Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 材料科學與工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/94352
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor林新智zh_TW
dc.contributor.advisorHsin-Chih Linen
dc.contributor.author陳若薰zh_TW
dc.contributor.authorJo-Hsun Chenen
dc.date.accessioned2024-08-15T16:59:45Z-
dc.date.available2024-08-16-
dc.date.copyright2024-08-15-
dc.date.issued2024-
dc.date.submitted2024-08-05-
dc.identifier.citationMordike, B. L., and Tü Ebert. "Magnesium: properties—applications—potential." Materials Science and Engineering: A 302.1 (2001): 37-45.
Tan, Jovan, and Seeram Ramakrishna. "Applications of magnesium and its alloys: A review." Applied Sciences 11.15 (2021): 6861.
Staiger, Mark P., et al. "Magnesium and its alloys as orthopedic biomaterials: a review." Biomaterials 27.9 (2006): 1728-1734.
Savio, Davide, and Andrea Bagno. "When the total hip replacement fails: A review on the stress-shielding effect." Processes 10.3 (2022): 612.
Azushima, Akira, et al. "Severe plastic deformation (SPD) processes for metals." CIRP annals 57.2 (2008): 716-735.
Dobrzanski, Leszek A., Menachem Bamberger, and George E. Totten, eds. Magnesium and its alloys: technology and applications. CRC Press, 2019.
Friedrich, Horst E., and Barry L. Mordike. Magnesium technology. Vol. 212. Berlin: Springer-Verlag Berlin Heidelberg, 2006.
Jayasathyakawin, S., et al. "Mechanical properties and applications of Magnesium alloy–Review." Materials Today: Proceedings 27 (2020): 909-913.
Chen, Junxiu, et al. "Mechanical properties of magnesium alloys for medical application: A review." Journal of the Mechanical Behavior of Biomedical Materials 87 (2018): 68-79.
Kumar, D. Sameer, et al. "Magnesium and its alloys in automotive applications–a review." Am. J. Mater. Sci. Technol 4.1 (2015): 12-30.
Benedyk, Joseph C. "International temper designation systems for wrought aluminum alloys." Light metal age 67 (2010): 3-6.
Murray, Joanne L. "The Al− Mg (aluminum− magnesium) system." Journal of Phase Equilibria 3.1 (1982): 60-74.
Cáceres, C. H., and D. M. Rovera. "Solid solution strengthening in concentrated Mg–Al alloys." Journal of Light Metals 1.3 (2001): 151-156.
Hutchinson, Christopher R., Jian-Feng Nie, and Stéphane Gorsse. "Modeling the precipitation processes and strengthening mechanisms in a Mg-Al-(Zn) AZ91 alloy." Metallurgical and Materials Transactions A 36 (2005): 2093-2105.
Pardo, A., et al. "Influence of microstructure and composition on the corrosion behaviour of Mg/Al alloys in chloride media." Electrochimica Acta 53.27 (2008): 7890-7902.
Jiang, Pingli, Carsten Blawert, and Mikhail L. Zheludkevich. "The corrosion performance and mechanical properties of Mg-Zn based alloys—a review." Corrosion and Materials Degradation 1.1 (2020): 7.
Wei, L. Y., G. L. Dunlop, and H. Westengen. "Precipitation hardening of Mg-Zn and Mg-Zn-RE alloys." Metallurgical and Materials Transactions A 26 (1995): 1705-1716.
Cai, Shuhua, et al. "Effects of Zn on microstructure, mechanical properties and corrosion behavior of Mg–Zn alloys." Materials Science and Engineering: C 32.8 (2012): 2570-2577.
Lide, David R., ed. CRC handbook of chemistry and physics. Vol. 85. CRC press, 2004.
Bakhsheshi‐Rad, H. R., et al. "Effect of heat treatment on the microstructure and corrosion behaviour of Mg–Zn alloys." Materials and Corrosion 65.10 (2014): 999-1006.
Xing, Fangjing, et al. "The existing forms of Zr in Mg-Zn-Zr magnesium alloys and its grain refinement mechanism." Materials Research Express 8.6 (2021): 066516.
Sun, Ming, et al. "Recent advances in the grain refinement effects of Zr on Mg alloys: a review." Metals 12.8 (2022): 1388.
黃振賢。機械材料。臺北市:文京,1990。
Prasad, Karthika, et al. "Metallic biomaterials: current challenges and opportunities." Materials 10.8 (2017): 884.
Al Alawi, Abdullah M., Sandawana William Majoni, and Henrik Falhammar. "Magnesium and human health: perspectives and research directions." International journal of endocrinology 2018.1 (2018): 9041694.
Glasdam, Sidsel-Marie, Stinne Glasdam, and Günther H. Peters. "The importance of magnesium in the human body: a systematic literature review." Advances in clinical chemistry 73 (2016): 169-193.
Fiorentini, Diana, et al. "Magnesium: biochemistry, nutrition, detection, and social impact of diseases linked to its deficiency." Nutrients 13.4 (2021): 1136.
Pethő, Ákos Géza, et al. "Magnesium Is a Vital Ion in the Body—It Is Time to Consider Its Supplementation on a Routine Basis." Clinics and Practice 14.2 (2024): 521-535.
He, Meifeng, et al. "Review on magnesium and magnesium-based alloys as biomaterials for bone immobilization." Journal of Materials Research and Technology 23 (2023): 4396-4419.
Alkaya, Günseli Bobuş, Çağatay Demirci, and Hüseyin Şevik. "Aluminum in food and potential role on Alzheimer’s disease of aluminum." Turkish Journal of Engineering 6.2 (2022): 118-127.
Niu, Qiao. "Overview of the relationship between aluminum exposure and health of human being." Neurotoxicity of Aluminum (2018): 1-31.
Pravina, Piste, Didwagh Sayaji, and Mokashi Avinash. "Calcium and its role in human body." International Journal of Research in Pharmaceutical and Biomedical Sciences 4.2 (2013): 659-668.
Power, Michael L., et al. "The role of calcium in health and disease." American journal of obstetrics and gynecology 181.6 (1999): 1560-1569.
Beto, Judith A. "The role of calcium in human aging." Clinical nutrition research 4.1 (2015): 1-8.
Chasapis, Christos T., et al. "Recent aspects of the effects of zinc on human health." Archives of toxicology 94 (2020): 1443-1460.
Prasad, Ananda S. "Zinc in human health: effect of zinc on immune cells." Molecular medicine 14 (2008): 353-357.
Prasad, Ananda S. "Discovery of human zinc deficiency: its impact on human health and disease." Advances in nutrition 4.2 (2013): 176-190.
Chen, Pan, Julia Bornhorst, and Michael A. Aschner. "Manganese metabolism in humans." Frontiers in Bioscience, Landmark 23 (2018): 1655-1679.
Mena, I. S. M. A. E. L. "The role of manganese in human disease." Annals of Clinical & Laboratory Science 4.6 (1974): 487-491.
Lee, David BN, et al. "Zirconium: biomedical and nephrological applications." Asaio Journal 56.6 (2010): 550-556.
Bordbar-Khiabani, Aidin, Benyamin Yarmand, and Masoud Mozafari. "Emerging magnesium-based biomaterials for orthopedic implantation." (2019): 305-319.
Song, Guangling, and Andrej Atrens. "Understanding magnesium corrosion—a framework for improved alloy performance." Advanced engineering materials 5.12 (2003): 837-858.
Salahshoor, Meisam, and Yuebin Guo. "Biodegradable orthopedic magnesium-calcium (MgCa) alloys, processing, and corrosion performance." Materials 5.1 (2012): 135-155.
Frankel, G. S., and N. Sridhar. "Understanding localized corrosion." Materials today 11.10 (2008): 38-44.
Xin, Y., Tao Hu, and P. K. Chu. "In vitro studies of biomedical magnesium alloys in a simulated physiological environment: a review." Acta biomaterialia 7.4 (2011): 1452-1459.
Zhang, X. G. "Galvanic corrosion." Uhlig's Corrosion Handbook 51 (2011): 123.
Jiang, Pingli, Carsten Blawert, and Mikhail L. Zheludkevich. "The corrosion performance and mechanical properties of Mg-Zn based alloys—a review." Corrosion and Materials Degradation 1.1 (2020): 7.
Lu, Yu, et al. "Effects of secondary phase and grain size on the corrosion of biodegradable Mg–Zn–Ca alloys." Materials Science and Engineering: C 48 (2015): 480-486.
Zhang, LiXin, et al. "Microstructure and mechanical properties of thin ZK61 magnesium alloy sheets by extrusion and multi–pass rolling with lowered temperature." Journal of Materials Processing Technology 237 (2016): 65-74.
Azushima, Akira, et al. "Severe plastic deformation (SPD) processes for metals." CIRP annals 57.2 (2008): 716-735.
Suwas, Satyam, and Soumita Mondal. "Texture evolution in severe plastic deformation processes." Materials transactions 60.8 (2019): 1457-1471.
Eren, Berkay, Mehmet Ali Guvenc, and Selcuk Mistikoglu. "Artificial intelligence applications for friction stir welding: A review." Metals and Materials International 27 (2021): 193-219.
Mishra, Rajiv S., and Z. Y. Ma. "Friction stir welding and processing." Materials science and engineering: R: reports 50.1-2 (2005): 1-78.
Singh, Kulwant, Gurbhinder Singh, and Harmeet Singh. "Review on friction stir welding of magnesium alloys." Journal of magnesium and alloys 6.4 (2018): 399-416.
Chen, Shujun, et al. "Microstructure and mechanical properties of AZ31B Mg alloy fabricated by friction stir welding with pulse current." Journal of Manufacturing Processes 71 (2021): 317-328.
Mishra, Rajiv, et al., eds. Friction stir welding and processing VIII. Springer, (2016).
Staron, P., et al. "Residual stress in friction stir-welded Al sheets." Physica B: Condensed Matter 350.1-3 (2004): E491-E493.
Zhou, L., et al. "Effect of rotation speed on microstructure and mechanical properties of bobbin tool friction stir welded AZ61 magnesium alloy." Science and Technology of Welding and Joining 23.7 (2018): 596-605.
Zheng, Zeyu, et al. "Application Status and Prospects of Friction Stir Processing in Wrought Magnesium Alloys: A Review." Transactions of the Indian Institute of Metals (2024): 1-16.
Malakar, A., Vivek Pancholi, and Vikram V. Dabhade. "Recrystallization and strengthening mechanism in friction-stir-processed Al powder compacts." Journal of Materials Engineering and Performance 29 (2020): 3243-3252.
Hu, Yijie, et al. "Effect of friction stir processing parameters on the microstructure and properties of ZK60 magnesium alloy." Materials Research Express 9.1 (2022): 016508.
Wang, Miao, et al. "Effect of Rotation Rate on Microstructure and Mechanical Properties of Friction Stir Processed Ni–Fe-Based Superalloy." Acta Metallurgica Sinica (English Letters) 34.10 (2021): 1407-1420.
Kumar, Amit, and Vineet Kumar. "Analysis of heat input and its effects on microstructure development and mechanical properties of friction stir-processed AA7075 alloy." JOM 76.1 (2024): 473-485.
Yazdanmehr, Amir, and Hamid Jahed. "On the surface residual stress measurement in magnesium alloys using X-ray diffraction." Materials 13.22 (2020): 5190.
Mukai, Toshiji, et al. "Ductility enhancement in AZ31 magnesium alloy by controlling its grain structure." Scripta materialia 45.1 (2001): 89-94.
Choudhary, Atul Kumar, and Rahul Jain. "Fundamentals of friction stir welding, its application, and advancements." Welding Technology (2021): 41-90.
Fernández-Solis, Christian D., et al. "Fundamentals of electrochemistry, corrosion and corrosion protection." Soft Matter at Aqueous Interfaces (2016): 29-70.
Magar, Hend S., Rabeay YA Hassan, and Ashok Mulchandani. "Electrochemical impedance spectroscopy (EIS): Principles, construction, and biosensing applications." Sensors 21.19 (2021): 6578.
Huang, Jun, et al. "Graphical analysis of electrochemical impedance spectroscopy data in Bode and Nyquist representations." Journal of Power Sources 309 (2016): 82-98.
Harrington, David A., and P. Van Den Driessche. "Mechanism and equivalent circuits in electrochemical impedance spectroscopy." Electrochimica Acta 56.23 (2011): 8005-8013.
Srinivasan, Ramanathan. "Negative resistances and inductances in equivalent circuits for adsorption-reaction kinetics." ECS Transactions 33.15 (2011): 21.
Mansfeld, Florian. "The polarization resistance technique for measuring corrosion currents." Advances in Corrosion Science and Technology: Volume 6. Boston, MA: Springer US, 1976. 163-262.
Qin, Dingqiang, et al. "Manufacture of biodegradable magnesium alloy by high speed friction stir processing." Journal of Manufacturing Processes 36 (2018): 22-32.
Lee, Choong Do, Choon Sik Kang, and Kwang Seon Shin. "Effect of galvanic corrosion between precipitate and matrix on corrosion behavior of As-cast magnesium-aluminum alloys." Metals and Materials 6 (2000): 351-358.
Xin, Yunchang, et al. "Corrosion products on biomedical magnesium alloy soaked in simulated body fluids." Journal of materials research 24 (2009): 2711-2719.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/94352-
dc.description.abstract本研究對擠製態ZK60 (鎂鋅鋯)合金進行摩擦攪拌製程 (friction stir processing, FSP),在加工過程中引發動態再結晶使晶粒細化,進而提高其抗腐蝕性。
原本的擠製態ZK60合金具有不均勻的晶粒尺寸及特定方位取向,經摩擦攪拌製程後,晶粒尺寸變得均勻且方位取向隨機。摩擦攪拌製程的加工參數包含旋轉工具的轉速及加工速度,本研究使用的三組加工參數分別為1800 rpm, 150 mm/min、1800 rpm, 200mm/min、1500rpm, 200 mm/min,得到攪拌區中心的平均晶粒大小分別為4.03 μm、3.66 μm、3.49 μm,這證實轉速越慢和越快的加工速度會產生越小的再結晶晶粒。
研究結果發現加工參數1500rpm, 200 mm/min的試片呈現最好的抗腐蝕性,腐蝕電流密度從擠製態ZK60合金的5.51×10^-5 A/cm²,降低到1.67×10^-5 A/cm²,極化電阻則從擠製態ZK60合金的315.2 Ω⋅cm2提高到 1009.8 Ω⋅cm2。觀察浸泡試驗後的腐蝕表面,發現擠製態ZK60合金由於晶粒尺寸不均勻導致不均勻腐蝕行為,其局部腐蝕的結果造成材料整體抗腐蝕性較差,摩擦攪拌製程ZK60合金則因晶粒尺寸均勻而呈現均勻腐蝕的狀態,有較好的抗腐蝕性。
zh_TW
dc.description.abstractIn this study, extruded ZK60 (magnesium-zinc-zirconium) alloy was subjected to friction stir processing (FSP), which induced dynamic recrystallization during the process, leading to grain refinement and an improvement in corrosion resistance.
The original extruded ZK60 alloy exhibited an uneven distribution of grain size and specific orientation. Following FSP, the grain size became uniform and the orientation was random. The processing parameters of friction stir processing (FSP) include the rotational speed of the rotating tool and the processing speed. This study employed three sets of processing parameters. The processing parameters included 1800 rpm, 150 mm/min; 1800 rpm, 200 mm/min; and 1500 rpm, 200 mm/min. These resulted in average grain sizes at the center of the stir zone of 4.03 μm, 3.66 μm, and 3.49 μm, respectively. These findings indicate that a slower rotational speed and a faster processing speed result in the formation of smaller recrystallized grains.
The sample processed with parameters of 1500 rpm and 200 mm/min exhibited the most favorable corrosion resistance, with a notable decrease in corrosion current density from 5.51×10^-5 A/cm² for the extruded ZK60 alloy to 1.67×10^-5 A/cm², accompanied by an increase in polarization resistance from 315.2 Ω⋅cm² for the extruded ZK60 alloy to 1009.8 Ω⋅cm². The corrosion behavior of the extruded ZK60 alloy was observed to be uneven following immersion testing. This was attributed to the presence of an uneven grain size, which in turn resulted in a reduction in overall corrosion resistance. In contrast, the FSPed ZK60 alloy, with its uniform grain size, demonstrated uniform corrosion behavior and superior corrosion resistance.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-08-15T16:59:45Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2024-08-15T16:59:45Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents口試委員會審定書 I
致謝 II
摘要 III
Abstract IV
目次 V
圖次 VII
表次 XI
第1章 前言 1
第2章 文獻回顧 2
2.1常見的鎂合金系統 2
2.1.1 Mg-Al系合金 4
2.1.2 Mg-Zn系合金 6
2.2生醫植入材與鎂合金 9
2.2.1簡介 9
2.2.2鎂合金的腐蝕機制 13
2.3鎂合金的加工處理 17
2.3.1簡介 17
2.3.2摩擦攪拌製程 19
第3章 實驗方法 23
3.1實驗流程 23
3.2實驗材料 24
3.2.1摩擦攪拌製程 25
3.2.2切割與研磨 27
3.3微結構與機械性質分析 29
3.3.1背向散射電子繞射分析(EBSD) 29
3.3.2電子微探儀(EPMA) 31
3.3.3 X光繞射分析儀(XRD) 32
3.3.4硬度試驗 33
3.4腐蝕性質分析 35
3.4.1電化學分析 35
3.4.2浸泡試驗 37
第4章 結果與討論 38
4.1摩擦攪拌製程對ZK60合金微結構與機械性質的影響 38
4.1.1微結構與成分分析 38
4.1.2機械性質分析 50
4.2摩擦攪拌製程對ZK60合金腐蝕性質的影響 51
4.2.1電化學分析 51
4.2.2浸泡試驗 57
第5章 結論 60
參考文獻 62
-
dc.language.isozh_TW-
dc.subject摩擦攪拌製程zh_TW
dc.subjectZK60合金zh_TW
dc.subject腐蝕性質zh_TW
dc.subject生物降解zh_TW
dc.subject晶粒細化zh_TW
dc.subjectgrain refinementen
dc.subjectbiodegradableen
dc.subjectcorrosion propertiesen
dc.subjectfriction stir processingen
dc.subjectZK60 alloyen
dc.title摩擦攪拌製程對ZK60鎂合金微結構與腐蝕性質影響之研究zh_TW
dc.titleStudy on the Effect of Friction Stir Processing on Microstructure and Corrosion Properties of ZK60 Magnesium Alloyen
dc.typeThesis-
dc.date.schoolyear112-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee薛人愷;丘群zh_TW
dc.contributor.oralexamcommitteeRen-Kae Shiue;Chun Chiuen
dc.subject.keywordZK60合金,摩擦攪拌製程,晶粒細化,生物降解,腐蝕性質,zh_TW
dc.subject.keywordZK60 alloy,friction stir processing,grain refinement,biodegradable,corrosion properties,en
dc.relation.page69-
dc.identifier.doi10.6342/NTU202403531-
dc.rights.note未授權-
dc.date.accepted2024-08-08-
dc.contributor.author-college工學院-
dc.contributor.author-dept材料科學與工程學系-
顯示於系所單位:材料科學與工程學系

文件中的檔案:
檔案 大小格式 
ntu-112-2.pdf
  未授權公開取用
6.27 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved