請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/94351
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 曾書萍 | zh_TW |
dc.contributor.advisor | Shu-Ping Tseng | en |
dc.contributor.author | 朱孝洋 | zh_TW |
dc.contributor.author | Hsiao-Yang Chu | en |
dc.date.accessioned | 2024-08-15T16:59:25Z | - |
dc.date.available | 2024-08-16 | - |
dc.date.copyright | 2024-08-15 | - |
dc.date.issued | 2024 | - |
dc.date.submitted | 2024-08-05 | - |
dc.identifier.citation | Abbott, K. L. 2005. Spatial dynamics of supercolonies of the invasive yellow crazy ant, Anoplolepis gracilipes, on Christmas Island, Indian Ocean. Divers. Distrib. 12: 101-110.
Abril, S., and Gómez, C. 2020. Reproductive inhibition among nestmate queens in the invasive Argentine ant. Sci. Rep. 10:20484. Adam, E. S. 2016. Territoriality in ants (Hymenoptera: Formicidae): a review. Myrmecol. News. 23: 101-118. Azevedo-Silva, M., Mori, M. G., Carvalho, C. S., Côrtes, M. C., Souza, A. P., and Oliveira, P. S. 2020. Breeding systems and genetic diversity in tropical carpenter ant colonies: different strategies for similar outcomes in Brazilian Cerrado savanna. Zool. J. Linn. Soc. 190: 1020-1035. Bertelsmeier, C. 2021. Globalization and the anthropogenic spread of invasive social insects. Curr. Opin. Insect Sci. 46:16-23. Bertelsmeier, C., Ollier, S., Liebhold, A., and Keller, L. 2017. Recent human history governs global ant invasion dynamics. Nat. Ecol. Evol. 1:0184. Beye M., Hasselmann M., Fondrk M. K., Page R. E., and Omholt S. W. 2003. The gene csd is the primary signal for sexual development in the honeybee and encodes an SR-type protein. Cell. 114: 419-429. Blacket M. J., Robin C., Good R. T., Lee S. F. and Miller A. D. 2012. Universal primers for fluorescent labelling of PCR fragments – an efficient and cost- effective approach to genotyping by fluorescence. Mol. Ecol. Resour. 12: 456- 463. Bourke A. F. G., and Franks N. R. 1995. “Evolution and Ecology of Multiple-queen Societies” in Social Evolution in Ants. PUP. 258-296. Breton, J. L., Delabie, J. H. C., Chazeau, J., Dejean, A., and Jourdan, H. 2014.Experimental evidence of large-scale unicoloniality in the tramp ant Wasmannia auropunctata (Roger). J. Insect Behav. 17: 263-271. Brown Jr. W. L. 1976. Contributions toward a reclassification of the Formicidae. Part VI. Ponerinae, tribe Ponerini, subtribe Odontomachiti. Section A. Introduction, subtribal characters. Genus Odontomachus. Stud. Entomol. 19: 67-171. Buczkowski, G. 2010. Extreme life history plasticity and the evolution of invasive characteristics in a native ant. Biol. Invasions. 12: 3343-3349. Butcher, R. D. J., Whitfield, W. G. F., and Hubbard, S. F. 2000. Complementary sex determination in the genus Diadegma (Hymenoptera: Ichneumonidae). J. Evol. Biol. 13: 593-606. Chapman, R. E., and Bourke, A. F. G. 2002. The influence of sociality on the conservation biology of social insects. Ecol. Lett. 4: 650-662. Chifflet, L., Guzmán, N. V., Rey, O., Confalonieri, V. A., and Calcaterra, L. A. 2018. Southern expansion of the invasive ant Wasmannia auropunctata within its native range and its relation with clonality and human activity. PLoS One. 13: e0206602. Colombel, P. P. 1970. Recherches sur la biologie et l’ithologie d’Odontomachus haematodes L. (Hym., Formicoidea, Ponerinae): etude des populations dans leur milieu naturel. Insectes Soc. 12: 183-198. Colombel P. P. 1972. Recherches sur la biologie et l’éthologie d’Odontomachus hæmatodes L. (Hym. formicoidea, Poneridae) biologie des ouvrières. Insectes Soc. 19:171-193. Colombel, P.P. 1978. Biologie d’Odontomachus haematodes L. (Hym. Form.) determinisme de la caste femelle. Insectes Soc. 25: 141-151. Cook, J. M., and Crozier, R. H. 1995. Sex determination and population biology in the hymenoptera. Trends Ecol. Evol. 10: 281-286. Coombs, J. A., Letcher, B. H., and Nislow, K. H. 2008. CREATE: a software to create input files from diploid genotypic data for 52 genetic software programs. Mol. Ecol. Resour. 8: 578-580. Cordonnier, M., Escarguel, G., Dumet, A., and Kaufmann, B. 2020. Multiple mating in the context of interspecific hybridization between two Tetramorium ant species. Heredity. 124: 675-684. da Silva-Melo, A., and Giannotti, E. 2012. Division of labor in Pachycondyla striata Fr. Smith, 1858 (Hymenoptera: Formicidae: Ponerinae). Psyche (Camb. Mass.). 2012: 166-172. Dejean, A., and Fénéron, R. 1996. Polymorphism and oligogyny in the ponerine ant Centromyrmex bequaerti (Formicidae: Ponerinae). Insectes Soc. 43: 87-99. Dejean, A., and Lachaud, J. P. 1991. Polyethism in the Ponerine ant Odontomachus troglodytes: interaction of age and interindividual variability. Sociobiology. 18: 177-191. Deyrup, M. 2016. Ants of Florida: identification and natural history. Boca Raton: CRC Press. 26-29. Ding, G., Hasselmann, M., Huang, J., Roberts, J., Oldroyd, B. P., and Gloag, R. 2021. Global allele polymorphism indicates a high rate of allele genesis at a locus under balancing selection. Heredity, 126: 163-177. Ding, G., Xu, H., Oldroyd, B., and Gloag, R. S. 2017. Extreme polyandry aids the establishment of invasive populations of a social insect. Heredity. 119: 381-387. Drescher, J., Blüthgen, N., and Feldhaar, H. 2007. Population structure and intraspecific aggression in the invasive ant species Anoplolepis gracilipes in Malaysian Borneo. Mol. Ecol. 16: 1453-1465. Du, L., Zhang, C., Liu, Q., Zhang, X., and Yue, B. 2018. Krait: An ultrafast tool for genome-wide survey of microsatellites and primer design. Bioinform. 34: 681- 683. Espadaler, X., and Rey, S. 2001. Biological constraints and colony founding in the polygynous invasive ant Lasius neglectus (Hymenoptera, Formicidae). Insectes Soc. 48: 159-164. Evanno, G., Regnaut, S., and Goudet, J. 2005. Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol. 14: 2611-2620. Evans, H. C., and Leston, D. 1971. A Ponerine ant (Hym., Formicidae) associated with Homoptera on cocoa in Ghana. Bull. Entomol. Res. 61: 357-362. Eyer, P. A., Matsuura, K, Vargo, E. L., Kobayashi, K., Yashiro, T., Suehiro, W., Himuro, C., Yokoi, T., Gue ́nard, B., Dunn R. R., and Tsuji, K. 2018. Inbreeding tolerance as a pre-adapted trait for invasion success in the invasive ant Brachyponera chinensis. Mol. Ecol. 27: 4711-4724. Eyer, P. A., and Vargo, E. L. 2021. Breeding structure and invasiveness in social insects. Curr. Opin. Insect. Sci. 46: 24-30. Farji-Brener, A. G., and Ghermandi, L. 2008. Leaf-cutting ant nests near roads increase fitness of exotic plant species in natural protected areas. Proc. Biol. Sci. 275: 1431-1440. Fayle, T. M., Scholtz, O., Dumbrell, A. J., Russell, S., Segar, S. T., and Eggleton P. 2015. Detection of mitochondrial COII DNA sequences in ant guts as a method for assessing termite predation by ants. PLoS One. 10: e0122533. Fernández-Escudero, I., Pamilo, P., and Seppä, P. 2002. Biased sperm use by polyandrous queens of the ant Proformica longiseta. Behav. Ecol. Sociobiol. 51: 207-213. Fisher B. L., and Smith M. A. 2008. A revision of Malagasy species of Anochetus mayr and Odontomachus latreille (Hymenoptera: Formicidae). PLoS One. 3: e1787. Foucaud, J., Fournier, D., Orivel, J., Delabie, J. H. C., Loiseau, A., Le Breton, J., Kergoat, G., and Estoup, A. 2007. Sex and clonality in the little fire ant. Mol. Biol. Evol. 24: 2465-2473. Foucaud, J., Jourdan, H., Le Breton, J., Loiseau, A., Konghouleux, D., and Estoup, A. 2006. Rare sexual reproduction events in the clonal reproduction system of introduced populations of the little fire ant. Evolution. 60: 1646-1657. Foucaud, J., Orivel, J., Fournier, D., Delabie, J. H., Loiseau, A., Le Breton, J., Cerdan, P., and Estoup, A. 2009. Reproductive system, social organization, human disturbance and ecological dominance in native populations of the little fire ant, Wasmannia auropunctata. Mol. Ecol. 18: 5059-5073. Fournier, D., Estoup, A., Orivel, J., Foucaud, J., Jourdan, H., Le Breton, J., and Keller, L. 2005. Clonal reproduction by males and females in the little fire ant. Nature. 435: 1230-1234. Framenau, V.W., Thomas, M.L. 2008. Ants (Hymenoptera: Formicidae) of Christmas Island (Indian Ocean): identification and distribution. Rec. West. Aust. Mus. 25: 45-85. Fresneau, D., and Dupuy, P. 1988. A study of polyethism in a ponerine ant: Neoponera apicalis (Hymenoptera, formicidae). Anim. Behav. 36: 1389-1399. Gippet, J.M., Bertelsmeier, C. 2021. Invasiveness is linked to greater commercial success in the global pet trade. Proc. Natl. Acad. Sci. U.S.A. 118: e2016337118. Giraud, T., Pedersen, J. S., and Keller, L. 2002. Evolution of supercolonies: the Argentine ants of southern Europe. Proc. Natl. Acad. Sci. U.S.A. 99: 6075-6079. Green, P. T., and O’Dowd, D. J. 2009. Management of invasive invertebrates: Lessons from the management of an invasive alien ant. OUP. 1: 153-172. Greenberg, L., Fletcher, D. J. C., and Vinson, S. B. 1985. Differences in worker size and mound distribution in monogynous and polygynous colonies of the fire ant Solenopsis invicta Buren. J. Kans. Entomol. Soc. 58: 9-18. Gruber, M. A. M., Hoffmann, B. D., Ritchie, P. A., and Lester, P. J. 2012. Recent behavioural and population genetic divergence of an invasive ant in a novel environment. Divers. Distrib. 18: 323-333. Hagan, T., and Gloag, R. 2021. Founder effects on sex determination systems in invasive social insects. Curr. Opin. Insect Sci. 46: 31-38. Haskins, C. P., and Zahl, P. A. 1971. The reproductive pattern of Diponera grandis Roger (Hymenoptera, Ponerinae) with notes on the ethology of the species. Psyche. 78: 1-11. Helanterä, H. 2022. Supercolonies of ants (Hymenoptera: Formicidae): ecological patterns, behavioural processes and their implications for social evolution. Myrmecol. News. 32: 1-22. Heller, N. E. 2004. Colony structure in introduced and native populations of the invasive Argentine ant, Linepithema humile. Insectes Soc. 51: 378-386. Helms, K. R., and Vinson, S. B. 2002. Widespread association of the invasive ant Solenopsis invicta with an invasive mealybug. ESA. 83: 2425-2438. Herrera, H.W., Longino, J.T., and Dekoninck, W. 2014. New records of nine ant species (Hymenoptera: Formicidae) for the Galapagos Islands. Pan-Pac. Entomol. 90: 72-81. Hoffmann, B. D. 2014. Quantification of supercolonial traits in the yellow crazy ant, Anoplolepis gracilipes. J. Insect Sci. 14: 1-21. Hoffmann, B. D., Andersen, A., and Hill, G. 1999. Impact of an introduced ant on native rain forest invertebrates: Pheidole megacephala in monsoonal Australia. Oecologia. 120: 595-604. Hoffmann, B. D., and Saul, W. C. 2010. Yellow crazy ant (Anoplolepis gracilipes) invasions within undisturbed mainland Australian habitats: no support for biotic resistance hypothesis. Biol Invasions. 12: 3093-3108. Hölldobler, B., and Wilson, E. O. 1990. “Colony odor and kin recognition” in The Ants. HUP. 197-208. Holway, D. A., Lach, L., Suarez, A. V., Tsutsui, N. D., and Case, T. J. 2002. The causes and consequences of ant invasions. Annu. Rev. Ecol. Evol. Syst. 33: 181- 233. Holzer, B., Keller, L. and Chapuisat, M. 2009. Genetic clusters and sex-biased gene flow in a unicolonial Formica ant. BMC Evol. Biol. 9: 69. Ingram, K. K. 2002. Flexibility in nest density and social structure in invasive populations of the Argentine ant, Linepithema humile. Oecologia. 133: 492-500. Ito, F. 1996. Colony characteristics of the Indonesian Myrmicine ant Myrmecina sp. (Hymenoptera, Formicidae, Myrmicinae): polygynous reproduction by ergatoid Queens. Ann. Entomol. 89: 550-554. Jourdan, H., Bourguet, E., Mille, C., Gula. R., and Theuerkauf J. 2022. Impact of invasive little fire ants Wasmannia auropunctata on rainforest soil fauna: implications for conservation of the endangered flightless kagu of New Caledonia. Biol Invasions. 24: 3675-3680. Kopelman, N. M., Mayzel, J., Jakobsson, M., Rosenberg, N. A., and Mayrose, I. 2015. "CLUMPAK: a program for identifying clustering modes and packaging population structure inferences across K". Mol. Ecol. Resour. 15: 1179-1191. Krushelnycky, P. D., Joe, S. M., Medeiros, A. C., Daehler, C. C., and Loope, L. L. 2005. The role of abiotic conditions in shaping the long-term patterns of a high-elevation Argentine ant invasion. Divers. Distrib. 11: 319-331. Kümmerli, R., and Keller, L. 2007. Contrasting population genetic structure for workers and queens in the putatively unicolonial ant Formica exsecta. Mol. Ecol. 16: 4493-4503. Lach, L. 2013. A comparison of floral resource exploitation by native and invasive Argentine ants. Arthropod Plant Interact. 7: 177-190. Lach, L., Tillberg, C. V., and Suarez, A. V. 2010. Contrasting effects of an invasive ant on a native and an invasive plant. Biol. Invasions. 12: 3123–3133. Lachaud, J. P., and Dejean, A. 1991. Food sharing in Odontomachus troglodytes (Santschi): a behavioral intermediate stage in the evolution of social food exchange in ants. An. Biol. 17: 53-61. Lacy, K. D., Shoemaker, D., and Ross, K. G. 2019. Joint evolution of asexuality and queen number in an ant. Curr. Biol. 29: 1394-1400. Ledoux A. 1952. Recherches préliminaires sur quelques points de la biologie d’Odontomachus assiniensis Latr. (Hym. Form., Poneridae). Ann. Sci. Nat. 14: 231-248. Lemos, A. S. M., Azevedo-Silva, M., Gonçalves-Neto, S., Souza, A. P., and Oliveira, P. S. 2020. Microsatellites for the Neotropical ant, Odontomachus chelifer (Hymenoptera: Formicidae). J. Insect Sci. 20: 28. Lenancker, P., Hoffmann, B. D., Tek Tay, W., and Lach, L. 2019. Strategies of the invasive tropical fire ant (Solenopsis geminata) to minimize inbreeding costs. Sci. Rep. 9: 4566. Li, Y. L., and Liu, J. X. 2018. Structure Selector: a web-based software to select and visualize the optimal number of clusters using multiple methods. Mol. Ecol. Resour. 18: 176-177. Liang, K. Y., and Zeger, S. L. 1986. Longitudinal data analysis using generalized linear models. Biometrika. 73: 13-22. Ligon, R. A., Siefferman, L., and Hill, G. E. 2011. Invasive fire ants reduce reproductive success and alter the reproductive strategies of a native vertebrate insectivore. PLoS One. 6: e22578. Lin, T. H., Chan, K. W., Hsu, F. C., Lin, C. C., and Tseng, H. Y. 2023. Putative source and niche shift pattern of a new alien ant species (Odontomachus troglodytes) in Taiwan. PeerJ. 11: e14718. Liu, K. L., Tseng, S. P., Tatsuta, H., Tsuji, K., Tay, J. W., Singham, G.V., Yang, C. C. S., and Neoh, K. B. 2022. Population genetic structure of the globally introduced big‐headed ant in Taiwan. Ecol. Evol. 12: e9660. Long, A. K., Conner, L. M., Smith, L. L., and Mccleery, R. A. 2015. Effects of an invasive ant and native predators on cotton rat recruitment and survival. J. Mammal. 96: 1135-1141. Lubin, Y. D. 1984. Changes in the native fauna of the Galápagos Islands following invasion by the little red fire ant, Wasmannia auropunctata. Biol. J. Linn. Soc. 21: 229-242. Luque, G. M., Bellard, C., Bertelsmeier, C., Bonnaud, E., Genovesi, P., Simberloff, D., and Courchamp, F. 2014. The 100th of the world's worst invasive alien species. Biol. Invasions. 16: 981-985. MacGown, J.A., Boudinot, B., Deyrup, M., and Sorger D.M. 2014. A review of the Nearctic Odontomachus (Hymenoptera: Formicidae: Ponerinae) with a treatment of the males. Zootaxa. 3802: 515-552. McGeoch, M., McGrannachan, C., O’Connor, R., Clarke, D., Palmer, D., Yeates, D., Zalucki, M., Lach, L., Saunders, M., Chown, S., Burgess, T., Riegler, M., Roy, H., Kumschick, S., Liebold, A., Pagad, S., Cox, A., Booth, C., and Low, T. 2020. Invasive Insects: Risks and Pathways Project. Invasive Species Council and Monash University. 8-15. Medeiros, F. N. S., Lopes, L. E., Moutinho, P. R. S., Oliveira, P. S., and Hölldobler, B. 1992. Functional polygyny, agonistic interactions and reproductive dominance in the Neotropical ant Odontomachus chelifer (Hymenoptera, Formicidae, Ponerinae). Ethology. 91: 134-146. Mikheyev, A. S. 2008. History, genetics and pathology of a leaf-cutting ant introduction: a case study of the Guadeloupe invasion. Biol Invasions. 10: 467- 473. Mikheyev, A. S., Bresson, S., and Conant, P. 2009. Single‐queen introductions characterize regional and local invasions by the facultatively clonal little fire ant Wasmannia auropunctata. Mol. Ecol. 18: 2937-2944. Murata, N., Tsuji, K., and Kikuchi, T. 2017. Social structure and nestmate discrimination in two species of Brachyponera ants distributed in Japan. Entomol. Sci. 20: 86-95. Nei, M. 1973. Analysis of gene diversity in subdivided populations. Proc. Natl. Acad. Sci. USA. 70: 3321-3. O’Fallon, S., Suarez, A. V., and Smith, A. A. 2016. A comparative analysis of rapid antennation behavior in four species of Odontomachus trap-jaw ants. Insectes Soc. 63: 265-270. Paiva, R. V. S., and Brandão, C. R. F. 1995. Nests, worker population, and reproductive status of workers, in the giant queenless ponerine ant Dinoponera Roger (Hymenoptera Formicidae). Ethol. Ecol. Evol. 7: 297-312. Parker, J., and Kronauer, D. J. C. 2021. How ants shape biodiversity. Curr. Biol. 31: 1208-1214. Peakall R. O. D., and Smouse P. E. 2006. GENALEX 6: genetic analysis in Excel. Population genetic software for teaching and research. Mol. Ecol. Notes. 6: 288- 295. Pearcy, M., Goodisman, M. A. D., and Keller, L. 2011. Sib mating without inbreeding in the longhorn crazy ant. Proc. R. Soc. B. 278: 2677-2681. Pedersen, J. S., Krieger, M. J. B., Vogel, V., Giraud, T., and Keller, L. 2006. Native supercolonies of unrelated individuals in the invasive Argentine ant. Evolution. 60: 782-791. Peeters, C. 1991. The occurrence of sexual reproduction among ant workers. Biol. J. Linn. Soc. 44: 141-152. Pie, M. R. 2002. Behavioral repertoire, age polyethism and adult transport in Ectatomma opaciventre (Formicidae: Ponerinae). Insect Behav. 15: 25-35. Powell, S., and Tschinkel, W. R. 1999. Ritualized conflict in Odontomachus brunneus and the generation of interaction-based task allocation: a new organizational mechanism in ants. Anim. Behav. 58: 965-972. Puechmaille, S., J. 2016. The program structure does not reliably recover the correct population structure when sampling is uneven: subsampling and new estimators alleviate the problem. Mol. Ecol. Resour. 16: 608-27. Rabeling, C., Gonzales, O., Schultz, T. R., Bacci, Jr. M., Garciad, M. V. B., Verhaaghe, M., Ishaka, H. D., and Muellera, U. G. 2011. Cryptic sexual populations account for genetic diversity and ecological success in a widely distributed, asexual fungus-growing ant. Proc. Natl. Acad. Sci. U.S.A. 108: 12366-12371. Rabeling, C., Lino-Neto, J., Cappellari, S. C., Dos-Santos, I. A., Mueller, U. G., and Bacci, Jr. M. 2009. Thelytokous parthenogenesis in the fungus-gardening ant Mycocepurus smithii (Hymenoptera: Formicidae). PLoS One. 4: e6781. Robinson E. J. 2014. Polydomy: the organisation and adaptive function of complex nest systems in ants. Curr. Opin. Insect Sci. 5: 37-43. Roeder, K. A., Bujan, J., de Beurs, K. M., Weiser, M. D., and Kaspari, M. 2021. Thermal traits predict the winners and losers under climate change: an example from North American ant communities. Ecosphere. 12: e03645. Ross, K. G., and Fletcher, D. J. C. 1985 a. Comparative study of genetic and social structure in two forms of the fire ant Solenopsis invicta (Hymenoptera: Formicidae). Behav. Ecol. Sociobiol. 17: 349-356. Ross, K. G., and Fletcher, D. J. C. 1985 b. Genetic origin of male diploidy in the fire ant, Solenopsis invicta (Hymenoptera: Formicidae), and its evolutionary significance. Evolution. 39: 888-903. Ross, K. G., and Fletcher, D. J. C. 1986. Diploid male production — a significant colony mortality factor in the fire ant Solenopsis invicta (Hymenoptera: Formicidae). Behav. Ecol. Sociobiol. 19: 283-291. Ross, K. G., Krieger, M. J. B., Keller, L., and Shoemaker, D. D. 2007. Genetic variation and structure in native populations of the fire ant Solenopsis invicta: evolutionary and demographic implications. Biol. J. Linn. Soc. 92: 541–560. Ross, K. G., Vargo, E. L., Keller, L., and Trager, J. C. 1993. Effect of a founder event on variation in the genetic sex-determining system of the fire ant Solenopsis invicta. Genetics. 135: 843–854. Roulston, T. H., Buczkowski, G., and Silverman, J. 2003. Nestmate discrimination in ants: Effect of bioassay on aggressive behavior. Insectes Soc. 50: 151-159. Rozen S., and Skaletsky H. 1999. Primer3 on the WWW for general users and for biologist programmers. Methods Mol. Biol. 132: 365-386. Schatz, B., Lachaud, J. P., and Beugnon, G. 1996. Polyethism within hunters of the ponerine ant, Ectatomma ruidum Roger (Formicidae, Ponerinae). Insectes Soc. 43: 111-118. Schmidt, C. A. 2013. Molecular phylogenetics of ponerine ants (Hymenoptera: Formicidae: Ponerinae). Zootaxa. 2013:3647: 201-50. Schmidt, C. A., and Shattuck, S. O. 2014. The higher classification of the ant subfamily Ponerinae (Hymenoptera: Formicidae), with a review of Ponerine ecology and behavior. Zootaxa. 3817: 1-242. Seifert, B. 2007. Die Ameisen Mittel- und Nordeuropas. Lutra. 204-320. Seifert, B. 2010. Intranidal mating, gyne polymorphism, polygyny, and supercoloniality as factors for sympatric and parapatric speciation in ants. Ecol. Entomol. 35: 33-40. Shoemaker, D. D., Deheer, C. J., Krieger, M. J. B., Ross, K. G. 2006. Population genetics of the invasive fire ant Solenopsis invicta (Hymenoptera: Formicidae) in the United States. Ann. Entomol. 99: 1213-1233. Smith A. A., Millar J. G., Hanks L. M., and Suarez A. V. 2013. A conserved fertility signal despite population variation in the cuticular chemical profile of the trap-jaw ant Odontomachus brunneus. J. Exp. Biol. 216: 3917-3924. Sorger, D. M., Booth, W., Wassie Eshete, A., Lowman, M., and Moffett, M. W. 2017. Outnumbered: a new dominant ant species with genetically diverse supercolonies in Ethiopia. Insectes Soc. 64: 141-147. Sorger D. M., and Zettel H. 2011. On the ants (hymenoptera: Formicidae) of the Philippine Islands: V. the genus Odontomachus Latreille, 1804. Myrmecol. News. 14: 141-163. Strassmann, J. 2001. The rarity of multiple mating by females in the social Hymenoptera. Insectes Soc. 48: 1-13. Suarez, A. V., Tsutsui, N. D., Holway, D. A., and Case, T. J. 1999. Behavioral and genetic differentiation between native and introduced populations of the Argentine ant. Biol Invasions. 1: 45-53. Taheri. A., Reyes-Lopez, J. L., and Bennas, N. 2016. Faible niveau d'agressivité intraspécifique chez les colonies d'Anochetus ghilianii (Spinola, 1851) (Hymenoptera: Formicidae) au Rif occidental (Nord-Ouest du Maroc). Écoscience. 22: 157-165. Tanner, C., and Adler, F. R. 2009. To fight or not to fight: context-dependent interspecific aggression in competing ants. Anim. Behav. 77: 297-305. Thomas, M. L., Becker, K., Abbott, K., and Feldhaar, H. 2010. Supercolony mosaics: two different invasions by the yellow crazy ant, Anoplolepis gracilipes, on Christmas Island, Indian Ocean. Biol. Invasions. 12: 677-687. Thomas, M. L., Payne-Makrisâ, C. M., Suarez, A. V., Tsutsui, N. D., and Holway, D. A. 2006. When supercolonies collide: territorial aggression in an invasive and unicolonial social insect. Mol. Ecol. 15: 4303-4315. Thomas, M. L., Payne-Makrisâ, C. M., Suarez, A. V., Tsutsui, N. D., and Holway, D. A. 2007. Contact between supercolonies elevates aggression in Argentine ants. Insectes Soc. 54: 225-233. Tseng, S. P., Darras, H., Lee, C. Y., Yoshimura, T., Keller, L., and Yang, C. C. S. 2019. Isolation and characterization of novel microsatellite markers for a globally distributed invasive ant Paratrechina longicornis (Hymenoptera: Formicidae). Eur. J. Entomol 116: 253-257. Tseng, S. P., Hugo, D., Hsu, P. W., Yoshimura, T., Lee, C. Y., Wetterer, J. K., Keller, L., and Yang, C. C. S. 2023. Genetic analysis reveals the putative native range and widespread double‐clonal reproduction in the invasive longhorn crazy ant. Mol. Ecol. 32: 1020-1033. Tsutsui, N. D. 2004. Scents of self: the expression component of self/non-self recognition systems. Ann. Zool. Fenn. 41: 713-727. Tsutsui, N. D., and Case, T. J. 2001. Population genetics and colony structure of the Argentine ant (Linepithema humile) in its native and introduced ranges. Evolution. 55: 976-985. Tsutsui, N. D., and Suarez, A. V. 2003. The colony structure and population biology of invasive ants. Biol. Conserv. 17: 48-58. Tsutsui, N. D., Suarez, A. V., Spagna, J. C., and Johnston, J. S. 2008. The evolution of genome size in ants. BMC Evol. Biol. 8: 64. van Zweden, J. S., Fürst, M. A., Heinze, J., and D'Ettorre, P. 2007. Specialization in policing behaviour among workers in the ant Pachycondyla inversa. Proc. Biol. Sci. 274: 1421-1428. Vásquez, G. M., and Silverman, J. 2008. Queen acceptance and the complexity of nestmate discrimination in the Argentine ant. Behav. Ecol. Sociobiol. 62: 537- 548. Vargo, E. L. 2003. Hierarchical analysis of colony and population genetic structure of the eastern subterranean termite, Reticulitermes flavipes, using two classes of molecular markers. Evolution. 57: 2805–2818. Vargo, E. L., and Fletcher, D. J. 1989. On the relationship between queen number and fecundity in polygyne colonies of the fire ant Solenopsis invicta. Physiol. Entomol. 14: 223-232. Warren, R., and Goodman, M. C. 2019. Non-native ant invader displaces native ants but facilitates non-predatory invertebrates. Biol. Invasions. 21: 2713-2722. Wettere,r J.K. 2020. Spread of the non-native Neotropical trap-jaw ant Odontomachus ruginodis (Hymenoptera: Formicidae) in Florida. Trans. Am. Entomol. Soc. 146: 591-600. Wheeler, W. M. 1900. A study of some Texan Ponerinae. Biol. Bull. 2: 1-31. Whitehorn, P. R., Tinsley, M. C., Brown, M. J., Darvill, B., and Goulson, D. 2009. Impacts of inbreeding on bumblebee colony fitness under field conditions. BMC Evol. Biol. 9: 152. Whiting, P. W. 1939. Sex determination and reproductive economy in Habrobracon. Genetics. 24: 110-111. Whiting, P. W. 1943. Multiple alleles in complementary sex determination of Habrobracon. Genetics. 28: 365-382. Wilson, E. O. 1971. “Social Homeostasis and the Superorganism” in The Insect Societies. HUP. 306-319. Yang, C. C., Shoemaker, D. D., Wu, W. J., and Shih, C. J. 2008. Population genetic structure of the red imported fire ant, Solenopsis invicta, in Taiwan. Insectes Soc. 55: 54-65. Yokoyama, S., and Nei, M. 1979. Population dynamics of sex-determining alleles in honey bees and self-incompatibility alleles in plants. Genetics. 91: 609-626. | - |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/94351 | - |
dc.description.abstract | 隨著人類活動擴張,許多物種被帶離其原生地,對全球生態和農業造成嚴重威脅。非洲穴居鋸針(Odontomachustroglodytes) 原生於非洲,近年來族群爆發於台灣西南部果樹園,對於台灣生態及農業經濟造成潛在危害。與此同時,穴居鋸針蟻也展現出超級群落的潛力,加深此物種潛在的侵略性。目前有關這種鋸針蟻的族群結構侵略特性及基因層面的研究十分有限,這將使得制定相對防治方針時缺乏參考資料。本研究旨在填補有關穴居鋸針蟻的知識缺口,了解其行為 模式、生殖策略和族群結構。
本研究收集了嘉義和高雄的穴居鋸針蟻族群,進行巢間攻擊行為實驗,以探討此物種是否存在超級群落。實驗結果顯示,不同巢的穴居鋸針蟻並未展現攻擊性,表示入侵族群間具有相容性,可能形成高密度蟻群壟斷周圍資源。由於目前非洲穴居鋸針蟻沒有可用的微衛星遺傳標記,本研究中利用次世代定序技術篩選微衛星基因座,測試20組標記後,篩選出11個具有多型性的遺傳標記進行遺傳分析。遺傳分析結果顯示穴居鋸針蟻只使用有性生殖模式,並且在等位基因上缺乏多樣性。族群分化分析顯示嘉義族群與高雄族群可分為兩個不同的族群,代表台灣的入侵族群有可能是多次入侵的。然而,嘉義的族群卻同時具有較低的等位 基因數,並且缺乏族群獨有的等位基因,使得嘉義的族群也有可能源自等位基因 數更高並且具有獨有的等位基因的高雄族群。 本研究不僅提供台灣的穴居鋸針蟻入侵族群在行為、生殖模式及族群結構上的資訊,也是鋸針蟻族內首次記錄到超級群落的特性。我們的研究有助於解析新入侵螞蟻族群的結構和特性,並為該物種的生物防治管理和策略制定提供生態習性與族群遺傳分化上的貢獻。 | zh_TW |
dc.description.abstract | Human activities have facilitated the global spread of numerous invasive species. Among invasive insects, ants are particularly successful due to reproductive flexibility, including mechanisms like polygyny and asexual reproduction, which likely facilitate their establishment and expansion in new environments. Besides reproductive flexibility, some ant species develop “Supercoloniality”, where individuals from geographically disparate colonies recognize each other as colony members. Supercoloniality diminishes intraspecific competition and strengthens resource monopolization, allowing these ants to dominate native competitors and disrupt the entire ecosystem. Odontomachus troglodytes, a recently-invaded African Ponerinae that took root in the southern part of Taiwan, is suspected to possess traits similar to other successful invasive ants. Clarifying the social structure and reproductive mechanism of this alien species can contribute to its scarce studies and the development of effective prevention measures that may mitigate its impact on the native fauna. Twelve colonies were collected followed by ant-to-ant aggression assays that were conducted to test the hostility of the colonies within and between the two invaded regions: Chiayi and Kaohsiung. The aggressiveness of every pair was graded, with a total of 107 bioassay pairs exhibiting no aggressive behaviour toward non-nestmates up to 120 kilometers apart, suggesting that this newly invaded Ponerinae possess the fundament trait of supercoloniality, which would be the first record in the Odontomachini tribe and in the Ponerinae subgamily. Rapid antennation among different pairing groups were analyzed and the duration of rapid antennation over time was met with a steep decline from the second bout. Microsatellite genotyping with the assist of field and laboratory observations were used to clarify the breeding structure and reproductive mechanism of the invaded O. troglodytes populations. Twenty potential microsatellite loci were selected, of which 12 were successfully amplified and 11 were found to be polymorphic. The collected colonies exhibited a high percentage of polygyny, with none of the genotyping results of the colonies indicate a reproduction method outside of reproducing sexually. Additionally, eight out of the nine genotyped colonies produced diploid males and/or extracted diploid sperm, indicating the introduced populations are under inbreeding situation typical to newly invaded ant species. The population differentiation analysis suggests two distinct genetic clusters exist between the two regions, supporting the hypothesis of multiple invasions by two distinct populations, yet the allelic summary shows that the Chiayi region has less abundant allele composition and lacks regional private alleles, arguing the case of post- colonization genetic mutation due to geographical barriers after inland bridgehead expansion. Our study fills the knowledge gaps about this newly invaded ant species on both behavioral and molecular perspectives and serve as the fundamental base for future mitigation measurements to minimize the impact of this alien species on the native ecosystems of Taiwan. | en |
dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-08-15T16:59:25Z No. of bitstreams: 0 | en |
dc.description.provenance | Made available in DSpace on 2024-08-15T16:59:25Z (GMT). No. of bitstreams: 0 | en |
dc.description.tableofcontents | 中文摘要 I
Abstract III Context VI List of Figures IX List of Tables X 1. Introduction 1 2. Materials and Method 11 2.1 Sampling 11 2.2 Aggression assays 12 2.2.1 Number differences of worker-worker in aggression assays 12 2.2.2 Assessment of worker introduction methods in aggression assays 13 2.2.3 Colour marking 14 2.2.4 Aggression assays 15 2.2.5 Analysis of RA and encounter occurrence 18 2.3 Development of microsatellite markers 18 2.4 DNA extraction and microsatellite genotyping 21 2.5 Characterization of microsatellite loci 22 2.6 Colony affiliation 22 2.7 Genetic variance 23 2.8 Breeding structure analysis 23 2.9 Population differentiation 24 3. Results 26 3.1 Aggression assays and rapid antennation analysis 26 3.2 Microsatellite loci result analysis 27 3.3 Observed breeding and social structure 28 3.4 Colony affiliation of the two invaded regions 29 3.5 Genetic variance percentage between the invaded populations, among colonies and within colonies of Taiwan 30 3.6 Breeding structure of inferred parentages 30 3.7 Population differentiation 32 4. Discussion 34 4.1 Supercoloniality and its potential in Poneroids 34 4.2 RA and bout frequency 35 4.3 Additional behavioral observations in O. troglodytes: nestmate carrying and queen domination 38 4.4 Diploidy and breeding structure of O. troglodytes 41 4.5 The influence of the founder effect 44 4.6 Population differentiation and its possible introduction pathways 45 5. Conclusion 49 References 64 Appendix 78 | - |
dc.language.iso | en | - |
dc.title | 穴居鋸針蟻的超級群落與微衛星標幟 – 台灣新興 引入針蟻亞科鋸針蟻之初探 | zh_TW |
dc.title | Exploring supercoloniality and novel microsatellite markers in Odontomachus troglodytes: insights into a recently introduced Ponerinae ant in Taiwan | en |
dc.type | Thesis | - |
dc.date.schoolyear | 112-2 | - |
dc.description.degree | 碩士 | - |
dc.contributor.oralexamcommittee | 吳立偉;曾惠芸 | zh_TW |
dc.contributor.oralexamcommittee | Li-Wei Wu;Hui-Yun Tseng | en |
dc.subject.keyword | 入侵物種,微衛星,巢間攻擊行為,穴居鋸針蟻,針蟻亞科,超級群落, | zh_TW |
dc.subject.keyword | aggression assay,invasive species,microsatellite marker,Odontomachus troglodytes,Ponerinae,polygynous,supercolony, | en |
dc.relation.page | 109 | - |
dc.identifier.doi | 10.6342/NTU202403329 | - |
dc.rights.note | 同意授權(全球公開) | - |
dc.date.accepted | 2024-08-08 | - |
dc.contributor.author-college | 生物資源暨農學院 | - |
dc.contributor.author-dept | 昆蟲學系 | - |
顯示於系所單位: | 昆蟲學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-112-2.pdf | 5.11 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。