Please use this identifier to cite or link to this item:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/94379Full metadata record
| ???org.dspace.app.webui.jsptag.ItemTag.dcfield??? | Value | Language |
|---|---|---|
| dc.contributor.advisor | 陳誠亮 | zh_TW |
| dc.contributor.advisor | Cheng-Liang Chen | en |
| dc.contributor.author | 張皓筑 | zh_TW |
| dc.contributor.author | Hao-Chu Chang | en |
| dc.date.accessioned | 2024-08-15T17:10:15Z | - |
| dc.date.available | 2024-08-16 | - |
| dc.date.copyright | 2024-08-15 | - |
| dc.date.issued | 2024 | - |
| dc.date.submitted | 2024-08-05 | - |
| dc.identifier.citation | [ 1 ] 行政院政策與計畫 https://www.ey.gov.tw/Page/5A8A0CB5B41DA11E/7a65a06e-3f71-4c68-b368-85549fbca5d1
[ 2 ] 台灣經濟部能源署 https://www.esist.org.tw/publication/monthly_detail?Id=2e7321193234 [ 3 ] Julian David Hunt, Pedro Marin Montanari, Diego Nieto Hummes, Masoud Taghavi, Behanm Zakeri, Oldrich Joel Romero, Wenji Zhou, Marcos Aurélio Vasconcelos de Freitas, Nivalde José de Castro, Paulo Smith Schneider, Yoshihide Wada. “Solid Air Hydrogen Liquefaction, the Missing Link of the Hydrogen Economy.” International Journal of Hydrogen Energy, vol. 48, no. 75, 1 Sept. 2023, pp. 29198–29208 [ 4 ] Youngkyun Seo, Jiyoung An, Eunyoung Park, Jintae Kim, Meangik Cho, Seongjong Han, Jinkwang Lee. “Technical–Economic Analysis for Ammonia Ocean Transportation Using an Ammonia-Fueled Carrier.” Sustainability, vol. 16, no. 2, 1 Jan. 2024, p. 827, www.mdpi.com/2071-1050/16/2/827 [ 5 ] Qianqian Song, Rodrigo Rivera Tinoco, Haiping Yang, Qing Yang, Hao Jiang, Yingquan Chen, Hanping Chen. “A Comparative Study on Energy Efficiency of the Maritime Supply Chains for Liquefied Hydrogen, Ammonia, Methanol and Natural Gas.” Carbon Capture Science & Technology, vol. 4, Sept. 2022, p. 100056, https://doi.org/10.1016/j.ccst.2022.100056. [ 6 ] Fei Chang, Wenbo Gao, Jianping Guo, Ping Chen. “Emerging Materials and Methods toward Ammonia‐Based Energy Storage and Conversion.” Advanced Materials, 8 Apr. 2021, p. 2005721, https://doi.org/10.1002/adma.202005721 [ 7 ] Karsten Müller, Florian Fabisch, Wolfgang Arlt. “Energy Transport and Storage Using Methanol as a Carrier.” Green, vol. 4, no. 1-6, 1 Jan. 2014, https://doi.org/10.1515/green-2013-0028. Accessed 27 May 2024. [ 8 ] Aubaid Ullah, Nur Awanis Hashim, Mohamad Fairus Rabuni, Mohd Usman Mohd Junaidi. “A Review on Methanol as a Clean Energy Carrier: Roles of Zeolite in Improving Production Efficiency.” Energies, vol. 16, no. 3, 2 Feb. 2023, pp. 1482–1482, https://doi.org/10.3390/en16031482. [ 9 ] Júlio Cesar de Carvalho Miranda, Gustavo Henrique Santos Flores Ponce, Harvey Arellano-Garcia, Rubens Maciel Filho, Maria Regina Wolf Maciel. “Process Design and Evaluation of Syngas-To-Ethanol Conversion Plants.” Journal of Cleaner Production, vol. 269, Oct. 2020, https://doi.org/10.1016/j.jclepro.2020.122078. [ 10 ] Lei Zhang, Lingen Chen, Shaojun Xia, Chao Wang, Fengrui Sun. “Entropy Generation Minimization for Reverse Water Gas Shift (RWGS) Reactors.” Entropy, vol. 20, no. 6, 29 May 2018, p. 415, https://doi.org/10.3390/e20060415. Accessed 10 Oct. 2019. [ 11 ] Vendas, Maria. CO PRODUCTION via REVERSE WATER-GAS SHIFT REACTION for FISCHER-TROPSCH APPLICATIONS MARIA DA LUZ PAIS VENDAS DISSERTAÇÃO De MESTRADO APRESENTADA À FACULDADE De ENGENHARIA DA UNIVERSIDADE DO PORTO EM CHEMICAL ENGINEERING M 2020. [ 12 ] M. A. Portillo, A.L. Villanueva Perales, F. Vidal-Barrero, M. Campoy. “A Kinetic Model for the Synthesis of Ethanol from Syngas and Methanol over an Alkali-Co Doped Molybdenum Sulfide Catalyst: Model Building and Validation at Bench Scale.” Fuel Processing Technology, vol. 151, 1 Oct. 2016, pp. 19–30, https://doi.org/10.1016/j.fuproc.2016.05.027. Accessed 24 Oct. 2023. [ 13 ] Kun Chen, Yijun Zhao, Wenda Zhang, Dongdong Feng, Shaozeng Sunet. “The Intrinsic Kinetics of Methane Steam Reforming over a Nickel-Based Catalyst in a Micro Fluidized Bed Reaction System.” International Journal of Hydrogen Energy, Dec. 2019, https://doi.org/10.1016/j.ijhydene.2019.11.080. Accessed 23 Dec. 2019. [ 14 ] Peela, Nageswara Rao, and Deepak Kunzru. “Steam Reforming of Ethanol in a Microchannel Reactor: Kinetic Study and Reactor Simulation.” Industrial & Engineering Chemistry Research, vol. 50, no. 23, 7 Dec. 2011, pp. 12881–12894, https://doi.org/10.1021/ie200084b. Accessed 23 Dec. 2019. [ 15 ] Rase, Howard F. Chemical Reactor Design for Process Plants: Case Studies and Design Data. Vol. 2, John Wiley & Sons, 1977, pp. 133–138. [ 16 ] Li, Bao-Hong, Nan Zhang, Robin Smith. “Simulation and Analysis of CO2 Capture Process with Aqueous Monoethanolamine Solution.” Applied Energy, vol. 161, no. C, 2016, pp. 707–717, doi.org/10.1016/j.apenergy.2015.07.010. [ 17 ] H. Hikita, H. Ishikawa, M. Honda. “The Kinetics of Reactions of Carbon Dioxide with Monoethanolamine, Diethanolamine and Triethanolamine by a Rapid Mixing Method.” The Chemical Engineering Journal, vol. 13, no. 1, Jan. 1977, pp. 7–12, https://doi.org/10.1016/0300-9467(77)80002-6. [ 18 ] Jian Chen, Weijie Fu, Shuilian Liu, Yiming He, Dr. Chalachew Mebrahtu, Qiaoqiao Zhou, Dr. Yuting Zhang, Prof. Xuerui Wang, Dr. Huanhao Chen. “Thermodynamic Analysis of Membrane Separation‐Enhanced Co‐Hydrogenation of CO2/CO to Ethanol.” Chemical Engineering & Technology, vol. 46, no. 11, 1 Aug. 2023, pp. 2386–2394, https://doi.org/10.1002/ceat.202300137 . Accessed 28 May 2024. [ 19 ] The Pros and Cons of Ethanol Fuel, https://www.fleetpoint.org/fuel/green-fuels/the-pros-and-cons-of-ethanol-fuel/ [ 20 ] Jifeng Pang, Mingyuan Zheng, Tao Zhang. “Chapter Two - Synthesis of Ethanol and Its Catalytic Conversion.” ScienceDirect, Academic Press, 1 Jan. 2019, www.sciencedirect.com/science/article/pii/S036005641930001X . Accessed 6 Nov. 2023. [ 21 ] Syed Saim Ali, Syed Saif Ali, Nabila Tabassum. “A Review on CO2 Hydrogenation to Ethanol: Reaction Mechanism and Experimental Studies.” Journal of Environmental Chemical Engineering, vol. 10, no. 1, Feb. 2022, p. 106962, https://doi.org/10.1016/j.jece.2021.106962 . Accessed 20 Feb. 2023. [ 22 ] Oh-Shim Joo, Kwang-Deog Jung, Il Moon, Alexander Ya. Rozovskii, Galina I. Lin, Sung-Hwan Han, and Sung-Jin Uhm. “Carbon Dioxide Hydrogenation to Form Methanol via a Reverse-Water-Gas-Shift Reaction (the CAMERE Process).” Industrial & Engineering Chemistry Research, vol. 38, no. 5, May 1999, pp. 1808–1812, https://doi.org/10.1021/ie9806848. [ 23 ] Kun Chen, Yijun Zhao, Wenda Zhang, Dongdong Feng, Shaozeng Sun. “The Intrinsic Kinetics of Methane Steam Reforming over a Nickel-Based Catalyst in a Micro Fluidized Bed Reaction System.” International Journal of Hydrogen Energy, Dec. 2019. Accessed 23 Dec. 2019. [ 24 ] R.D. Doctor, J.C. Molburg, P. Thimmapuram, G.F. Berry, C.D. Livengood, R.A. Johnson. “Gasification Combined Cycle: Carbon Dioxide Recovery, Transport, and Disposal.” Www.osti.gov, 1 Sept. 1994, www.osti.gov/biblio/10190542 . Accessed 13 June 2024. [ 25 ] Young-Woo You, Dong-Geun Lee, Ki-Yong Yoon, Dong-Kyu Moon, Seong Man Kim, Chang-Ha Lee. “H2 PSA Purifier for CO Removal from Hydrogen Mixtures.” International Journal of Hydrogen Energy, vol. 37, no. 23, Dec. 2012, pp. 18175–18186, https://doi.org/10.1016/j.ijhydene.2012.09.044. Accessed 28 Oct. 2020. [ 26] 順億化工, https://www.sese.tw/product/P190727006430?category_sn=765 [ 27 ] Mohammed, Al-Breiki. “Comparative Cost Assessment of Sustainable Energy Carriers Produced from Natural Gas Accounting for Boil-off Gas and Social Cost of Carbon.” Energy Reports, vol. 6, 1 Nov. 2020, pp. 1897–1909, www.sciencedirect.com/science/article/pii/S2352484720312312, https://doi.org/10.1016/j.egyr.2020.07.013. [ 28 ] Seddon, Duncan. Gas Usage & Value : The Technology and Economics of Natural Gas Use in the Process Industries. Tulsa, Okla., Pennwell, 2006. [ 29 ] Chong Wei Ong, Jian-Xun Lin, Meng-Lin Tsai, Ka Sin Thoe, Cheng-Liang Chen. “Techno-Economic and Carbon Emission Analyses of a Methanol-Based International Renewable Energy Supply Chain.” International Journal of Hydrogen Energy, vol. 49, 1 Jan. 2024, pp. 1572–1585, https://doi.org/10.1016/j.ijhydene.2023.10.191. . Accessed 20 Jan. 2024 [ 30 ] Smith, Robin. Chemical Process Design and Integration. Chichester, West Sussex, United Kingdom, Wiley, 2005. [ 31 ] Made-in-China,https://yibangchem66760611.en.made-in-china.com/product/vJLRmVUPBgYx/China-Manufacturer-Supply-99-5-N-Propanol-CAS-71-23-8-Propyl-Alcohol.html [ 32 ] 帝一化工, https://shop.dechemical.com.tw/product?pid_for_show=4606 [ 33 ] Clean Cities and Communities Alternative Fuel Price Report, Aprill 2024, U.S. Department of Energy, https://afdc.energy.gov/files/u/publication/alternative_fuel_price_report_april_2024.pdf [ 34 ] Feature: Logistical woes and high pump prices stall California H2 market development, Jan 2024, S&P Global, https://www.spglobal.com/commodityinsights/en/market-insights/latest-news/energy-transition/012324-logistical-woes-and-high-pump-prices-stall-california-h2-market-development [ 35 ] Furat Dawood, Martin Anda, G.M. Shafiullah. “Hydrogen Production for Energy: An Overview.” International Journal of Hydrogen Energy, vol. 45, no. 7, Feb. 2020, pp. 3847–3869, https://doi.org/10.1016/j.ijhydene.2019.12.059. [ 36 ] Emissions & Generation Resource Integrated Database (eGRID), eGRID2022, United States Environmental Protection Agency (EPA), 2020 https://www.epa.gov/egrid/power-profiler#/ [ 37 ] Bor-Yih Yu, Pei-Jhen Wu, Chang-Che Tsai, Shiang-Tai Lin. “Evaluating the Direct CO2 to Diethyl Carbonate (DEC) Process: Rigorous Simulation, Techno-Economical and Environmental Evaluation.” Journal of CO2 Utilization, vol. 41, Oct. 2020, p. 101254, https://doi.org/10.1016/j.jcou.2020.101254. [ 38 ] Chong Wei Ong, Nairen Chang, Meng-Lin Tsai, Cheng-Liang Chen. “Decarbonizing the Energy Supply Chain: Ammonia as an Energy Carrier for Renewable Power Systems.” Fuel, vol. 360, 1 Mar. 2024, pp. 130627–130627, https://doi.org/10.1016/j.fuel.2023.130627. Accessed 6 Mar. 2024. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/94379 | - |
| dc.description.abstract | 當前全球暖化和能源危機嚴峻,迫切需要從化石燃料轉向可再生能源,以減少碳排放並確保可持續的能源安全。本研究探討乙醇作為能源載體及燃料的雙重角色,在碳捕獲和利用(CCU)概念下,對提升能源存儲和運輸效率具有重要意義。研究重點在於澳大利亞(出口國)與台灣(進口國)之間的假想能源供應鏈。在出口國,利用可再生電力進行電解製氫,隨後將氫轉化為乙醇。乙醇運送到台灣後,進行ethanol reforming生成適用能源應用的高純度氫氣。Ethanol synthesis 和ethanol reforming過程均通過Aspen Plus軟件進行模擬和優化,以確保最大化效率和成本效益。經濟分析涵蓋整個供應鏈,包括電解製氫、ethanol synthesis、ethanol reforming和運輸成本。研究顯示,reformed hydrogen的單位成本為7.49 $/kg-H2,高於electrolyzed的2.70 $/kg-H2,主要原因是ethanol synthesis和ethanol reforming中額外的處理步驟和能量需求。整個供應鏈的氫氣轉換效率為63.5%。在假設每公斤氫的價格為10美元的情況下,預計回收期為3年。總結來說,本研究表明,在可再生能源供應鏈中,乙醇作為技術上可行且經濟上可行的能源載體具有重要潛力。其能夠與CCU策略無縫集成,實現高純度氫氣的生產,進一步推動全球能源轉型和減少碳排的倡議。 | zh_TW |
| dc.description.abstract | Global warming and the energy crisis present critical challenges in today’s world, necessitating a rapid transition from fossil fuels to renewable energy sources to mitigate carbon emissions and ensure sustainable energy security. The research focuses on a hypothetical energy supply chain between Australia (exporter) and Taiwan (importer). In the exporter, renewable electricity is used to produce hydrogen, which is then converted into ethanol. Upon transport to Taiwan, ethanol undergoes reforming to generate high-purity hydrogen for various industrial and energy applications. The processes of ethanol synthesis and reforming are simulated by Aspen Plus. Economic analysis covers the entire supply chain, including costs associated with electrolysis, ethanol synthesis, ethanol reforming, and transportation. The study reveals that the unit cost of reformed hydrogen is 7.49 $/kg-H2, which is higher than that of electrolyzed hydrogen (2.70 $/kg-H2), primarily due to additional processing steps and energy requirements in ethanol conversion and reforming. Furthermore, the overall hydrogen conversion across the supply chain is 63.5%. A payback period of 3 years is estimated at a hydrogen price of 10 $/kg. In conclusion, this study demonstrates that ethanol holds promise as a technically viable and economically feasible energy carrier within the renewable energy supply chain. Its ability to integrate with CCU strategies and achieve high hydrogen purity underscores its potential role in advancing global energy transitions and contributing to carbon reduction initiatives. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-08-15T17:10:15Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2024-08-15T17:10:15Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 謝辭 I
中文摘要 II ABSTRACT III CONTENT IV LIST OF FIGURES VI LIST OF TABLES IX Chapter 1 Introduction 1 Chapter 2 Models & Assumption 4 2.1 Thermodynamic model 4 2.2 Kinetic model 5 2.2.1 reverse Water-Gas-Shift reaction (rWGS reaction) 5 2.2.2 EtOH synthesis reaction 7 2.2.3 Methane steam reforming reaction (MSR reaction) 9 2.2.4 EtOH reforming reaction 10 2.2.5 MEA absorption reaction 13 2.3 Assumption 14 Chapter 3 Process Description 14 3.1 Ethanol synthesis 14 3.1.1 CAMERE process 16 3.1.2 Process design – Design 1 16 3.1.3 Process design – Design 2 19 3.1.4 Heat integration 23 3.2 Ethanol reforming 26 3.2.1 Reaction part 26 3.2.2 Separation part 27 3.2.3 Purification part 29 3.2.4 Heat integration 32 Chapter 4 Process Simulation Results 37 4.1 Sensitivity analysis 37 4.1.1 Sensitivity of R-ETOH in ethanol synthesis 37 4.1.2 Sensitivity of R-R in ethanol reforming 38 4.1.3 Sensitivity of separation part in ethanol reforming 40 4.2 Economic analysis 42 4.2.1 Ethanol synthesis 43 4.2.2 Transportation 47 4.2.3 Ethanol reforming 48 4.2.4 The cost of whole process 57 4.2.5 Impact of propanol profit & electrolysis efficiency 61 4.2.6 Payback period 63 4.3 Carbon emissions 66 4.4 Comparison of energy carriers 70 Chapter 5 Conclusion 72 Reference 74 | - |
| dc.language.iso | en | - |
| dc.subject | 乙醇合成 | zh_TW |
| dc.subject | 乙醇轉化 | zh_TW |
| dc.subject | 二氧化碳再利用 | zh_TW |
| dc.subject | Energy supply chain | en |
| dc.subject | Ethanol synthesis | en |
| dc.subject | Ethanol reforming | en |
| dc.subject | Carbon dioxide hydrogenation | en |
| dc.title | 乙醇之合成與轉化: 在可再生能源供應鏈中的作用 | zh_TW |
| dc.title | Ethanol Synthesis and Reforming: Its Role in Renewable Energy Supply Chains | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 112-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 謝依芸;余柏毅;李瑞元 | zh_TW |
| dc.contributor.oralexamcommittee | I-Yun HSIEH;Bor-Yih Yu;Jui-Yuan Lee | en |
| dc.subject.keyword | 乙醇合成,乙醇轉化,二氧化碳再利用, | zh_TW |
| dc.subject.keyword | Ethanol synthesis,Ethanol reforming,Carbon dioxide hydrogenation,Energy supply chain, | en |
| dc.relation.page | 83 | - |
| dc.identifier.doi | 10.6342/NTU202402994 | - |
| dc.rights.note | 同意授權(限校園內公開) | - |
| dc.date.accepted | 2024-08-07 | - |
| dc.contributor.author-college | 工學院 | - |
| dc.contributor.author-dept | 化學工程學系 | - |
| Appears in Collections: | 化學工程學系 | |
Files in This Item:
| File | Size | Format | |
|---|---|---|---|
| ntu-112-2.pdf Access limited in NTU ip range | 8.52 MB | Adobe PDF |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.
