Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 工程科學及海洋工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/94344
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor林宗岳zh_TW
dc.contributor.advisorTsung-Yueh Linen
dc.contributor.author張家修zh_TW
dc.contributor.authorChia-Hsiu Changen
dc.date.accessioned2024-08-15T16:55:59Z-
dc.date.available2024-08-16-
dc.date.copyright2024-08-15-
dc.date.issued2024-
dc.date.submitted2024-08-02-
dc.identifier.citation1.經濟部能源署https://www.moeaea.gov.tw
2.Karl Merz, John Olav Tande, Kjetil Uhlen, and Olimpo Anaya-Lara “ Offshore Wind Energy Technology”, 2018.
3.P. Lissaman,“Energy Effectiveness of Arrays of Wind Energy Conversion Systems”, Technical Report AV FR 7058, Aerovironment, Inc.Pasadena, California 1977.
4.N. O. Jensen, “A Note on Wind Generator Interaction”, Risø National Laboratory, 1983.
5.Alfredo Peña, Ole Rathmann, “Atmospheric stability-dependent infinite wind-farm models and the wake-decay coefficient”, 2013.
6.Larsen, G. C., Madsen, H. A., Thomsen, K., & Larsen, T. J. , “Wake meandering: a pragmatic approach ”, In: Wind Energy, 11(4), (2008) 377-395.
7.Sten Frandsen, Rebecca Barthelmie, Sara Pryor, Ole Rathmann, Søren Larsen, Jørgen Højstrup, and Morten Thøgersen, “Analytical Modelling of Wind Speed Deficit in Large Offshore Wind Farms”, In: Wind Energy ,9(1-2),(2006),p.39 – 53.
8.Sanghyeon Jeon, Bumsuk Kim, Jongchul Huh ,“Comparison and verification of wake models in an onshore wind farm considering single wake condition of the 2 MW wind turbine”, In: Energy ,Volume 93,(2015),p.1769-1777.
9.Jennifer Annoni, Pieter M. O. Gebraad, Andrew K. Scholbrock, Paul A. Fleming, Jan-Willem van Wingerden,“ Analysis of axial-induction-based wind plant controlusing an engineering and a high-order wind plant model”, In: Wind Energy , 19, (2015), p. 1135-1150.
10.N Stergiannis, C Lacor, J V Beeck and R Donnelly ,“CFD modelling approaches against single wind turbine wake measurements using RANS”, 2016.
11.Cao, Jiufa, W. Zhu, W. Shen, J.N. Sørensen, and T. Wang ,“ Development of a CFD-Based Wind Turbine Rotor Optimization Tool in Considering Wake Effects” , In:Applied Sciences 8,(2018), no. 7: 1056.
12.Mads Baungaard,M. Paul van der Laan,Stefan Wallin,Mahdi Abkar ,“RANS simulation of a wind turbine wake in the neutral atmospheric pressure-driven boundary layer”, 2023.
13.Y.C. Chiang ,“Wind Farm Power Prediction via Actuator Disk Model” , MA thesis. National Taiwan University, 2019.
14.Y.C. Hus ,“Wind Farm Power Prediction via a Large Eddy Simulation Approach” , MA thesis. National Taiwan University, 2021.
15.W.H. Pan ,“Study on Wake Interaction among Wind Farms of Zhangbin Offshore Area via RANS Approach Coupled with Actuator Disk Model”, MA thesis. National Taiwan University, 2022.
16.H. Sarlak , F. Pierella , R. Mikkelsen , J. Sørensen ,“Comparison of two LES codes for wind turbine wake studies”, 2014.
17.Pankaj K. Jha, M. J. Churchfield, P. J. Moriarty, and S. Schmitz ,“Guidelines for Volume Force Distributions within Actuator Line Modeling of Wind Turbines on Large-Eddy Simulation-Type Grids”, In: Journal of Solar Energy.
18.Y. T. Wu and F. Porté-Agel ,“Large-Eddy Simulation of Wind-Turbine Wakes: Evaluation of Turbine Parametrisations”, In: Boundary-layer meteorology 138.3 (2011). p. 345-366.
19.R. J. Barthelmie, K. Hansen, S. T. Frandsen, O. Rathmann, I. G. Schep-ers. W. Schlez, J. Phillips, K. Rados, A. Zervos, E. S. Politis, and P. K. Chaviaropoulos ,“Modelling and Measuring Flow and Wind Turbine Wakes in Large Wind Farms Offshore”In: Wind Energy, (12.5), (2009), p. 451-444.
20.Prandtl, Betz ,“Vier Abhandlungen zur Hydrodynamik und Aerodynamik”, Göttinger Nachr. Göttingen, 1927: 88-92.
21.H. Glauert ,“The elements of airfoil and airscrew theory”, Cambridge University 1983.
22.L. F. Richardson ,“The Approximate Arithmetical Solution by Finite Differences of Physical Problems Involving Differential Equations, with an Application to the Stresses in a Masonry Dam”, In: Philosophical Transactions of the Royal Society of London. Series A, Containing Papers of a Mathematical or Physical Character, Vol. 210 (1911), p. 307-357 .
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/94344-
dc.description.abstract本研究基於計算流體力學結果,開發新的非線性尾跡流模型,以預測風機跡流的動能損失以及速度分布,進而預測下游處風機的發電量。因應2050淨零排放(Net Zero)要求,臺灣政府也著重發展離岸風力發電產業。在密集的海洋風能開發政策之下,離岸風場的規劃與設計相當重要。由於風機跡流影響發電量甚巨,所以在設計風機位置時需要考慮跡流的影響,然而傳統的Jensen線性跡流模型預估速度分布與跡流邊界並不符合大型離岸風場實際情形。因此本研究提出新的非線性顯式模型,搭配動量理論的推導,分析複雜尾跡流現象。該模型假設風速、風向與轉速為定值,利用功率係數計算速度損失,進而分析下游風速與發電量。相較於Jensen模型使用單一擴張係數,新模型由四個定義流場特徵的參數組成,再以雷諾平均納維斯托克斯方程(RANS)的計算結果DTU 10MW風機的尾離情形,並進行新模型參數調校。在預估Horns Rev離岸風場中各別風機和整個風場發電量時,新模型使用極少量計算資源即比傳統Jensen模型更為接近觀測值。經結果顯示,在三種測試風向下,風向為270°誤差最大為13%,風向為222°誤差最大為16%,風向為312°誤差最大為16%;在風向為270°風向偏角±1甚至接近無誤差。新模型實現了任意風向、任意風速、任意風機架設位置等多重自由度,且展示了短時間預測大規模風場的實力。另外,本研究也利用誘導速度與推力的關係,提供了使用致動盤研究風機尾跡流的模型新的計算方法,將使結果更為準確。成果將可以更快速且精確地運用在建置風場時的可行性分析以及預估發電量。zh_TW
dc.description.abstractThis study develops a nonlinear wake flow model based on the result of computational fluid dynamics to predict kinetic energy losses and downstream velocity distribution. The offshore wind power industry in Taiwan targets to fulfill 2050 Net Zero emissions requirement. The intensive development of marine wind energy makes the planning and design of offshore wind farms crucial, with wake effects having a significant impact on power generation. However, the traditional linear wake model, e.g. Jensen, does not accurately predict velocity distribution and wake boundaries in large offshore wind farms. Hence, a new explicit nonlinear model is proposed to analyze complex wake flow phenomenon. This research assumes steady wind speed, wind direction and turbine rotation speed, and predicts velocity deficit using power curve, as well as analyze downstream wind speeds and power generation. Validation of Horns Rev offshore wind farm using the proposed model against shows high precision in the power prediction. The results show that, under three test wind directions, the maximum errors are as follows: 13% for the wind direction of 270 degrees, 16% for the wind direction of 222 degrees, and 16% for the wind direction of 312 degrees. In the case of a wind direction of 270 degrees with a deviation of ±1 degree, the error is nearly negligible. The model's versatility is exemplified by its ability to handle diverse wind directions, speeds, and turbine layouts, illustrating its efficacy in swiftly and accurately forecasting large-scale wind fields. In addition, this research introduces a computational methodology for analyzing turbine wake using the correlation between induced velocity and thrust. These will improve the accuracy of the researches using actuator disk model for wind turbine wake prediction. This approach provide a fast and accurate application in conducting feasibility analyses and estimating power generation during wind farm planning.en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-08-15T16:55:58Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2024-08-15T16:55:59Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents誌謝 I
中文摘要 II
英文摘要 III
目 次 IV
圖 次 VI
表 次 VII
符號說明 VIII
第一章 緒論 1
1.1 研究背景 1
1.2 文獻回顧 1
1.3 研究目的 4
1.4 本文架構 4
第二章 研究方法 5
2.1 一維動量理論 5
2.2 顯式模型 8
2.2.1傳統Jensen模型 8
2.2.2非線性顯式新模型參數訂定 8
2.3 計算方法 11
2.3.1 統御方程式 11
2.3.2流速取法 12
2.4 程式架構 15
第三章 計算設定 17
3.1 DTU10MW 17
3.2 邊界條件 20
3.3 網格布置 21
3.3.1邊界層 23
3.3.2網格獨立性測試 23
3.3.3驗證 26
第四章 計算結果 28
4.1計算結果 28
4.2遠場速度分布與參數定義 32
4.3近場現象與動量理論 37
4.4誘導速度之計算 38
4.5風的功率變化 40
第五章 風場驗證 42
5.1 HORNS REV風場 42
5.2 HORNS REV 風場驗證 44
5.2.1安裝距離為7倍葉片直徑之條件 44
5.2.2安裝距離為9.3倍葉片直徑之條件 46
5.2.3安裝距離為10.4倍葉片直徑之條件 47
5.3 HORNS REV 360度 49
第六章 結論與未來建議 52
6.1結論 52
6.2未來建議 52
第七章 參考文獻 53
-
dc.language.isozh_TW-
dc.subject離岸風電zh_TW
dc.subject尾跡流zh_TW
dc.subjectRANSzh_TW
dc.subject計算流體力學zh_TW
dc.subjectJensen跡流模型zh_TW
dc.subjectRANSen
dc.subjectJensen wake modelen
dc.subjectCFDen
dc.subjectoffshore wind farmen
dc.subjectwind wakeen
dc.title應用於離岸風機之Jensen尾跡流修正模型zh_TW
dc.titleA Modified Jensen Wake Model for Offshore Wind Turbinesen
dc.typeThesis-
dc.date.schoolyear112-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee趙修武;辛敬業;盧南佑zh_TW
dc.contributor.oralexamcommitteeShiu-Wu Chau;Ching-Yeh Hsin;Nan-You Luen
dc.subject.keyword離岸風電,尾跡流,RANS,計算流體力學,Jensen跡流模型,zh_TW
dc.subject.keywordoffshore wind farm,wind wake,RANS,CFD,Jensen wake model,en
dc.relation.page54-
dc.identifier.doi10.6342/NTU202402857-
dc.rights.note同意授權(限校園內公開)-
dc.date.accepted2024-08-07-
dc.contributor.author-college工學院-
dc.contributor.author-dept工程科學及海洋工程學系-
顯示於系所單位:工程科學及海洋工程學系

文件中的檔案:
檔案 大小格式 
ntu-112-2.pdf
授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務)
3.61 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved