54, 164-178. Waddell, P. (2000). Towards a behavioral integration of land use and transportation modelling. INTERNATIONAL CONFERENCE ON TRAVEL BEHAVIOUR RESEARCH, 9TH, 2000, GOLD COAST, QUEENSLAND, AUSTRALIA, VOL 1, Waddell, P. (2001). Towards a Behavioral Integration of Land Use and Transportation Modeling. Walker, J. L., & Li, J. (2007). Latent lifestyle preferences and household location decisions. Journal of Geographical Systems, 9, 77-101. Wang, T., & Chen, C. (2012). Attitudes, mode switching behavior, and the built environment: A longitudinal study in the Puget Sound Region. Transportation Research Part A: Policy and Practice, 46(10), 1594-1607. Washington, S., Karlaftis, M. G., Mannering, F., & Anastasopoulos, P. (2020). Statistical and econometric methods for transportation data analysis. Chapman and Hall/CRC. Weisbrod, G., Lerman, S. R., & Ben-Akiva, M. (1980). Tradeoffs in residential location decisions: Transportation versus other factors. Transport Policy and Decision Making, 1(1), 13-26. Willumsen, L. G. (2001). Modelling transport. Wiley-Blackwell. Zarabi, Z., & Lord, S. (2019). Toward More Sustainable Behavior: A Systematic Review of the Impacts of Involuntary Workplace Relocation on Travel Mode Choice [Review]. Journal of Planning Literature, 34(1), 38-58. https://doi.org/10.1177/0885412218802467 Zhang, J. (2014). Revisiting residential self-selection issues: A life-oriented approach. Journal of transport and land use, 7(3), 29-45. Zhao, J. J., Bentlage, M., & Thierstein, A. (2017). Residence, workplace and commute: Interrelated spatial choices of knowledge workers in the metropolitan region of Munich. Journal of Transport Geography, 62, 197-212. https://doi.org/10.1016/j.jtrangeo.2017.05.012 Zhou, J. (2012). Sustainable commute in a car-dominant city: Factors affecting alternative mode choices among university students. Transportation Research Part A: Policy and Practice, 46(7), 1013-1029. Zhou, J. P. (2014). From better understandings to proactive actions: Housing location and commuting mode choices among university students. Transport Policy, 33, 166-175. https://doi.org/10.1016/j.tranpol.2014.03.004 Zolfaghari, A. (2013). Methodological and empirical challenges in modelling residential location choices Imperial College London]. Zondag, B., & Pieters, M. (2005). Influence of accessibility on residential location choice. Transportation Research Record, 1902(1), 63-70. 林威任. (2014). 高速鐵路運量預測模式重建與分析 國立臺灣大學]. 臺灣博碩士論文知識加值系統. 臺北市. https://hdl.handle.net/11296/qngven 邱裕鈞, 溫傑華, 陳韋穎, 王穆衡, 傅強, 曾幸敏,與林育瑄. (2014). 旅運者運具選擇行為異質性之研析:混合羅吉特模式之應用 [Modeling Mode Choice Behaviors by Using Mixed Logit Models]. 運輸計劃季刊, 43(2), 143-171. 凌瑞賢. (2016). 運輸規劃原理與實務 (第三版) . 鼎漢國際工程顧問股份有限公司. 陳怡燕. (2015). 臺灣高鐵售票通路組合策略及願付價格之研究 國立成功大學]. 臺灣博碩士論文知識加值系統. 臺南市. https://hdl.handle.net/11296/ywuvme 溫珮如. (2012). 家戶自行車持有與使用行為選擇模式之構建 國立臺灣大學]. 臺灣博碩士論文知識加值系統. 臺北市. https://hdl.handle.net/11296/z3u5vt 蔡宗佑. (2017). 公共自行車之替代性與互補性—以臺北都會區為例 國立交通大學]. 臺灣博碩士論文知識加值系統. 新竹市. https://hdl.handle.net/11296/dwb4d5 | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/94380 | - |
| dc.description.abstract | 近年來大城市的物價通膨、房價高漲,市中心高住房成本迫使人們往城市外圍尋找居住地點,以換取較低、可負擔的住房成本,然而卻衍生較長通勤的距離、較高的通勤成本,人們必須在居住地點與運具選擇之間做權衡。這樣的問題在年輕世代中至關重要,包含大學生與研究生,由於經濟因素他們一直是住房市場中的弱勢群體;為彌補長距離通勤的時間與成本,機車成為青年族群常用的運具之一,其雖擁有高度機動性、友善的使用成本,但由於運具特性易造成事故與危險,更是與淨零碳排、永續發展的目標背道而馳。
本研究主要探討青年族群在選擇租屋地點與通勤運具選擇之間的聯合決策行為,以臺北地區的大學進行實證研究,採用敘述性偏好法進行問卷設計,模擬臺大校區周遭租屋市場,學生的租屋與通勤運具選擇。以個體選擇模式為基礎,將所蒐集的數據使用多項羅吉特、巢式羅吉特、混合羅吉特摸式、整合聯立方程式模型校估,建立包含居住地點選擇、通勤運具選擇、居住通勤聯合決策等選擇模式,分析租屋與運具選擇之間的因素偏好與交互作用影響。 研究發現偏好不同運具的學生,選擇居住地點的考量不同,偏好大眾運輸者會在意居住地點的大眾運輸可及性,而使用機車通勤的受訪者幾乎不考慮租屋地點的大眾運輸狀況。在青年族群的決策過程當中,發現自行車與步行被視為租屋處通勤的預設選項,大眾運輸或是機車通勤則是獨立考量的選項。另外研究也發現大學生與研究生、是否有打工或家教會影響青年族群選擇;而駕照持有會影響居住地點選擇,影響通勤運具選擇的則是運具持有。研究建議未來若要實行住房成本的補貼,可考慮將通勤運具選項納入考量;如使用大眾運輸者的租屋補貼上限與私人運具使用者的租屋補貼上限不同,以達到環境永續、宜居並落實公平原則之發展政策。 | zh_TW |
| dc.description.abstract | In recent years, major metropolises’ highly escalating housing/rental prices have driven people to seek more affordable living options in the outer areas of cities. This shift, while reducing housing costs, has resulted in longer commutes and higher transportation costs. This highlights the challenge of the trade-offs between residence-related and mobility-related choices. This issue is particularly critical for the younger generation, including college and graduate students, who are disadvantaged in the housing and rental markets. To compensate for the needs and costs of long commuting, motorcycles have become a popular commuting mode among young people. While motorcycles have high mobility and low operating costs, they are associated with high injury and fatality rates and conflict with the goals of net-zero carbon emissions and sustainable development.
This study seeks to attain a better understanding and integrated perspective of residence-related and mobility-related choices among the young generation, An empirical study was conducted focusing on universities in Taipei, Taiwan. A stated preference method was used to simulate the rental market around the National Taiwan University (NTU). The study collected data of students’ housing and commuting choices. The study analyzed the factors influencing rental and commute mode preferences and their interactions using discrete choice models, including multinomial logit, nested logit, mixed logit, and integrated simultaneous equation models. The findings reveal that students who prefer different modes of transportation consider different factors when choosing their residential locations. Those who favor public transport are concerned with the accessibility of public transport, while those commuting by motorcycles do not consider the public transport conditions. The decision-making process among the young generation also shows that bicycles and walking are default options for commuting, whereas public transport and motorcycles are considered independently. Additionally, the study finds that factors such as whether students are undergraduates or graduates and whether they have part-time jobs or tutoring positions influence their choices. Furthermore, having driver’s license affects residential location choices, while vehicle ownership influences commute mode choices. The study suggests that future housing cost subsidies should consider commute mode options. For instance, the maximum rental subsidy for public transport users could differ from that for private vehicle users to promote environmental sustainability, livability, and equitable development policies. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-08-15T17:10:34Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2024-08-15T17:10:34Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 口試委員審定書 i
致謝 ii 摘要 iii Abstract iv 目次 vi 圖次 ix 表次 x 第一章 緒論 1 1.1 研究背景與動機 1 1.2 研究問題與目的 4 1.3 研究範圍與對象 5 1.4 研究流程 7 第二章 文獻回顧 8 2.1 居住地點選擇 8 2.2 通勤運具選擇 11 2.3 居住地點與通勤運具的聯合決策 14 2.4 文獻回顧小結 17 第三章 研究方法 18 3.1 敘述性偏好 18 3.2 個體選擇行為模式 20 3.2.1 多項羅吉特模式MNL (Multinomial Logit Model) 22 3.2.2 巢式羅吉特模式NL (Nested Logit Model) 24 3.2.3 混合羅吉特模式MXL (Mixed Logit Model) 27 3.3 聯立方程式模型SEM (Simultaneous Equations Models) 29 第四章 問卷設計與資料蒐集 32 4.1 問卷內容設計 32 4.1.1 受訪者習慣調查 33 4.1.2 居住地點與運具選擇模擬實驗情境 33 4.1.3 居住與通勤運具偏好 37 4.1.4 基本社經資料 41 4.2 問卷調查與資料蒐集 42 4.3 問卷資料整理與分析 43 4.3.1 敘述性統計 43 4.3.2 情境模擬統計 45 第五章 實證分析 47 5.1 模式變數轉換 47 5.1.1 個體選擇行為模式變數設定 (MNL&NL&MXL) 47 5.1.2 聯立方程式模型 52 5.2 多項羅吉特模式 (MNL) 校估分析 58 5.2.1 多項羅吉特模式 (MNL) 建構 58 5.2.2 多項羅吉特模式 (MNL) 校估結果與分析 59 5.2.3 多項羅吉特模式 (MNL) 小結 65 5.3 巢式羅吉特模式 (NL) 校估分析 66 5.3.1 巢式羅吉特模式 (NL) 建構 66 5.3.2 巢式羅吉特模式 (NL) 校估結果與分析 68 5.4 混合羅吉特模式 (MXL) 校估分析 72 5.4.1 混合羅吉特模式 (MXL) 建構 72 5.4.2 混合羅吉特模式 (MXL) 校估結果與分析 73 5.5 聯立方程式模型 (SEM) 校估分析 75 5.5.1 居住地點選擇模式建構 75 5.5.2 運具選擇模式建構 77 5.5.3 聯立方程式模型校估 79 5.6 模式比較與小結 87 第六章 結論與建議 88 6.1 研究結論 88 6.2 研究限制與建議 91 參考文獻 92 附錄 100 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 異質性 | zh_TW |
| dc.subject | 多項羅吉特模式 | zh_TW |
| dc.subject | 巢式羅吉特模式 | zh_TW |
| dc.subject | 通勤運具選擇 | zh_TW |
| dc.subject | 混合羅吉特模式 | zh_TW |
| dc.subject | 機車使用 | zh_TW |
| dc.subject | 居住選擇 | zh_TW |
| dc.subject | Multinomial logit model | en |
| dc.subject | Heterogeneity | en |
| dc.subject | Motorcycle usage | en |
| dc.subject | Mixed logit model | en |
| dc.subject | Nested logit model | en |
| dc.subject | Commute modes | en |
| dc.subject | Residence choices | en |
| dc.title | 探討高住房成本下青年族群的居住和運具選擇行為 | zh_TW |
| dc.title | Exploring Residence-related and Mobility-related Choices among the Young Generation: in the Era of High Housing and Rental Prices | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 112-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 林楨家;黃麗玲;閻姿慧 | zh_TW |
| dc.contributor.oralexamcommittee | Jen-Jia Lin;Li-Ling Huang;Barbara T.H. Yen | en |
| dc.subject.keyword | 居住選擇,通勤運具選擇,多項羅吉特模式,巢式羅吉特模式,混合羅吉特模式,機車使用,異質性, | zh_TW |
| dc.subject.keyword | Residence choices,Commute modes,Multinomial logit model,Nested logit model,Mixed logit model,Motorcycle usage,Heterogeneity, | en |
| dc.relation.page | 106 | - |
| dc.identifier.doi | 10.6342/NTU202404014 | - |
| dc.rights.note | 同意授權(全球公開) | - |
| dc.date.accepted | 2024-08-12 | - |
| dc.contributor.author-college | 工學院 | - |
| dc.contributor.author-dept | 土木工程學系 | - |
| 顯示於系所單位: | 土木工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-112-2.pdf | 3.31 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
