請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/94345完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 林宗岳 | zh_TW |
| dc.contributor.advisor | Tsung-Yueh Lin | en |
| dc.contributor.author | 葉子玄 | zh_TW |
| dc.contributor.author | Tzu-Hsuan Yeh | en |
| dc.date.accessioned | 2024-08-15T16:56:31Z | - |
| dc.date.available | 2024-08-16 | - |
| dc.date.copyright | 2024-08-15 | - |
| dc.date.issued | 2024 | - |
| dc.date.submitted | 2024-08-01 | - |
| dc.identifier.citation | International Towing Tank Conference (2021). ITTC-Recommended Procedures and Guidelines 1978 ITTC Performance Prediction Method 7.5-02-03-01.4.
International Maritime Organization (2023). Strategic plan for the organization for the six-year period 2024 to 2029 Assembly 33rd session Agenda item 8(a). Berthelsen, F. H., & Nielsen, U. D. (2021). Prediction of ships’ speed-power relationship at speed intervals below the design speed. Transportation Research. Part D: Transport & Environment, 99, Article 102996. https://doi.org/10.1016/j.trd.2021.102996 Machado, T.A. (2018). Internship and master thesis : Self-propulsion CFD calculations using the Continental Method. International Towing Tank Conference (2021). ITTC-Recommended Procedures and Guidelines Propulsion/Bollard Pull Test 7.5-02-03-01.1. Ahmed, Y. M., Yaakob, O., Rashid, M. F. A., & Elbatran, A. H. (2015). Determining Ship Resistance Using Computational Fluid Dynamics (CFD). Journal of Transport System Engineering. 2. 20-25. Jasak, H., Vukc ̌evic ́, V., Gatin, I., & Lalovic ̌, I. (2019). CFD validation and grid sensitivity studies of full scale ship self propulsion. International Journal of Naval Architecture and Ocean Engineering. 11. 10.1016/j.ijnaoe.2017.12.004. Dadhich, V., & Kumar, R. (2019). Numerical analysis of wing-tip mounted propeller interaction using actuator disk model. 21st Annual CFD Symp, Bangalore. CONWAY, J. T. (1998). Exact actuator disk solutions for non-uniform heavy loading and slipstream contraction. Journal of Fluid Mechanics, 365, 235–267. doi:10.1017/S0022112098001372. Wu, P.-C. (2022). CFD body force propeller model with blade rotational effect. Appl. Sci. 12, 11273. https://doi.org/10.3390/app122111273 Hsin, C.-Y., Lin, C.-T., Lee, C.-P., Lin, C.-C., & Chen, J.-H. (2016). Study of the wave effects on propeller performance by computations. J. Taiwan Soc. Nav. Archit. and Mar. Eng. 35, 185–197. International Towing Tank Conference (2021). ITTC-Recommended Procedures and Guidelines Resistance Test 7.5-02-02-01. Alfonsi, G. (2009). Reynolds-Averaged Navier-Stokes Equations for Turbulence Modeling. Applied Mechanics Reviews - APPL MECH REV. 62. 10.1115/1.3124648. Hirt, C. W., & Nichols, B. D. (1981). Volume of fluid (VOF) method for the dynamics of free boundarie.s J. Comput. Phys. 39, 201–225. Siemens Star-CCM+ user manual, ver. 2020.1. Goldstein, S. (1929). On the vortex theory of screw propellers. Proc. R. Soc. Lond. A123440–465. https://doi.org/10.1098/rspa.1929.0078. Yeh, T.-H., Chen, S.-H., Lin, T.-Y., & Chau, S.-W. (2023a). Numerical Investigation of the Propulsive Efficiency of a Containership under Load Variation. IOP Conf. Ser.: Mater. Sci. Eng., 1288, 012058. Yeh, T.-H., Chen, S.-H., Lin, & T.-Y. (2023b). Numerical Investigation of the Propulsive Efficiency of a Containership under Load Variation. Proceedings of 10th PAAMES and AMEC 2023, Kyoto, Japan. Liao, J.-K. (2016). Experimental Study on Energy Efficiency Design Index by Using Free Running Model Test. National Taiwan University Department of Engineering Science and Ocean Engineering Master Thesis. Lee, C.-M., Seo, J.-H., Yu, J.-W., Choi, J.-E., Lee, I. (2019). Comparative study of prediction methods of power increase and propulsive performances in regular head short waves of KVLCC2 using CFD. International Journal of Naval Architecture and Ocean Engineering. 11. 10.1016/j.ijnaoe.2019.02.001. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/94345 | - |
| dc.description.abstract | 本研究以船模試驗及計算流體力學方法CFD探討排水型船在變動負荷中推進因子及推進效率變化。國際船模拖曳水槽會議ITTC建議船舶推進性能除了在自推點推估實船效率,還能透過變負荷試驗獲得環境負荷變動對於推進效率的影響。
船模試驗以一油輪船模作為研究目標,分別進行阻力試驗、螺槳單獨性能試驗及推進試驗,其中推進試驗採用英式法之試驗流程,並透過給定螺槳轉速,由零推力點至零拖力點為試驗範圍進行變負荷試驗,以計算各組船速下推進係數與轉速的關係,用以進一步求得變負荷相依係數。 CFD則以相同船模之CAD檔進行模擬,透過計算流體力學軟體Star-CCM+求解暫態自由液面Reynolds-averaged Navier-Stokes方程。螺槳採用致動盤模型進行模擬,以節省計算時間。選用船模試驗中之一組船速模擬變負荷試驗,以自推點為參考,在更高和更低的螺槳轉速下,探討推進因子及推進效率與螺槳轉速間之關係,從而計算阻力-推進效率相依係數 ζ_P 與馬力-轉速相依係數 ζ_N ,並與試驗進行比較和探討。 我們可以發現,船模試驗與CFD模擬之各推進係數變化趨勢一致。當船體阻力上升時,螺槳之轉速、推力及推力係數隨之提升,前進係數、推減係數和跡流係數則有下降的趨勢。在推進效率方面,船殻效率、螺槳單獨效率及準推進效率隨阻力增加而下降,試驗中的螺槳對轉效率亦有下降的趨勢。 | zh_TW |
| dc.description.abstract | This study investigates the variation of propulsion factors of a displacement ship under various ship loading conditions by using model tests and Computational Fluid Dynamics (CFD) methods. The International Towing Tank Conference (ITTC) suggests that ship propulsion performance can be evaluated not only by estimating ship efficiency in full-scale at the self-propulsion point, but also by carrying out load variation tests to understand the effect of load variation on propulsion efficiency.
The model test selected a tanker model as the research subject, and resistance tests, open-water tests, and propulsion tests are conducted. The propulsion tests followed the British method, with the load variation test conducted by adjusting the propeller rotation rate to determine the relationship between propulsion factors and the rotation rate under different ship speeds. This allowed the calculation of load variation coefficients. CFD simulations were performed with the same model as the model tests, using the software Star-CCM+ to solve the transient free-surface Reynolds-averaged Navier-Stokes equations. The propeller was simulated using the actuator disk model to save computation time. One of the ship speeds from the model tests was chosen for simulation, with load variation tests conducted at higher and lower rotation rates than the self-propulsion condition. The load variation coefficient then be calculated and compared with the results of the model tests for further analysis and discussion. Both the model tests and simulation results show that when hull resistance increases, propeller speed must increase accordingly to maintain ship speed. As the resistance rises, hull efficiency and open water efficiency decrease, the relative rotative efficiency also decreases in the model tests, leading to a reduction in quasi-propulsion efficiency. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-08-15T16:56:31Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2024-08-15T16:56:31Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 致謝 i
摘要 ii ABSTRACT iii 第一章 緒論 1 1.1前言 1 1.2研究動機 1 1.3文獻回顧 2 1.3.1船模阻力與推進試驗 2 1.3.2 CFD計算阻力推進 3 1.4研究方法及目的 4 1.5論文結構 5 第二章 船模試驗 6 2.1試驗設置 6 2.1.1船模及螺槳資料 6 2.1.2水槽資料 6 2.2船模試驗理論 6 2.2.1阻力試驗 7 2.2.2螺槳單獨性能試驗 9 2.2.3推進試驗 9 2.3船模試驗系統 12 2.3.1阻力試驗 13 2.3.2螺槳單獨性能試驗 13 2.3.3推進試驗 14 2.4設備校正 14 2.4.1阻力計校正 14 2.4.2馬達轉速校正 15 2.4.3動力儀校正 15 2.5試驗程序 16 2.5.1阻力試驗程序 16 2.5.2螺槳單獨性能試驗程序 16 2.5.3推進試驗程序 18 第三章 CFD模擬 20 3.1方法 20 3.1.1統御方程式 20 3.1.2螺槳致動盤 21 3.2 CFD計算設定 23 3.2.1船舶及螺槳主要尺寸 23 3.2.1流域和邊界條件 23 3.2.2網格設定 23 3.2.3螺槳單獨性能試驗校正 24 3.2.4計算驗證 24 第四章 結果與討論 26 4.1船模試驗 26 4.1.1阻力試驗 26 4.1.2螺槳單獨性能試驗 26 4.1.3推進試驗 26 4.2 CFD模擬 28 4.3試驗與模擬結果討論 29 第五章 結論及建議 31 5.1結論 31 5.2建議 31 備註 32 參考文獻 33 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 排水型船 | zh_TW |
| dc.subject | 變動負荷 | zh_TW |
| dc.subject | 推進效率 | zh_TW |
| dc.subject | 推進試驗 | zh_TW |
| dc.subject | 計算流體力學 | zh_TW |
| dc.subject | 致動盤 | zh_TW |
| dc.subject | Load Variation | en |
| dc.subject | Displacement Ship | en |
| dc.subject | Actuator Disk | en |
| dc.subject | Computational Fluid Dynamics | en |
| dc.subject | Propulsion Test | en |
| dc.subject | Propulsion Efficiency | en |
| dc.title | 排水型船於變負荷條件下推進試驗與模擬比較 | zh_TW |
| dc.title | Comparisons of Propulsion Tests and Simulations for Displacement Ship under Load Variation Conditions | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 112-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 郭真祥;辛敬業;蕭高明 | zh_TW |
| dc.contributor.oralexamcommittee | Jen-Shiang Kouh;Ching-Yeh Hsin;Kao-Ming Hsiao | en |
| dc.subject.keyword | 排水型船,變動負荷,推進效率,推進試驗,計算流體力學,致動盤, | zh_TW |
| dc.subject.keyword | Displacement Ship,Load Variation,Propulsion Efficiency,Propulsion Test,Computational Fluid Dynamics,Actuator Disk, | en |
| dc.relation.page | 94 | - |
| dc.identifier.doi | 10.6342/NTU202402941 | - |
| dc.rights.note | 同意授權(全球公開) | - |
| dc.date.accepted | 2024-08-05 | - |
| dc.contributor.author-college | 工學院 | - |
| dc.contributor.author-dept | 工程科學及海洋工程學系 | - |
| 顯示於系所單位: | 工程科學及海洋工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-112-2.pdf | 4.46 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
