請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/94357
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 林宗岳 | zh_TW |
dc.contributor.advisor | Tsung-Yueh Lin | en |
dc.contributor.author | 陳信宏 | zh_TW |
dc.contributor.author | Shin-Hung Chen | en |
dc.date.accessioned | 2024-08-15T17:01:29Z | - |
dc.date.available | 2024-08-16 | - |
dc.date.copyright | 2024-08-15 | - |
dc.date.issued | 2024 | - |
dc.date.submitted | 2024-08-02 | - |
dc.identifier.citation | [1] Gomes, F. V. (1974). Scale Effects on Thrust Deduction Factor.
[2] 小寺山亘, & コテラヤマワタル. (1975). 船の推力減少率に関する基礎的研究. [3] Huang, T. T., Wang, H., Santelli, N., & Groves, N. C. (1976). Propeller/stern/boundary-layer interaction on axisymmetric bodies: theory and experiment (No. DTNSRDC-76-0113 R&D Rpt.). Naval Sea Systems Command. [4] Nowacki, H., & Sharma, S. D. (1971). Free-surface effects in hull propeller interaction. University of Michigan. [5] Lin, T. Y., & Kouh, J. S. (2015). On the scale effect of thrust deduction in a judicious self-propulsion procedure for a moderate-speed containership. Journal of Marine Science and Technology, 20, 373-391. [6] Carlton, J. (2018). Marine propellers and propulsion. Butterworth-Heinemann. [7] International Towing Tank Conference (2021). ITTC-Recommended Procedures and Guidelines 1978 ITTC Performance Prediction Method 7.5-02-03-01.4 [8] Choi, J. E., Kim, J. H., & Lee, H. G. (2011). Computational study of the scale effect on resistance and propulsion performance of VLCC. Journal of the Society of Naval Architects of Korea, 48(3), 222-232. [9] Castro, A. M., Carrica, P. M., & Stern, F. (2011). Full scale self-propulsion computations using discretized propeller for the KRISO container ship KCS. Computers & fluids, 51(1), 35-47. [10] Song, S., Demirel, Y. K., & Atlar, M. (2020). Penalty of hull and propeller fouling on ship self-propulsion performance. Applied Ocean Research, 94, 102006. [11] Ponkratov, D., & Zegos, C. (2015, June). Validation of ship scale CFD self-propulsion simulation by the direct comparison with sea trials results. In Proceedings of the Fourth International Symposium on Marine Propulsors. [12] Sezen, S., Delen, C., Dogrul, A., & Atlar, M. (2021). An investigation of scale effects on the self-propulsion characteristics of a submarine. Applied Ocean Research, 113, 102728. [13] Sun, W., Hu, Q., Hu, S., Su, J., Xu, J., Wei, J., & Huang, G. (2020). Numerical analysis of full-scale ship self-propulsion performance with direct comparison to statistical sea trail results. Journal of marine science and engineering, 8(1), 24. [14] Sun, S., Wang, C., Guo, C., Zhang, Y., Sun, C., & Liu, P. (2020). Numerical study of scale effect on the wake dynamics of a propeller. Ocean Engineering, 196, 106810. [15] Sasajima, H., Tanaka, I., & Suzuki, T. (1966). Wake distribution of full ships. Journal of Zosen Kiokai, 1966(120), 1-9. [16] Brard, R. and Aucher, M. (1969). Ship Resistance, Wake, Thrust Deduction and the Effect of Scale, ATMA Bulletin, 1969. [17] Aucher, M.(1973). Method of Predicting Ship Performance from Model Test Results, Paper presented to ITTC Performance Committee, 1973. [18] Dyne, G. (1977). On the Scale Effect on Wake and Thrust Deduction. 13th ITTC, Hamburg. [19] Bowden, B. S. and Davison (1975). Examination of the Wake Scale Effect for Single Screw Ships Using the NPL/BSRA Correlation Data. 14th ITTC, Ottawa. [20] Dinavahi, S. P. G., & Landweber, L. (1981). EFFECT OF BOUNDARY LAYER ON THRUST DEDUCTION. [21] Papakonstantinou, V. K., Passas, G. P., Trachanas, J. P., & Tzabiras, G. D. EXPERIMENTAL INVESTIGATION OF ROUGHNESS EFFECT ON THE RESISTANCE AND SELF-PROPULSION OF A SHIP MODEL DE Liarokapis, NTUA, Greece. [22] Song, S., Demirel, Y. K., & Atlar, M. (2020). Penalty of hull and propeller fouling on ship self-propulsion performance. Applied Ocean Research, 94, 102006. [23] Kan, S., Shiba, H., Tsuchida, K., & Yokoo, K. (1958). Effect of fouling of a ship’s hull and propeller upon propulsive performance. International Shipbuilding Progress, 5(41), 15-34. [24] Tokunaga, K., & Baba, E. (1982). Approximate calculation of ship frictional resistance increase due to surface roughness. Journal of the society of naval architects of Japan, 1982(152), 55-61. [25] Tadros, M., Ventura, M., & Guedes Soares, C. (2023). Effect of hull and propeller roughness during the assessment of ship fuel consumption. Journal of Marine Science and Engineering, 11(4), 784. [26] Bertram, V. (2012). Practical ship hydrodynamics. Elsevier. [27] Hasuike, N., Okazaki, M., Okazaki, A., & Fujiyama, K. (2017, June). Scale effects of marine propellers in POT and self propulsion test conditions. In Proceedings of the 5th International Symposium on Marine Propulsors, SMP (Vol. 17). [28] Li, D. Q., Lindell, P., & Werner, S. (2019). Transitional flow on model propellers and their influence on relative rotative efficiency. Journal of Marine Science and Engineering, 7(12), 427. [29] Van Lammeren, W. P. A., van Manen, J. V., & Oosterveld, M. W. C. (1969). The Wageningen B-screw series. [30] Finnes, T. (2015). High definition 3d printing–comparing sla and fdm printing technologies. The Journal of Undergraduate Research, 13(1), 3. [31] Barnitsas, M. M., Ray, D., & Kinley, P. (1981). KT, KQ and efficiency curves for the Wageningen B-series propellers. University of Michigan. [32] International Towing Tank Conference (2011). ITTC-Recommended Procedures and Guidelines Fresh Water and Seawater properties 7.5-02-01-03. [33] 廖健凱. (2016). 應用自航試驗系統推估能源效率設計指標之研究. 國立臺灣大學工程科學及海洋工程學系學位論文, 2016, 1-74. [34] Gibbings, J. C. (1959). On boundary-layer transition wires. [35] International Towing Tank Conference (2021). ITTC-Recommended Procedures and Guidelines Open Water Test 7.5-02-03-02.1 | - |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/94357 | - |
dc.description.abstract | 效率始終是船舶與螺槳設計中不可忽視的一環。透過模型尺度的試驗將螺槳與船體的流體動力現象拆解成數個環節,並透過對各式參數的修正,求得實尺寸船隻與螺槳搭配的綜合性能。依照國際船模拖曳水槽會議(International Towing Tank Conference, ITTC)的建議程序,實驗時的螺槳前進係數不同於實船,且推估過程中假設推減係數沒有尺度效應。然而前進係數不同導致的交互作用速度差異,可能使跡流係數被低估,且模船與實船之間前進係數與跡流係數皆存在差異,此差異可能對推減係數產生影響。本研究對一艘球艏油輪進行大範圍的變負荷試驗,涵蓋四組不同船速,探討三個推進因子之間的交互作用。實驗數據顯示螺槳推力與螺槳對船殼吸力之間的線性關係,且隨著前進係數的增加,跡流係數和推減係數均增加。扣除前進係數的貢獻後,跡流係數對推減係數的影響尚不明確,需要進一步研究。針對ITTC程序可能導致的推減係數和跡流係數低估,本研究提出將跡流係數與推減係數視為前進係數函數的推估方法,然而兩方法計算出的實船轉速與效率差異並不顯著。 | zh_TW |
dc.description.abstract | Efficiency has always been an integral part of ship and propeller design. Through model-scale experiments, researchers break down the fluid dynamic phenomena of propellers and hulls into various components, and through adjustments to various parameters, they determine the comprehensive performance of full-scale ships and propellers. Following the recommended procedures of the International Towing Tank Conference (ITTC), the advance coefficient of the propeller during experiments differs from that of the full-scale ship, and it is assumed during estimation that the thrust deduction coefficient has no scale effect. However, the difference in interaction velocity resulting from advance coefficients different may lead to an underestimation of the wake coefficient, and there are differences in advance coefficients and wake coefficients between model ships and full-scale ships, which may affect the thrust deduction coefficient. This study conducted large-scale load variation tests on a bulbous bow oil tanker, covering four different ship speeds, and explored the influence of three propulsive factors. The experimental data showed a linear relationship between propeller thrust and propeller-induced hull suction. As the propeller advance coefficient increases, both wake fraction and thrust deduction factor increase. After subtracting the contribution of the advance coefficient, the impact of wake fraction on the thrust deduction factor remains unclear and requires further study. This study proposes an estimation method that considers the wake fraction and thrust deduction factor as functions of the advance coefficient to address the potential underestimation of these factors in the ITTC procedures. However, the differences in the rotation rate and efficiency between the two methods are not significant. | en |
dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-08-15T17:01:29Z No. of bitstreams: 0 | en |
dc.description.provenance | Made available in DSpace on 2024-08-15T17:01:29Z (GMT). No. of bitstreams: 0 | en |
dc.description.tableofcontents | 口試委員會審定書 i
誌 謝 ii 中文摘要 iii ABSTRACT iv 第一章 緒論 1 1.1研究背景 1 1.2文獻回顧 1 1.2.1推減係數 2 1.2.2跡流係數 2 1.2.3前進係數 3 1.2.4推減係數的尺度效應 3 1.2.5螺槳的尺度效應 4 1.2.6船殼邊界層的尺度效應 4 1.2.7船殼粗糙度 5 1.2.8推進試驗預測船舶水動力性能 5 1.3研究目的 6 1.4本文架構 6 第二章 研究方法 8 2.1螺槳設計與製作 8 2.2螺槳單獨試驗 9 2.3阻力試驗 10 2.4推進試驗 11 2.5前進係數自變數法 14 第三章 實驗設定 16 3.1螺槳設計結果 16 3.2目標船型 16 3.3試驗水槽與拖車系統 16 3.4螺槳單獨試驗系統 16 3.5阻力試驗與推進試驗系統 17 第四章 實驗設備校正 18 4.1阻力量測設備 18 4.2螺槳動力儀 18 4.3伺服馬達、馬達控制器以及控制軟體 18 第五章 結果與討論 19 5.1試驗結果 19 5.2前進係數與跡流係數之關係 19 5.3前進係數與推減係數、吸力係數之關係 20 5.4跡流係數與推減係數、吸力係數之關係 20 5.5線性回歸分析 21 5.6 ITTC程序與前進係數自變數法之結果 22 第六章 結論與建議 23 6.1結論 23 6.2建議 23 附註 25 參考文獻 26 | - |
dc.language.iso | zh_TW | - |
dc.title | 以大範圍變負荷試驗探討推進因子間之交互作用 | zh_TW |
dc.title | Exploring the Interactions among Propulsion Factors through Broad-Range Load Variation Tests | en |
dc.type | Thesis | - |
dc.date.schoolyear | 112-2 | - |
dc.description.degree | 碩士 | - |
dc.contributor.oralexamcommittee | 辛敬業;郭真祥;蕭高明 | zh_TW |
dc.contributor.oralexamcommittee | Ching-Yeh Hsin;Jen-Shiang Kouh;Kao-Ming Hsiao | en |
dc.subject.keyword | 模型試驗,船舶推進,推進因子,變負荷,船殼-螺槳交互作用, | zh_TW |
dc.subject.keyword | Model Test,Ship Propulsion,Propulsive Factors,Load Variation,Hull-Propeller Interaction, | en |
dc.relation.page | 47 | - |
dc.identifier.doi | 10.6342/NTU202403106 | - |
dc.rights.note | 同意授權(全球公開) | - |
dc.date.accepted | 2024-08-06 | - |
dc.contributor.author-college | 工學院 | - |
dc.contributor.author-dept | 工程科學及海洋工程學系 | - |
顯示於系所單位: | 工程科學及海洋工程學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-112-2.pdf | 2.57 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。