Please use this identifier to cite or link to this item:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/94373
Full metadata record
???org.dspace.app.webui.jsptag.ItemTag.dcfield??? | Value | Language |
---|---|---|
dc.contributor.advisor | 林裕彬 | zh_TW |
dc.contributor.advisor | Yu-Pin Lin | en |
dc.contributor.author | Mai Ei Ngwe Zin | zh_TW |
dc.contributor.author | Mai Ei Ngwe Zin | en |
dc.date.accessioned | 2024-08-15T17:08:04Z | - |
dc.date.available | 2024-08-16 | - |
dc.date.copyright | 2024-08-15 | - |
dc.date.issued | 2024 | - |
dc.date.submitted | 2024-08-06 | - |
dc.identifier.citation | 1. Agricultural Extension Division Annual Report 2012-13, Department of Agriculture, Myanmar.
2. Ali, S., Makanda, T. A., Umair, M., & Ni, J. (2023). MaxEnt model strategies to studying current and future potential land suitability dynamics of wheat, soybean and rice cultivation under climatic change scenarios in East Asia. Plos one, 18(12), e0296182. 3. Allouche, O., Tsoar, A., & Kadmon, R. (2006). Assessing the accuracy of species distribution models: prevalence, kappa and the true skill statistic (TSS). Journal of 4. 4. Applied Ecology, 43(6), 1223-1232. 4. An, Lalit, & Michael. (2020). Modelling the potential impacts of climate change on rice cultivation in Mekong Delta, Vietnam. https://www.mdpi.com/2071-1050/12/22/9608 5. Anders, & Jacob. (2013). Enhanced future variability during India’s rainy season. https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1002/grl.50583 6. Anyu, Ran, Jing’ai, Yuan, & Fenggui. (2021). Prediction of future natural suitable areas for rice under representative concentration pathways (RCPs). https://www.mdpi.com/2071-1050/13/3/1580 7. Araújo, M. B., Pearson, R. G., Thuiller, W., & Erhard, M. (2005). Validation of species–climate impact models under climate change. Global Change Biology, 11(9), 1504-1513. 8. Basuchaudhuri, P. (2024). Submerged Rice: Morphological, Molecular and Genetic Analyses. CRC Press. 9. Beck, J. (2010). Predicting the impact of climate change on agricultural systems. Journal of Agricultural Science, 148(2), 185-195. 10. Bhattarai, B., Maharjan, K. L., & Sainju, M. M. (2021). Adapting to climate change in high-altitude farming: A case study of agricultural practices in Nepal. Climate Risk 11. Management, 32, 100281. 11.Chen, C., et al. (2021). Impacts of temperature variability on rice production in Southeast Asia under climate change scenarios. Agricultural and Forest Meteorology, 297, 108287. 12. Climate, Environmental Degradation and Disaster Risk in Myanmar: a MIMU Analytical Brief (May 2022) 13. Decadal changes in the rice-cropping system in the Ayeyarwady Delta using a large archive of satellite imagery from 1981 to 2020. (2021). https://link.springer.com/article/10.1007/s10333-021-00857-4 14. Elith, J., Graham, C. H., Anderson, R. P., Dudík, M., Ferrier, S., Guisan, A., ... & Zimmermann, N. E. (2006). Novel methods improve prediction of species’ distributions from occurrence data. Ecography, 29(2), 129-151. 15. Elith, J., Phillips, S. J., Hastie, T., Dudík, M., Chee, Y. E., & Yates, C. J. (2011). A statistical explanation of MaxEnt for ecologists. Diversity and Distributions, 17(1), 43-57. 16. Elith, J., Phillips, S. J., Hastie, T., Dudík, M., Chee, Y. E., & Yates, C. J. (2011). A statistical explanation of MaxEnt for ecologists. Diversity and Distributions, 17(1), 43-57. 17. FAOSTAT. (Accessed 2024). Food and Agriculture Organization of the United Nations. Retrieved from http://www.fao.org/faostat/ 18. Fawcett, T. (2006). "An introduction to ROC analysis." Pattern Recognition Letters, 27(8), 861-874. doi:10.1016/j.patrec.2005.10.010. 19. Fielding, A. H., & Bell, J. F. (1997). A review of methods for the assessment of prediction errors in conservation presence/absence models. Environmental Conservation, 24(1), 38-49. 20. Global Rice Science Partnership (GRiSP). (2013). Strategic research agenda for rice-based production systems. Retrieved from http://ricecrp.org 21. Goswami, S., et al. (2017). Climate change impact assessment on paddy cultivation in the Brahmaputra valley using DSSAT model. Paddy and Water Environment, 15(3), 511-524. 22. Government of the Republic of the Union of Myanmar, Ministry of Planning and Finance. (2013-2014 to 2021-2022). Myanmar Agricultural Statistics. Retrieved from http://14.139.185.57:8080/jspui/handle/123456789/6539 23. Herridge, D. F., Win, M. M., Nwe, K. M. M., Kyu, K. L., Win, S. S., Shwe, T., Min, Y. Y., Denton, M. D., & Cornish, P. S. (2019). The cropping systems of the Central Dry Zone of Myanmar: Productivity constraints and possible solutions. Agricultural Systems, 169, 31–40. https://doi.org/10.1016/j.agsy.2018.12.001 24. Herridge, D. F., Win, M. M., Nwe, K. M. M., Kyu, K. L., Win, S. S., Shwe, T., Min, Y. Y., Denton, M. D., & Cornish, P. S. (2019). The cropping systems of the Central Dry Zone of Myanmar: Productivity constraints and possible solutions. Agricultural Systems, 169, 31–40. https://doi.org/10.1016/j.agsy.2018.12.001. 25. Hirzel, A. H., Helfer, V., & Metral, F. (2001). Assessing habitat-suitability models with a virtual species. Ecological Modelling, 145(2-3), 111-121. 26. HITTALMANI, S., HANAMAEDDY, B., Shashidhar, H. E., Girish, T. N., Grace, S., SELVI, A., & KUMAR, S. (2004). Impact of moisture stress at different reproductive stages of plant growth on grain yield parameters and marker assisted QTL pyramiding for root length in rice. Resilient Crops for Water Limited Environments, 263. 27. Hlaing, S. W., Win, K. K., Win, S. M., & Tun, T. T. (2020). Impact of climate change on rice yield and adaptation strategies in Myanmar. Agriculture and Food Security, 9(1), 1-12. https://doi.org/10.1186/s40066-020-00229-8 28. Intergovernmental Panel on Climate Change (IPCC). (2014). Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Core Writing Team, R.K. Pachauri and L.A. Meyer (eds.)]. IPCC, Geneva, Switzerland, 151 pp. 29. IPCC, 2021: Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [Masson-Delmotte, V., P. Zhai, A. Pirani, S. L. Connors, C. Péan, S. Berger, N. Caud, Y. Chen, L. Goldfarb, M. I. Gomis, M. Huang, K. Leitzell, E. Lonnoy, J. B. R. Matthews, T. K. Maycock, T. Waterfield, O. Yelekc and F. Yu (eds.)]. Cambridge University Press. 30. Jinhua, Y., Ojara, M., Lukorito, C., & Kerandi, N. M. Assessing changes in climate suitability and yields of Maize and Sorghum crops over Kenya in the 21st century. Jones, J. W., Hoogenboom, G., Porter, C. H., Boote, K. J., Batchelor, W. D., Hunt, L. A., ... & Ritchie, J. T. (2003). The DSSAT cropping system model. European Journal of Agronomy, 18(3-4), 235-265. 31. Khan, M. I., Zhu, X., Jiang, X., Saddique, Q., Saifullah, M., Niaz, Y., & Sajid, M. (2021). Projection of future drought characteristics under multiple drought indices. Water, 13(9), 1238. 32. Khan, M. I., Zhu, X., Jiang, X., Saddique, Q., Saifullah, M., Niaz, Y., & Sajid, M. (2021). Projection of future drought characteristics under multiple drought indices. Water, 13(9), 1238. 33. Kobata, T., & Uemuki, N. (2004). High temperatures during the grain-filling period increase the occurrence of milky white kernels in rice. Agronomy Journal, 96(1), 151-157. 34. Kohavi, R. (1995). A study of cross-validation and bootstrap for accuracy estimation and model selection. In International Joint Conference on Artificial Intelligence (Vol. 14, No. 2, pp. 1137-1145). 35. Kraas, F., Kabisch, S., & Alff, H. (Eds.). (2017). Urban transformation: Understanding city development and urban planning. Cham: Springer. Kumar, V., et al. (2020). Assessing climate change impacts on rice production in South Asia using DSSAT model. Agricultural Water Management, 240, 106273. 36. L., G., D., L., & P. (2022). Predicting potential suitable planting area of rice in China under future climate change scenarios using the MaxEnt model. https://zgnyqx.ieda.org.cn/EN/10.3969/j.issn.1000-6362.2022.04.002 37. Lal, R. (2013). "Climate-resilient agriculture and food security." Nature Climate Change, 3(9), 764-765.AP RICE and AREA ESTIMATES OF RICE. (2022). https://servir.adpc.net/sites/default/files/public/publications/attachments/ADPC%20Preliminary%20Report%20-%20Monsoon%20Rice%20%20September%202022%20--%20Final3.pdf. 38. Li, L., et al. (2018). Assessing climate change impacts on maize yield and yield components in Northeast China using the decision support system for agrotechnology transfer model. Agricultural Systems, 165, 240-251. 39. Li, X., Wu, K., Hao, S., Yue, Z., Ran, Z., & Ma, J. (2023). Mapping cropland suitability in China using optimized MaxEnt model. Field Crops Research, 302, 109064. Li, Y., Ye, W., Wang, M., & Yan, X. (2009). "Climate change and drought: a risk assessment of crop-yield impacts." Climate Research, 39(1), 31-46. 40. Lin, Y., Wang, H., Chen, Y., Tan, J., Hong, J., Yan, S., ... & Fang, W. (2023). Modelling distributions of Asian and African rice based on MaxEnt. Sustainability, 15(3), 2765. 41. Liu, X., et al. (2020). Impacts of soil and climate change factors on agricultural productivity in China: A review. Journal of Cleaner Production, 267, 121926. 42. MacKill, D. J., Moldenhauer, K. A. K., & Rutger, J. N. (1996). Rice. In G. A. Ritchie, J. J. Hanway, & H. E. Thompson (Eds.), Resources in agriculture (Vol. 1, pp. 153-178). Madison, WI: American Society of Agronomy. 43. Martinez-Meyer, E. (2006). Climate change and the potential distribution of an invasive species: The case of the Asian longhorned beetle. Ecological Applications, 16(4), 1447-1455. 44. Matsuda, M. (2009). Dynamics of rice production development in Myanmar: Growth center, technological changes, and driving forces. Tropical Agriculture and Development, 53(1), 14–27. 45. Merow, C., Smith, M. J., & Silander, J. A. (2013). A practical guide to MaxEnt for modeling species’ distributions: what it does, and why inputs and settings matter. Ecography, 36(10), 1058-1069. Ministry of Agriculture, Livestock and Irrigation (MOALI). (2012-2013). Annual report. Myanmar. 46. Myint, W. W., Win, S. M., Maung, A. L., & Aung, Z. (2019). Climate change and adaptation strategies in the Ayeyarwady Delta of Myanmar. Environmental Development, 31, 51-61. https://doi.org/10.1016/j.envdev.2019.06.005. 47. Myo, H. T., & Zin, W. W. Forecasting Climate Change Scenarios in Central Dry Zone of Myanmar. 48. Narayanan, H. (2015). Influence of composting methods on compost maturity and quality (Doctoral dissertation, Department of Agronomy, College of Horticulture, Vellanikkara). 49. Nelson, G. C., Rosegrant, M. W., Koo, J., Robertson, R., Sulser, T., Zhu, T., ... & Lee, D. (2009). "Climate change: Impact on agriculture and costs of adaptation." International Food Policy Research Institute (IFPRI). 50. Nwe, T., Zomer, R. J., & Corlett, R. T. (2020). Projected impacts of climate change on the protected areas of Myanmar. Climate, 8(9), 99. 51. Oo, H. T., Zin, W. W., & Kyi, C. C. T. (2019). Assessment of future climate change projections using multiple global climate models. Civil Engineering Journal, 5(10), 2152-2166. 52. Paul, Ei, Win, Cho, Nicola, & Myanmar: (2023). Spatial and temporal assessment of human-water interactions at the Inle Lake, Myanmar: a socio-hydrological DPSIR analysis. https://link.springer.com/article/10.1007/s10661-022-10730-4 53. Peterson, A. T. (2001). Predicting species' geographic distributions based on ecological niche modeling. Ecological Modelling, 140(1-2), 231-246. Peterson, A. T., Papeş, M., & Eaton, M. (2007). Transferability and model evaluation in ecological niche modeling: a comparison of GARP and Maxent. Ecography, 30(4), 550-560. 54. Phillips, S. J., Anderson, R. P., & Schapire, R. E. (2006). "Maximum entropy modeling of species geographic distributions." Ecological Modelling, 190(3-4), 231-259. doi:10.1016/j.ecolmodel.2005.03.026. 55.Pradhan, A., Chandrakar, T., Dixit, A., & Kerketta, A. K. (2020). Brown manuring effects on soil and yield of rice (Oryza sativa) under rainfed midland farming system. The Indian Journal of Agricultural Sciences, 90(9), 1810-1812. 56. Rajurkar, A. B., Muthukumar, C., Bharathi, A., Thomas, H. B., & Babu, R. C. (2019). Saturation mapping of consistent QTLs for yield and days to flowering under drought using locally adapted landrace in rice (Oryza sativa L.). NJAS-Wageningen Journal of Life Sciences, 88, 66-75. 57. Shrestha, R. P., Raut, N., Swe, L. M. M., & Tieng, T. (2018). Climate change adaptation strategies in agriculture: Cases from Southeast Asia. Sustainable Agriculture Research, 7(3), 39-51. 58. Smith, J., Johnson, M., Brown, A., & Lee, C. (2005). Effects of seasonal variations on rice tillering duration. Journal of Crop Science, 10(3), 123-135. 59. Smith, P., et al. (2019). Soil and land-use change: What are the impacts on the carbon balance? Global Environmental Change, 29, 147-155. Sridevi, V., & Chellamuthu, V. (2015). Impact of weather on rice – A review. International Journal of Agricultural Research, 1(9), 825-831. 60. Su, P., Zhang, A., Wang, R., Wang, J. A., Gao, Y., & Liu, F. (2021). Prediction of future natural suitable areas for rice under representative concentration pathways (RCPs). Sustainability, 13(3), 1580. 61. Tao, F., & Zhang, Z. (2010). "Adaptation of maize production to climate change in North China Plain: Quantify the relative contributions of adaptation options." European Journal of Agronomy, 33(2), 103-116. 62. Torbick, N., Chowdhury, D., Salas, W., & Qi, J. (2017). Monitoring rice agriculture across myanmar using time series Sentinel-1 assisted by Landsat-8 and PALSAR-2. Remote 63. Sensing, 9(2), 119. 64. Torbick, N., Chowdhury, D., Salas, W., & Qi, J. (2017). Monitoring rice agriculture across myanmar using time series Sentinel-1 assisted by Landsat-8 and PALSAR-2. Remote 65. Sensing, 9(2), 119. 65. Truong An, D. (2020). Shifting crop planting calendar as a climate change adaptation solution for rice cultivation region in the Long Xuyen Quadrilateral of Vietnam. Chilean journal of agricultural research, 80(4), 468-477. 66. United Nations Office for Disaster Risk Reduction. “Disaster Risk Reduction in Myanmar: Status Report 2020.” 2020. Bangkok, Thailand. 67. Vasseur, D. A., DeLong, J. P., Gilbert, B., Greig, H. S., Harley, C. D. G., McCann, K. 68. S., Savage, V., Tunney, T. D., & O'Connor, M. I. (2014). Increased temperature variation poses a greater risk to species than climate warming. Proceedings of the Royal Society B: Biological Sciences, 281(1785), 20132612. https://doi.org/10.1098/rspb.2013.2612 69. Wang, J., Yang, J., & Zhang, J. (2016). Adaptation of crop varieties and management practices to changing climate conditions on the Yunnan-Guizhou Plateau. Agricultural and Forest Meteorology, 220, 24-35. 70. Win, T. M., Hur, S. O., & Sonn, Y. K. (2023). On the Classification Characteristics of Soils in Myanmar. Han-gug Gugje Nong-eob Gaebal Hag-hoeji/Korean Journal of International Agriculture, 35(4), 338–350. https://doi.org/10.12719/ksia.2023.35.4.338 71. Win, Z. M., Kyaw, T. M., Tun, Z. M., Win, K. K., & Htay, S. N. (2017). Assessment of rice vulnerability due to climate change in Myanmar. Environmental Earth Sciences, 76(5), 1-13. https://doi.org/10.1007/s12665-017-6496-0 72. Yu, X., Tao, X., Liao, J., Liu, S., Xu, L., Yuan, S., ... & Peng, S. (2022). Predicting potential cultivation region and paddy area for ratoon rice production in China using Maxent model. Field Crops Research, 275, 108372. | - |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/94373 | - |
dc.description.abstract | 這項研究深入探討了氣候變遷對緬甸稻米適宜性和產量的影響,採用了代表性濃度路徑(Representative Concentration Pathways, RCPs)2.6和8.5。研究利用生態位模型(MaxEnt軟體)評估了緬甸四個農業氣候區域在三個未來時期(2024-2050、2051-2076、2077-2099)的稻米適宜性,結果顯示在不同氣候情境下,稻米種植潛力存在顯著的區域變異。在RCP 2.6的情境下,適度的升溫和穩定的降水模式普遍支持稻米種植的有利條件。相反,RCP 8.5預測近期將出現顯著升溫及極端高溫事件,降水模式則更為局部化,對中部和南部緬甸等地區造成影響。稻米適宜性分析指出,雖然RCP 2.6傾向於支持稻米種植,但RCP 8.5則帶來了挑戰與意外機遇。具體而言,三角洲地區的適宜性有所改善,中部乾燥區展現出一定的韌性,而沿海區域則需有效的水資源管理,丘陵和山區則面臨複雜的結果。 根據2018-2019年的歷史稻米生產數據,模擬適宜性分數以驗證預測,結果顯示三角洲地區、中部乾燥區的薩卡因省和丘陵區的掸邦預計將維持或超過過去的生產力,而沿海區域在RCP 8.5下的適宜性則顯得不太穩定。研究還針對每個農業氣候區域提出了調整稻米種植日曆的建議,以作為確保緬甸未來稻米生產力的戰略適應措施。 | zh_TW |
dc.description.abstract | This study examines the impact of climate change on rice suitability and yield in Myanmar using Representative Concentration Pathways (RCPs) 2.6 and 8.5. By applying the Ecological Niche Model through MaxEnt software, the research assessed rice suitability across four agro-climatic zones of Myanmar covering for three future periods (2024-2050, 2051-2076, 2077-2099). Findings reveal significant regional variations in rice cultivation potential under different climate scenarios. Under RCP 2.6, moderate warming and stable precipitation patterns generally support favorable conditions for rice cultivation. Conversely, RCP 8.5 forecasts substantial warming and increased extreme temperature events in the near term, with more localized precipitation patterns impacting regions such as Central and Southern Myanmar. The rice suitability analysis showed that while RCP 2.6 tends to support rice cultivation, RCP 8.5 presents both challenges and unexpected opportunities. Specifically, the Delta Region benefits from improved suitability, the Central Dry Zone shows resilience, the Coastal Zone requires effective water management, and the Hilly and Mountainous Regions face complex outcomes. Historic rice production data (2018-2019) were simulated according to the suitability scores to validate projections, indicating that while the Delta Region and Sagaing Division in the Central Dry Zone and Shan State in the Hilly Zone are expected to maintain or exceed past productivity, the Coastal Zone's suitability is less stable under RCP 8.5. The study also proposes adjusted rice crop calendars for each agro-climatic zone as a strategic adaptation measure to ensure future rice productivity in Myanmar. | en |
dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-08-15T17:08:04Z No. of bitstreams: 0 | en |
dc.description.provenance | Made available in DSpace on 2024-08-15T17:08:04Z (GMT). No. of bitstreams: 0 | en |
dc.description.tableofcontents | ACKNOWLEDGEMENT Page i
FOREWORD Page ii List of Figures Page v List of Tables Page vii List of Abbreviations Page viii 1. Introduction Page 1 1.1 Overview of Rice Cultivation in Myanmar Page 1 1.2. Climate change overview and its relevance to Myanmar’s agricultural sector Page 3 1.3 Problem Statement and Significance of the Study Page 5 1.5 Methodology Overview Page 8 2. Literature Review Page 11 2.1 Rice Cultivation and Climate Change in Myanmar Page 11 2.1.1 Overview of Rice Ecosystem in Myanmar Page 13 2.1.2 Rice Suitability Factor Page 16 2.2 Ecological Niche Model for Crop Suitability Page 18 2.2.1 Application of ENM in Sustainable Agriculture Page 20 2.3. Artificial Intelligence and Ecological Niche Modeling Page 21 2.3.1 Evaluation of MaxEnt Entropy Model Performance Page 26 3. Methodology and Methods Page 29 3.1 Research Area Page 29 3.2 Rice Suitability Analysis Page 29 3.3. Rice Yield Projection Page 37 3.4 Propose rice crop calendar as climate change adaptation Page 38 4. Results Page 39 4.1. Climate Projection for Myanmar (2024-2099) Page 40 4.1.1. Climate Change Projection of 2024 to 2099 under RCP 2.6 Page 41 4.1.2. Climate Change Projection of 2024 to 2099 under RCP 8.5 Page 47 4.2. Rice Suitability Analysis in The Context of Climate Change in Myanmar Page 53 4.2.1. Changes in Suitability under two Representative Emission Pathways Page 63 4.3 Rice Yield Projection Page 67 5. Discussions Page 70 5.1 Climate Change Analysis Under RCP 2.6 and 8.5 Page 70 5.1.1 Overall Temperature and Precipitation distribution trend under RCP 2.6 Page 70 5.1.2 Overall Temperature and Precipitation distribution trend under RCP 8.5 Page 74 5.1.3 Climate Change Projections under RCP 8.5 and RCP 2.6 Page 78 5.2 Rice Suitability Analysis in the Context of Climate Change Page 79 5.2.1 Variable Contributions to rice suitability in Myanmar under RCP 2.6 and RCP 8.5 Page 79 5.2.2 Rice Suitability Change Analysis for each Agroclimatic Zone Under RCP 2.6 and 8.5 Page 82 5.3 Rice Yield Projection Page 90 5.4 Recommendations for Rice Crop Calendar in Myanmar Page 92 6. Conclusion Page 95 References Page 98 | - |
dc.language.iso | en | - |
dc.title | 緬甸氣候變遷背景下的水稻適宜性分析 | zh_TW |
dc.title | Rice Suitability Analysis in the Context of Climate Change in Myanmar | en |
dc.type | Thesis | - |
dc.date.schoolyear | 112-2 | - |
dc.description.degree | 碩士 | - |
dc.contributor.oralexamcommittee | 王淑珍;王咏潔 | zh_TW |
dc.contributor.oralexamcommittee | Shu-Jen Wang ;Yung-Chieh Wang | en |
dc.subject.keyword | 氣候變遷,稻米適合度,生態位模型, | zh_TW |
dc.subject.keyword | Climate Change,Rice Suitability,Ecological Niche Model, | en |
dc.relation.page | 108 | - |
dc.identifier.doi | 10.6342/NTU202403402 | - |
dc.rights.note | 同意授權(全球公開) | - |
dc.date.accepted | 2024-08-08 | - |
dc.contributor.author-college | 共同教育中心 | - |
dc.contributor.author-dept | 全球農業科技與基因體科學碩士學位學程 | - |
Appears in Collections: | 全球農業科技與基因體科學碩士學位學程 |
Files in This Item:
File | Size | Format | |
---|---|---|---|
ntu-112-2.pdf | 5.92 MB | Adobe PDF | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.