Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 土木工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/94355
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor王泰典zh_TW
dc.contributor.advisorTai-Tien Wangen
dc.contributor.author鄭瑞彰zh_TW
dc.contributor.authorRui-Chang Chengen
dc.date.accessioned2024-08-15T17:00:48Z-
dc.date.available2024-08-16-
dc.date.copyright2024-08-15-
dc.date.issued2024-
dc.date.submitted2024-08-06-
dc.identifier.citationAhlers, S., Röckel, L., Hergert, T., Reiter, K., Heidbach, O., Henk, A., Müller, B., Morawietz, S., Scheck-Wenderoth, M., & Anikiev, D. (2022). The crustal stress field of Germany: A refined prediction. Geothermal Energy, 10(1), 10. https://doi.org/10.1186/s40517-022-00222-6
Bhuiyan, M. Y. (2013). Interface stress analysis of two bonded isotropic materials by finite difference method.
Heidbach, O., Liang, W.-T., Morawietz, S., von Specht, S., & Ma, K.-F. (2022). Stress Map of Taiwan 2022. https://doi.org/10.5880/WSM.Taiwan2022
Hu, J.-C., Yu, S.-B., Angelier, J., & Chu, H.-T. (2001). Active deformation of Taiwan from GPS measurements and numerical simulations. Journal of Geophysical Research: Solid Earth, 106(B2), 2265–2280. https://doi.org/10.1029/2000JB900196
Hyett, A. J., Dyke, C. G., & Hudson, J. A. (n.d.). A Critical Examination of Basic Concepts Associated With the Existence And Measurement of In Situ Stress. Retrieved 17 June 2024, from https://dx.doi.org/
Kruszewski, M., Hofmann, H., Alvarez, F. G., Bianco, C., Haro, A. J., Garduño, V. H., Liotta, D., Trumpy, E., Brogi, A., Wheeler, W., Bastesen, E., Parisio, F., & Saenger, E. H. (2021). Integrated Stress Field Estimation and Implications for Enhanced Geothermal System Development in Acoculco, Mexico. Geothermics, 89, 101931. https://doi.org/10.1016/j.geothermics.2020.101931
Li, X., Gao, K., Feng, Y., & Zhang, C. (2022). 3D geomechanical modeling of the Xianshuihe fault zone, SE Tibetan Plateau: Implications for seismic hazard assessment. Tectonophysics, 839, 229546. https://doi.org/10.1016/j.tecto.2022.229546
Lin, W., Yeh, E.-C., Hung, J.-H., Haimson, B., & Hirono, T. (2010). Localized rotation of principal stress around faults and fractures determined from borehole breakouts in hole B of the Taiwan Chelungpu-fault Drilling Project (TCDP). Tectonophysics, 482(1), 82–91. https://doi.org/10.1016/j.tecto.2009.06.020
Liu, C., Zhu, B., Yang, X., & Shi, Y. (2016). Geodynamic background of the 2008 Wenchuan earthquake based on 3D visco-elastic numerical modelling. Physics of the Earth and Planetary Interiors, 252, 23–36. https://doi.org/10.1016/j.pepi.2016.01.003
Martínez-Garzón, P., Heidbach, O., & Bohnhoff, M. (2020). Contemporary stress and strain field in the Mediterranean from stress inversion of focal mechanisms and GPS data. Tectonophysics, 774, 228286. https://doi.org/10.1016/j.tecto.2019.228286
Michael, A. J. (1984). Determination of stress from slip data: Faults and folds. Journal of Geophysical Research: Solid Earth, 89(B13), 11517–11526. https://doi.org/10.1029/JB089iB13p11517
Nath, S. K. D., Ahmed, S. R., & Kim, S.-G. (2010). On the displacement potential solution of plane problems of structural mechanics with mixed boundary conditions. Archive of Applied Mechanics, 80(10), 1125–1147. https://doi.org/10.1007/s00419-010-0428-5
Peña Clavijo, S., Dash, A., Baby, G., Alafifi, A. M., & Finkbeiner, T. (2024). Modelling principal stress orientations in the Arabian Plate using plate velocities. Geological Society, London, Special Publications, 546(1), SP546-2022–2327. https://doi.org/10.1144/SP546-2022-327
Rajabi, M., Heidbach, O., Tingay, M., & Reiter, K. (2017). Prediction of the present-day stress field in the Australian continental crust using 3D geomechanical–numerical models. Australian Journal of Earth Sciences, 64(4), 435–454. https://doi.org/10.1080/08120099.2017.1294109
Reiter, K., & Heidbach, O. (2014). 3-D geomechanical–numerical model of the contemporary crustal stress state in the Alberta Basin (Canada). Solid Earth, 5(2), 1123–1149. https://doi.org/10.5194/se-5-1123-2014
Reiter, K., Heidbach, O., Schmitt, D., Haug, K., Ziegler, M., & Moeck, I. (2014). A revised crustal stress orientation database for Canada. Tectonophysics, 636, 111–124. https://doi.org/10.1016/j.tecto.2014.08.006
Rousset, Baptiste, Sylvain Barbot, Jean-Philippe Avouac, and Ya-Ju Hsu. 2012. ‘Postseismic Deformation Following the 1999 Chi-Chi Earthquake, Taiwan: Implication for Lower-Crust Rheology’. Journal of Geophysical Research: Solid Earth 117(B12). doi: 10.1029/2012JB009571.
Talukdar, M., Sone, H., & Kuo, L.-W. (2022). Lithology and Fault-Related Stress Variations Along the TCDP Boreholes: The Stress State Before and After the 1999 Chi-Chi Earthquake. Journal of Geophysical Research: Solid Earth, 127(2), e2021JB023290. https://doi.org/10.1029/2021JB023290
Vavryčuk, V. (2014). Iterative joint inversion for stress and fault orientations from focal mechanisms. Geophysical Journal International, 199(1), 69–77. https://doi.org/10.1093/gji/ggu224
Wu, Y.-M., Hsu, Y.-J., Chang, C.-H., Teng, L. S., & Nakamura, M. (2010). Temporal and spatial variation of stress field in Taiwan from 1991 to 2007: Insights from comprehensive first motion focal mechanism catalog. Earth and Planetary Science Letters, 298, 306–316. https://doi.org/10.1016/j.epsl.2010.07.047
Yabe, Y., Song, S.-R., & Wang, C.-Y. (2008). In-situ stress at the northern portion of the Chelungpu fault, Taiwan, estimated on boring cores recovered from a 2-km-deep hole of TCDP. Earth, Planets and Space, 60(8), 809–819. https://doi.org/10.1186/BF03352832
Yang, Y.-R., & Johnson, K. M. (2020). Crustal Stress State in Taiwan: Moderately Strong Crust Supporting Gravitational and Flexural Loading. Journal of Geophysical Research: Solid Earth, 125(11), e2020JB019530. https://doi.org/10.1029/2020JB019530
Zang, A., & Stephansson, O. (2009). Stress Field of the Earth’s Crust. Springer Science & Business Media.
Ziegler, M. O., & Heidbach, O. (2020). The 3D stress state from geomechanical–numerical modelling and its uncertainties: A case study in the Bavarian Molasse Basin. Geothermal Energy, 8(1), 11. https://doi.org/10.1186/s40517-020-00162-z
石作珉、鄧博維、劉振維、蕭富元 (1994)。利用套鑽法量測現地應力之研究。地工技術,46卷,23-34。
陳錦清、俞旗文(1994)。坪林隧道沿線水力破裂法現地應力量測。地工技術,(46),35-46。https://doi.org/10.30140/SG.199406.0003
侯進雄(2007)。台灣活動斷層構造相關地殼變形監測研究〔博士論文,國立臺灣大學〕。華藝線上圖書館。https://doi.org/10.6342/NTU.2007.03004
柯明淳、林義凱、湯宜瑾、賴奕修、葉柏逸、陳文山、楊耿明、吳逸民、柯孝勳 (2017) 。活動斷層地下三維資料建置與應用規劃。國家災害防救科技中,105-T07。
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/94355-
dc.description.abstract現地應力為地球資源探勘及地下工程設計的重要資訊,精細化現地應力調查成果兼具科學防災以及提高地質工程設計水平的效益。利用震源機制反演現地應力為地球科學界常見探求區域尺度現地應力方向的途徑,配合設定的地層強度可以估計現地應力張量;而水力破裂、套鑽法等現地試驗量測所得現地應力常受到地層變異性、地質構造,甚至是試驗位置不連續面的影響,相較於區域尺度現地應力張量,不僅量值常有偏差,主應力方向也常不一致,以致工程尺度的現地應力評估,迄今仍是一大挑戰。

本研究以車籠埔斷層鄰近區域為例,以集集地震、2000年至2002年、2002年至2004年,作為分析時間序。按國際岩石力學會建議流程,分為最佳估算模式(Best Estimate Stress Model,BESM)、補充現地應力調查方法/補充應力資料(Stress Measurement Methods,SMM)、整合測定模式(Integrated Stress Determination,ISD)及最終岩石應力模型(Final Rock Stress Method,FRSM)。最佳估算模式採用震源機制應力反演,結合自助抽樣法(Bootstrap Method)嘗試提供區域尺度主應力方向及量值不確定性;現地應力量測方法使用位移勢函數(Displacement Potential Function)嘗試建立地表位移與地殼內部應力關係,並透過二維有限差分軟體提供補充現地應力資料;整合測定模式使用三維有限差分法軟體建立數值模型,考慮地形、地質與構造的影響,並參GNSS觀測所得速度給定邊界相對運動速率,透過正算分析反覆迭代,至地表變位速度逐漸接近GNSS觀測值,藉此計算地殼中現地應力;最終岩石應力模型整合上述三種不同尺度應力資料,標示不確定性,此模型亦可新增地真應力資料來交互驗證及修正前述的BESM、SMM、ISD模型,增強模型的準確性和可靠性。
zh_TW
dc.description.abstractIn-situ stress is essential for Earth resource exploration and underground engineering design, offering benefits for scientific disaster prevention and improved geological engineering. The commonly used method in geosciences to determine regional-scale in-situ stress orientations involves seismic source mechanism inversions, combined with established rock strength parameters to estimate the in-situ stress tensor. However, measurements obtained from hydraulic fracturing or overcoring are often affected by heterogeneities in rock layers and geological structures, leading to discrepancies in stress magnitudes and principal directions, which complicates the engineering-scale evaluation of in-situ stress.

This study examines the area around the Chelungpu Fault, analyzing data spanning from the Chi-Chi earthquake through 2000 to 2004. Following the International Society for Rock Mechanics guidelines, the methodology is divided into four main models: Best Estimate Stress Model (BESM), Stress Measurement Methods (SMM), Integrated Stress Determination (ISD), and Final Rock Stress Method (FRSM).

The BESM uses stress inversion from seismic sources along with the Bootstrap Method to estimate regional-scale principal stress directions and magnitudes with associated uncertainties. The SMM utilizes the Displacement Potential Function to relate surface displacement to internal crustal stresses, supported by two-dimensional finite difference software to provide supplementary in-situ stress data. The ISD employs three-dimensional finite difference software to develop numerical models, taking into account the influence of topography, geology, and structural configurations. It integrates velocities from GNSS observations to define boundary relative motion rates, using forward modeling and iterative adjustments until surface displacement velocities closely match those observed by GNSS, thereby calculating in-situ stresses within the crust. Finally, the FRSM integrates these diverse scales of stress data, marks uncertainties, and incorporates true stress data for mutual verification and adjustments of the previous models.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-08-15T17:00:46Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2024-08-15T17:00:48Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents謝辭 i
中文摘要 ii
Abstract iii
目次 iν
圖次 νi
表次 x
第一章 緒論 1
1.1研究動機 1
1.2研究目的 2
1.3研究架構 3
第二章 文獻回顧 5
2.1 現地應力影響因素及量測方法 5
2.2 世界應力圖及最終岩石應力模型 9
2.3 國內現地應力相關研究 11
2.4 最終岩石應力模型國際案例 17
第三章 研究方法 20
3.1 最佳估算應力模式(BESM) 21
3.2 現地應力量測方法(SMM)補充應力資料 24
3.2.1 GNSS地表位移監測資料 24
3.2.2 二維數值模擬模型 25
3.2.3地表位移與地殼應力二維差分解 28
3.3 整合測定模式(ISD) 32
3.3.1數值模擬 32
3.3.2模型設置 32
3.4 最終岩石應力模型(FRSM)討論 35
第四章 結果與討論 36
4.1 最佳估算應力模式(BESM)結果 36
4.2 現地應力量測方法(SMM)補充結果 39
4.2.1地表位移與地殼應力二維差分解比對驗證 39
4.2.2 GNSS觀測地表位移反演二維應力資料 46
4.3 整合應力測定模式(ISD)結果 49
4.3.1集集地震前 49
4.3.2集集地震後2000年至2002年 55
4.3.3集集地震後2002年至2004年 61
4.4 最終岩石應力模型(FRSM) 66
4.4.1集集地震前(1996至1999年) 67
4.4.2集集地震後(2000至2002年) 68
第五章 結論與建議 69
5.1結論 71
5.1.1最佳估算應力模式(BESM) 71
5.1.2補充現地應力量測方法(SMM) 71
5.1.3整合測定模式(ISD) 71
5.1.4最終岩石應力模型(FRSM) 71
5.2 建議 72
5.2.1最佳估算應力模式(BESM) 72
5.2.2現地應力量測方法(SMM) 72
5.2.3整合測定模式(ISD) 72
5.2.4 最終岩石應力模型(FRSM) 72
參考文獻 73
附錄 口試紀錄暨回覆表 77
-
dc.language.isozh_TW-
dc.subject震源機制zh_TW
dc.subject整合應力測定模式zh_TW
dc.subject最終岩石應力模型zh_TW
dc.subject現地應力zh_TW
dc.subjectGNSSzh_TW
dc.subjectIn-situ stressen
dc.subjectGNSSen
dc.subjectFocal mechanismen
dc.subjectFinal Rock Stress Methoden
dc.subjectIntegrated Stress Determinationen
dc.title使用震源機制和GNSS位移場發展最終岩石應力模型 −以台灣中部為例zh_TW
dc.titleDeveloping a Final Rock Stress Model Using Focal Mechanism and GNSS Displacement Field−A Case Study of Central Taiwanen
dc.typeThesis-
dc.date.schoolyear112-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee張國楨;葉恩肇;黃信樺;楊宜蓉zh_TW
dc.contributor.oralexamcommitteeKuo-Jen Chang;En-Chao Yeh;Hsin-Hua Huang;Yi-Rong Yangen
dc.subject.keyword現地應力,震源機制,GNSS,整合應力測定模式,最終岩石應力模型,zh_TW
dc.subject.keywordIn-situ stress,Focal mechanism,GNSS,Integrated Stress Determination,Final Rock Stress Method,en
dc.relation.page79-
dc.identifier.doi10.6342/NTU202403114-
dc.rights.note同意授權(全球公開)-
dc.date.accepted2024-08-09-
dc.contributor.author-college工學院-
dc.contributor.author-dept土木工程學系-
顯示於系所單位:土木工程學系

文件中的檔案:
檔案 大小格式 
ntu-112-2.pdf9.44 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved