Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生命科學院
  3. 生態學與演化生物學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/94369
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor何傳愷zh_TW
dc.contributor.advisorChuan-Kai Hoen
dc.contributor.author黃薰逸zh_TW
dc.contributor.authorXun-Yi Huangen
dc.date.accessioned2024-08-15T17:05:23Z-
dc.date.available2024-08-16-
dc.date.copyright2024-08-15-
dc.date.issued2024-
dc.date.submitted2024-08-05-
dc.identifier.citationAguirrebengoa, M., Müller, C., & González-Megías, A. (2021). Pre-dispersal seed predators boost seed production in a short-lived plant. Oecologia, 195(4), 971-982.

Baldock, K. C., Goddard, M. A., Hicks, D. M., Kunin, W. E., Mitschunas, N., Osgathorpe, L. M., ... & Memmott, J. (2015). Where is the UK's pollinator biodiversity? The importance of urban areas for flower-visiting insects. Proceedings of the Royal Society B: Biological Sciences, 282(1803), 20142849.

Barbosa, P., Hines, J., Kaplan, I., Martinson, H., Szczepaniec, A., & Szendrei, Z. (2009). Associational resistance and associational susceptibility: having right or wrong neighbors. Annual Review of Ecology, Evolution, and Systematics, 40, 1-20.

Barrett, S. C. (2002). The evolution of plant sexual diversity. Nature reviews genetics, 3(4), 274-284.

Bates, D., Mächler, M., Bolker, B., & Walker, S. (2015). Fitting Linear Mixed-Effects Models Using lme4. Journal of Statistical Software, 67(1), 1-48.

Bertin, R. I., & Gwisc, G. M. (2002). Floral sex ratios and gynomonoecy in Solidago (Asteraceae). Biological Journal of the Linnean Society, 77(3), 413-422.

Bezemer, T. M., Harvey, J. A., & Cronin, J. T. (2014). Response of native insect communities to invasive plants. Annual Review of Entomology, 59, 119-141.

Brown, B. J., Mitchell, R. J., & Graham, S. A. (2002). Competition for pollination between an invasive species (purple loosestrife) and a native congener. Ecology, 83(8), 2328-2336.

Broz, A. K., Broeckling, C. D., De-la-Peña, C., Lewis, M. R., Greene, E., Callaway, R. M., ... & Vivanco, J. M. (2010). Plant neighbor identity influences plant biochemistry and physiology related to defense. BMC Plant Biology, 10, 1-14.

Brückman, D., Yan, S., Heistermann, M., & Schaefer, H. M. (2019). Pollination and herbivory mediated through floral traits and floral abundance. AoB Plants, 11(5), plz056.

Cariveau, D., Irwin, R. E., Brody, A. K., Garcia‐Mayeya, L. S., & Von Der Ohe, A. (2004). Direct and indirect effects of pollinators and seed predators to selection on plant and floral traits. Oikos, 104(1), 15-26.

Casimiro-Soriguer, I., Narbona, E., & Buide, M. L. (2016). Diversity and evolution of sexual strategies in silene: a review. Progress in Botany, 77, 357-377.

De Candolle, A. P. (1838). Prodromus systematis naturalis regni vegetabilis, 6, 521. Treuttel & Würtz.

Díaz-Guzmán, H., González, E. J., & Bonfil, C. (2022). Are the interactions between oaks and pre-dispersal seed predators retained in urban environments? An analysis of two quercus species in southern Mexico City. Diversity, 14(5), 351.

Dorin, A., Taylor, T., Burd, M., Garcia, J., Shrestha, M., & Dyer, A. G. (2021). Competition and pollen wars: simulations reveal the dynamics of competition mediated through heterospecific pollen transfer by non-flower constant insects. Theoretical Ecology, 14(2), 207-218.

Duffy, K. J., & Stout, J. C. (2011). Effects of conspecific and heterospecific floral density on the pollination of two related rewarding orchids. Plant Ecology, 212, 1397-1406.

Gathmann, A., & Tscharntke, T. (2002). Foraging ranges of solitary bees. Journal of Animal Ecology, 71(5), 757-764.

Ghazoul, J. (2006). Floral diversity and the facilitation of pollination. Journal of Ecology, 94(2), 295-304.

Gianella, M., Bradford, K. J., & Guzzon, F. (2021). Ecological, (epi)genetic and physiological aspects of bet-hedging in angiosperms. Plant Reproduction, 34, 21-36.

Hegland, S. J., Grytnes, J. A., & Totland, Ø. (2009). The relative importance of positive and negative interactions for pollinator attraction in a plant community. Ecological Research, 24, 929-936.

Honnay, O., & Jacquemyn, H. (2010). Clonal plants: beyond the patterns—ecological and evolutionary dynamics of asexual reproduction. Evolutionary Ecology, 24, 1393-1397.

Hubbell, S. P. (1980). Seed predation and the coexistence of tree species in tropical forests. Oikos, 35(2), 214-229.

Lázaro, A., Lundgren, R., & Totland, Ø. (2009). Co‐flowering neighbors influence the diversity and identity of pollinator groups visiting plant species. Oikos, 118(5), 691-702.

Lefcheck, J. S. (2016). piecewiseSEM: Piecewise structural equation modeling in R for ecology, evolution, and systematics. Methods in Ecology and Evolution, 7(5), 573-579.

Lewis, O. T., & Gripenberg, S. (2008). Insect seed predators and environmental change. Journal of Applied Ecology, 45(6), 1593-1599.

Mamut, J., Cheng, J., Tan, D., Baskin, C. C., & Baskin, J. M. (2022). Effect of Hermaphrodite–Gynomonoecious Sexual System and Pollination Mode on Fitness of Early Life History Stages of Offspring in a Cold Desert Perennial Ephemeral. Diversity, 14(4), 268.

Mani, M. S., & Saravanan, J. M. (1999). Pollination ecology and evolution in Compositae (Asteraceae). Science Publishers.

Marks, M. K., & Akosim, C. (1984). Achene dimorphism and germination in three composite weeds. Tropical Agriculture, 61(1), 69-73.

Måsviken, J., Dalén, L., Norén, K., & Dalerum, F. (2023). The relative importance of abiotic and biotic environmental conditions for taxonomic, phylogenetic, and functional diversity of spiders across spatial scales. Oecologia, 202(2), 261-273.

Medabalimi, M. R., Aluri, J. S. R., & Kunuku, V. R. (2017). Pump mechanism, secondary pollen presentation, psychophily and anemochory in Emilia sonchifolia (L.) DC. (Asteraceae). Journal of BioScience & Biotechnology, 6(2), 129-137.

Milne-Redhead, E. (1950). Emilia praetermissa Milne-Redhead. Kew Bulletin, 5(3), 375.

Moeller, D. A. (2004). Facilitative interactions among plants via shared pollinators. Ecology, 85(12), 3289-3301.

Otway, S. J., Hector, A., & Lawton, J. H. (2005). Resource dilution effects on specialist insect herbivores in a grassland biodiversity experiment. Journal of Animal Ecology, 74(2), 234-240.

Pan, Y., Hersperger, A. M., Kienast, F., Liao, Z., Ge, G., & Nobis, M. P. (2022). Spatial and temporal scales of landscape structure affect the biodiversity-landscape relationship across ecologically distinct species groups. Landscape Ecology, 37(9), 2311-2325.

Pannell, J. R. (2018). Transitions between combined and separate sexes in flowering plants. Transitions Between Sexual Systems, 2018, 81-98.

Porcher, E., & Lande, R. (2016). Inbreeding depression under mixed outcrossing, self-fertilization and sib-mating. BMC Evolutionary Biology, 16(1), 1-14.

R Core Team. (2018). R: A language and environment for statistical computing. R Foundation for Statistical Computing. https://www.R-project.org/

Rand, T. A. (1999). Effects of environmental context on the susceptibility of Atriplex patula to attack by herbivorous beetles. Oecologia, 121, 39-46.

Silva, J. L. S., de Oliveira, M. T. P., Cruz-Neto, O., Tabarelli, M., & Lopes, A. V. (2021). Plant–pollinator interactions in urban ecosystems worldwide: A comprehensive review including research funding and policy actions. Ambio, 50(4), 884-900.

Underwood, N., Inouye, B. D., & Hambäck, P. A. (2014). A conceptual framework for associational effects: when do neighbors matter and how would we know? The Quarterly Review of Biology, 89(1), 1-19.

Valenta, K., Nevo, O., Martel, C., & Chapman, C. A. (2017). Plant attractants: integrating insights from pollination and seed dispersal ecology. Evolutionary Ecology, 31, 249-267.

Wang, J., & Wang, J. (2018). Emerging natural hybrid between invasive species and native congener of Emilia (Asteraceae) found in northern Taiwan. Phytotaxa, 382(2), 204-212.

Wood, S. N., & Scheipl, F. (2021). gamm4: Generalized Additive Mixed Models Using 'mgcv' and 'lme4' (Version 0.2-6) [R package]. https://cran.r-project.org/web/packages/gamm4/gamm4.pdf

Xian, G., Homer, C., Bunde, B., Danielson, P., Dewitz, J., Fry, J., & Pu, R. (2012). Quantifying urban land cover change between 2001 and 2006 in the Gulf of Mexico region. Geocarto International, 27(6), 479-497.

Xiao, Y., Li, X., Cao, Y., & Dong, M. (2016). The diverse effects of habitat fragmentation on plant–pollinator interactions. Plant Ecology, 217, 857-868.

Xu, Y., Shen, Z., Li, D., & Guo, Q. (2015). Pre-dispersal seed predation in a species-rich Forest Community: patterns and the interplay with determinants. PLoS ONE, 10(11), e0143040.

Yampolsky C, Yampolsky H (1922). Distribution of sex forms in the phanerogamic flora. Bibliotheca Genetica, 3, 1–62.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/94369-
dc.description.abstract植物發展出多種性別分化系統利用不同繁殖策略適應環境變異。雌全同株的性別分化系統,提供植物更多繁殖策略上的彈性,因應環境中各種生態因子的變化。雌全同株的植物能夠在同個花序中產生兩性花(雌雄同花)與雌性花,雌性花的比例影響該植物適應環境變化的能力。此研究旨在了解在環境變遷的過程,是否會對雌全同株的紫背草屬(Emilia)植物,其雌性花的比例產生影響。都市化已被證實對生態系統造成諸多影響,包括對生物相組成的改變。生物相的組成亦會受到生物間交互作用的影響。本研究欲探討在大尺度都市化進程,與小尺度鄰近物種組成的影響下,是否會對動植物關係中種子傳播前的種子植食者與授粉者的生物相造成改變,因應環境壓力的變化紫背草屬植物雌性花比例是否會間接地受到影響。本研究在臺北市內選取13個樣點,並對其地景結構進行量化,以不透水面積的佔比作為大尺度都市化的指標,並在每個樣點內利用樣框量化小尺度植物的組成,進行成熟花序的取樣與授粉者調查。本研究使用臺灣原生種紫背草 (E. sonchifolia) 和外來種粉黃纓絨花 (E. praetermissa) 作為研究物種檢驗上述內容。我們的結果支持雌全同株的紫背草屬植物,其雌性花比例有所變化以適應環境,且外來種的粉黃纓絨花相較於原生種紫背草,雌性花的佔比較高。我們發現小尺度植物組成差異會對雌性花的比例與生物相造成改變,但大尺度地景結構的影響並不顯著。異種鄰近植物的存在提高雌性花的佔比,但隨著異種植物花序密度的增加,雌性花的比例會隨之下降,顯示雌全同株植物採取分擔風險(bet-hedging)的繁殖策略。異種鄰近植物的存在提高種子傳播前種子被捕食的情形,且授粉者密度與種子傳播前的植食者數量存在顯著正相關,表示兩者在生態系統中可能受到相同的因子影響,但該因子未被納入我們研究系統。zh_TW
dc.description.abstractPlants have developed various sexual system to adapt to environmental variations using different reproductive strategies. The gynomonoecy is a plant sexual system providing plants with greater flexibility in reproductive strategies to response to changes in various ecological factors. Gynomonoecious plants can produce both bisexual flowers (hermaphroditic) and female flowers within the same capitulum, with the female floret ratio influencing the ability of plants to adapt to environmental stresses. This study aims to understand whether changes in ecological conditions affect the female floret ratio in gynomonoecious Emilia plant species. Urbanization has been proven to impact ecosystems in many ways, including changes in biota composition. The composition of biotic communities is also influenced by biotic interactions. This study explores whether large-scale urbanization and fine-scale neighboring plant composition affect the pre-dispersal seed predator and pollinator communities, and indirectly influence the female floret ratio in Emilia. We selected 13 study sites in Taipei City and quantified their landscape structures, using the impervious surface ratio as an indicator of large-scale urbanization gradient. We also quantified fine-scale plant neighborhood composition at each site using quadrats in which mature capitulum collection and pollinator surveys were carried out. This study used the native E. sonchifolia and the exotic E. praetermissa as study species. Our results support the hypothesis that the female floret ratio in gynomonoecious Emilia species varies in response to different ecological conditions. The exotic E. praetermissa had higher female floret ratio compared to the native E. sonchifolia. We found that fine-scale neighborhood composition affected both the female floret ratio and biotic factors, while the influence of large-scale urbanization was not significant. The presence of heterospecific neighbors increased the female floret ratio, but it decreased with increasing density of heterospecific capitulum, indicating a bet-hedging reproductive strategy by gynomonoecious plant species. The presence of heterospecific neighbors also increase pre-dispersal seed predation rate, and there was a significant positive correlation between pollinator density and pre-dispersal seed predators, suggesting that both may be influenced by the same factors not included in our study system.en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-08-15T17:05:23Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2024-08-15T17:05:23Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents中文摘要 i
ABSTRACT ii
CONTENTS iv
Chapter 1 Introduction 1
Chapter 2 Methods 5
2.1 Study system 5
2.2 Study sites 6
2.2.1 Urbanization effect 6
2.2.2 Neighbor effect 7
2.3 Mature capitulum collection 7
2.4 Pollinator survey 8
2.5 Data analysis 8
2.5.1 Biotic factors and female floret ratio 8
2.5.2 The urbanization effect 10
2.5.3 The heterospecific presence effect 10
2.5.4 Conspecific and heterospecific capitulum density effect 11
2.5.5 Piecewise structural equation model 11
Chapter 3 Results 13
3.1 Biotic factors and female floret ratio 13
3.1.1 Pre-dispersal seed predation 13
3.1.2 Pollinator density 13
3.2 Ecological factors and pre-dispersal seed predation rate 14
3.2.1 The urbanization effect 14
3.2.2 The heterospecific presence effect 15
3.2.3 Conspecific and heterospecific capitulum density effect 15
3.3 Ecological factors and pollinator density 16
3.3.1 The urbanization effect 16
3.3.2 The heterospecific presence effect 16
3.3.3 Conspecific and heterospecific capitulum density effect 17
3.4 Piecewise structural equation model 17
Chapter 4 Discussion 19
REFERENCE 24
FIGURES 30
TABLES 40
APPENDIX 47
-
dc.language.isoen-
dc.subject雌全同株zh_TW
dc.subject雌性花比例zh_TW
dc.subject都市化zh_TW
dc.subject鄰近植物組成zh_TW
dc.subject動植物交互關係zh_TW
dc.subjectNeighborhood compositionen
dc.subjectGynomonoecyen
dc.subjectFemale floret ratioen
dc.subjectplant-animal interactionen
dc.subjectUrbanizationen
dc.title都市化與鄰近植物對紫背草屬植物雌全同株繁殖特徵的影響zh_TW
dc.titleExploring the influence of urbanization and neighborhood composition on gynomonoecy in Emilia Speciesen
dc.typeThesis-
dc.date.schoolyear112-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee胡哲明;柯柏如;何熙誠;孫烜駿zh_TW
dc.contributor.oralexamcommitteeJer-Ming Hu;Po-Ju Ke;Hsi-Cheng Ho;Syuan-Jyun Sunen
dc.subject.keyword雌全同株,雌性花比例,都市化,鄰近植物組成,動植物交互關係,zh_TW
dc.subject.keywordGynomonoecy,Female floret ratio,Urbanization,Neighborhood composition,plant-animal interaction,en
dc.relation.page64-
dc.identifier.doi10.6342/NTU202403023-
dc.rights.note同意授權(全球公開)-
dc.date.accepted2024-08-08-
dc.contributor.author-college生命科學院-
dc.contributor.author-dept生態學與演化生物學研究所-
顯示於系所單位:生態學與演化生物學研究所

文件中的檔案:
檔案 大小格式 
ntu-112-2.pdf4.02 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved