Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 醫學工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/94341
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor程子翔zh_TW
dc.contributor.advisorKevin T. Chenen
dc.contributor.author蔡承翰zh_TW
dc.contributor.authorCheng-Han Tsaien
dc.date.accessioned2024-08-15T16:54:47Z-
dc.date.available2024-08-16-
dc.date.copyright2024-08-15-
dc.date.issued2024-
dc.date.submitted2024-08-02-
dc.identifier.citation[1] Stuart S. Sagel, Ronald G. Evens, John V. Forrest, Robert T. Bramson, Rexford E. Hill, Bettye J. Thomas, and Baruch E. Kahana. Efficacy of routine screening and lateral chest radiographs in a hospital-based population. New England Journal of Medicine, 291(19):1001–1004, 1974.
[2] F. Allan Hubbell, Sheldon Greenfield, Judy L. Tyler, Kotta Chetty, and Frederic A. Wyle. The impact of routine admission chest x-ray films on patient care. New England Journal of Medicine, 312(4):209–213, 1985.
[3] Geoffrey D. Rubin. Computed tomography: Revolutionizing the practice of medicine for 40 years. Radiology, 273(2S):S45–S74, 2014.
[4] C. Liguori, G. Frauenfelder, C. Massaroni, P. Saccomandi, F. Giurazza, F. Pitocco, R. Marano, and E. Schena. Emerging clinical applications of computed tomography. Med Devices (Auckl), 8:265–78, 2015. 1179-1470 Liguori, Carlo Frauenfelder, Giulia Massaroni, Carlo Saccomandi, Paola Giurazza, Francesco Pitocco, Francesca Marano, Riccardo Schena, Emiliano Journal Article Review New Zealand 2015/06/20 Med Devices (Auckl). 2015 Jun 5;8:265-78. doi: 10.2147/MDER.S70630. eCollection 2015.
[5] Thorsten M. Buzug. Computed Tomography, pages 311–342. Springer Berlin Heidelberg, Berlin, Heidelberg, 2011.
[6] L. W. Goldman. Principles of ct and ct technology. J Nucl Med Technol, 35(3):115–28; quiz 129–30, 2007. Goldman, Lee W Journal Article Review United States 2007/09/08 J Nucl Med Technol. 2007 Sep;35(3):115-28; quiz 129-30. doi: 10.2967/jnmt.107.042978.
[7] A. Carovac, F. Smajlovic, and D. Junuzovic. Application of ultrasound in medicine. Acta Inform Med, 19(3):168–71, 2011. 1986-5988 Carovac, Aladin Smajlovic, Fahrudin Junuzovic, Dzelaludin Journal Article Bosnia and Herzegovina 2011/09/01 Acta Inform Med. 2011 Sep;19(3):168-71. doi: 10.5455/aim.2011.19.168-171. 2
[8] Giuliano Mariani, Laura Bruselli, Torsten Kuwert, Edmund E. Kim, AlbertFlotats, Ora Israel, Maurizio Dondi, and Naoyuki Watanabe. A review on the clinical uses of spect/ct. European Journal of Nuclear Medicine and Molecular Imaging, 37(10):1959–1985, 2010.
[9] Abass Alavi, Babak Saboury, Lorenzo Nardo, Vincent Zhang, Meiyun Wang, Hongdi Li, William Y. Raynor, Thomas J. Werner, Poul F. Høilund-Carlsen, and Mona-Elisabeth Revheim. Potential and most relevant applications of total body pet/ct imaging. Clinical Nuclear Medicine, 47(1):43–55, 2022.
[10] W. Weber. Clinical pet/mr. Recent Results Cancer Res, 216:747–764, 2020. 2
[11] Simon R. Cherry, Magnus Dahlbom, and Michael E. Phelps, editors. PET: Physics, Instrumentation, and Scanners, pages 1–117. Springer New York, New York, NY, 2006.
[12] William E. Klunk, Henry Engler, Agneta Nordberg, Yanming Wang, Gunnar Blomqvist, Daniel P. Holt, Mats Bergstr¨om, Irina Savitcheva, Guo-Feng Huang, Sergio Estrada, Birgitta Aus´an, Manik L. Debnath, Julien Barletta, Julie C. Price, Johan Sandell, Brian J. Lopresti, Anders Wall, Pernilla Koivisto, Gunnar Antoni, Chester A. Mathis, and Bengt L˙angstr¨om. Imaging brain amyloid in alzheimer’s disease with pittsburgh compound-b. Annals of Neurology, 55(3):306–319, 2004.
[13] Christopher C. Rowe, Uwe Ackerman, William Browne, Rachel Mulligan, Kerryn L. Pike, Graeme O’Keefe, Henry Tochon-Danguy, Gordon Chan, Salvatore U. Berlangieri, Gareth Jones, Kerryn L. Dickinson-Rowe, Hank P. Kung, Wei Zhang, Mei Ping Kung, Daniel Skovronsky, Thomas Dyrks, Gerhard Holl, Sabine Krause, Matthias Friebe, Lutz Lehman, Stefanie Lindemann, Ludger M. Dinkelborg, Colin L. Masters, and Victor L. Villemagne. Imaging of amyloid-beta in alzheimer’s disease with 18f-bay94-9172, a novel pet tracer: proof of mechanism. The Lancet Neurology, 7(2):129–135, 2008.
[14] Christopher M. Clark, Julie A. Schneider, Barry J. Bedell, Thomas G. Beach, Warren B. Bilker, Mark A. Mintun, Michael J. Pontecorvo, Franz Hefti, Alan P. Carpenter, Matthew L. Flitter, Michael J. Krautkramer, Hank F. Kung, R. Edward Coleman, P. Murali Doraiswamy, Adam S. Fleisher, Marwan N. Sabbagh, Carl H. Sadowsky, Eric M. Reiman, Simone P. Zehntner, Daniel M. Skovronsky, and for the AV45-A07 Study Group. Use of florbetapir-pet for imaging β-amyloid pathology. JAMA, 305(3):275–283, 2011.
[15] M´ elanie Planton, Laure Saint-Aubert, Nicolas Raposo, Pierre Payoux, AnneSophie Salabert, Jean-Franc ¸ois Albucher, Jean-Marc Olivot, Patrice P´eran, and J´er´emie Pariente. Florbetapir regional distribution in cerebral amyloid angiopathy and alzheimer’s disease: A pet study. Journal of Alzheimer’s Disease, 73:1607–1614, 2020.
[16] Dietmar Rudolf Thal, W. Sue T. Griffin, Rob A. I. de Vos, and Estifanos Ghebremedhin. Cerebral amyloid angiopathy and its relationship to alzheimer’s disease. Acta Neuropathologica, 115(6):599–609, 2008.
[17] Sylvia Villeneuve, Gil D. Rabinovici, Brendan I. Cohn-Sheehy, Cindee Madison, Nagehan Ayakta, Pia M. Ghosh, Renaud La Joie, Samia Kate Arthur Bentil, Jacob W. Vogel, Shawn M. Marks, Manja Lehmann, Howard J. Rosen,Bruce Reed, John Olichney, Adam L. Boxer, Bruce L. Miller, Ewa Borys, Lee Way Jin, Eric J. Huang, Lea T. Grinberg, Charles DeCarli, William W. Seeley, and William Jagust. Existing pittsburgh compound-b positron emission tomography thresholds are too high: statistical and pathological evaluation. Brain, 138(7):2020–2033, 2015.
[18] E. Shin, S. Lee, H. Kang, J. Kim, K. Kim, H. Youn, Y. W. Jin, S. Seo, and B. Youn. Organ-specific effects of low dose radiation exposure: A comprehensive review. Front Genet, 11:566244, 2020. 1664-8021 Shin, Eunguk Lee, Sungmin Kang, Hyunkoo Kim, Jeongha Kim, Kyeongmin Youn, HyeSook Jin, Young Woo Seo, Songwon Youn, BuHyun Journal Article Review Switzerland 2020/11/03 Front Genet. 2020 Oct 2;11:566244. doi: 10.3389/fgene.2020.566244. eCollection 2020.
[19] Mark A Haidekker. Medical Imaging Technology. Springer New York, NY, 1 edition, 2013.
[20] C. Slough, S. C. Masters, R. A. Hurley, and K. H. Taber. Clinical positron emission tomography (pet) neuroimaging: Advantages and limitations as a diagnostic tool. J Neuropsychiatry Clin Neurosci, 28(2):A4, 67–71, 2016. 15457222 Slough, Courtney Masters, Shane C Hurley, Robin A Taber, Katherine H. Journal Article Review United States 2016/04/20 J Neuropsychiatry Clin Neurosci. 2016 Spring;28(2):A4, 67-71. doi: 10.1176/appi.neuropsych.16030044.
[21] T. Yousaf, G. Dervenoulas, and M. Politis. Advances in mri methodology. Int Rev Neurobiol, 141:31–76, 2018. 2162-5514 Yousaf, Tayyabah Dervenoulas, George Politis, Marios Journal Article Review United States 2018/10/14 Int Rev Neurobiol. 2018;141:31-76. doi: 10.1016/bs.irn.2018.08.008. Epub 2018 Sep 14.
[22] M. J. Sands and A. Levitin. Basics of magnetic resonance imaging. Semin Vasc Surg, 17(2):66–82, 2004. Sands, Mark J Levitin, Abraham Journal Article Review United States 2004/06/09 Semin Vasc Surg. 2004 Jun;17(2):66-82. doi: 10.1053/j.semvascsurg.2004.03.011.
[23] S M Smith. Overview of fmri analysis. The British Journal of Radiology, 77(suppl 2):S167–S175, 2004. 6
[24] Drew A.Torigian, Habib Zaidi, Thomas C. Kwee, Babak Saboury, Jayaram K. Udupa, Zang-Hee Cho, and Abass Alavi. Pet/mr imaging: Technical aspects and potential clinical applications. Radiology, 267(1):26–44, 2013. 6
[25] Hossein Jadvar and Patrick M. Colletti. Competitive advantage of pet/mri. European Journal of Radiology, 83(1):84–94, 2014.
[26] Geoffrey M. Currie, Jose Leon, Elad Nevo, and Peter Kamvosoulis. Pet/mri, part 4: Clinical applications. Journal of Nuclear Medicine Technology, 50(2):90–96, 2022.
[27] 3rd Wilson, D. M., M. R. Cookson, L. Van Den Bosch, H. Zetterberg, D. M. Holtzman, and I. Dewachter. Hallmarks of neurodegenerative diseases. Cell, 186(4):693–714, 2023. 1097-4172 Wilson, David M 3rd Cookson, Mark R Van DenBosch, Ludo Zetterberg, Henrik Holtzman, David M Dewachter, Ilse Journal Article Research Support, N.I.H., Extramural Research Support, Non U.S. Gov’t Review United States 2023/02/22 Cell. 2023 Feb 16;186(4):693714. doi: 10.1016/j.cell.2022.12.032.
[28] Christopher C. Rowe, Vincent Dor´e, Gareth Jones, David Baxendale, Rachel S. Mulligan, Santiago Bullich, Andrew W. Stephens, Susan De Santi, Colin L. Masters, Ludger Dinkelborg, and Victor L. Villemagne. 18f florbetaben pet beta-amyloid binding expressed in centiloids. European Journal of Nuclear Medicine and Molecular Imaging, 44(12):2053–2059, 2017.
[29] B. C. M. Stephan, S. Hunter, D. Harris, D. J. Llewellyn, M. Siervo, F. E. Matthews, and C. Brayne. The neuropathological profile of mild cognitive impairment (mci): a systematic review. Molecular Psychiatry, 17(11):1056 1076, 2012.
[30] J. Bang, S. Spina, and B. L. Miller. Frontotemporal dementia. Lancet, 386(10004):1672–82, 2015.
[31] W. Wong. Economic burden of alzheimer disease and managed care considerations. Am J Manag Care, 26(8 Suppl):S177–s183, 2020. 1936-2692 Wong, Winston Journal Article Research Support, Non-U.S. Gov’t United States 2020/08/26 Am J Manag Care. 2020 Aug;26(8 Suppl):S177-S183. doi: 10.37765/ajmc.2020.88482.
[32] M. G. Erkkinen, M. O. Kim, and M. D. Geschwind. Clinical neurology and epidemiology of the major neurodegenerative diseases. Cold Spring Harb Perspect Biol, 10(4), 2018.
[33] D. S. Knopman, H. Amieva, R. C. Petersen, G. Ch´etelat, D. M. Holtzman, B. T. Hyman, R. A. Nixon, and D. T. Jones. Alzheimer disease. Nat Rev Dis Primers, 7(1):33, 2021. 2056-676x Knopman, David S Orcid: 0000-00026544-066x Amieva, Helene Petersen, Ronald C Ch´etelat, G¨ael Holtzman, David M Hyman, Bradley T Orcid: 0000-0002-7959-9401 Nixon, Ralph A Jones, David T Orcid: 0000-0002-4807-9833 P30 AG062421/AG/NIA NIH HHS/United States R01 AG062376/AG/NIA NIH HHS/United States P30 AG062677/AG/NIA NIH HHS/United States P01 AG017617/AG/NIA NIH HHS/United States U01 AG006786/AG/NIA NIH HHS/United States Journal Article Research Support, N.I.H., Extramural Review England 2021/05/15 Nat Rev Dis Primers. 2021 May 13;7(1):33. doi: 10.1038/s41572-021-00269y.
[34] Jr. Jack, C. R., D. A. Bennett, K. Blennow, M. C. Carrillo, B. Dunn, S. B. Haeberlein, D. M. Holtzman, W. Jagust, F. Jessen, J. Karlawish, E. Liu, J. L. Molinuevo, T. Montine, C. Phelps, K. P. Rankin, C. C. Rowe, P. Scheltens, E. Siemers, H. M. Snyder, and R. Sperling. Nia-aa research framework: Toward a biological definition of alzheimer’s disease. Alzheimers Dement, 14(4):535–562, 2018. 1552-5279 Jack, Clifford R Jr Bennett, David A Blennow, Kaj Carrillo, Maria C Dunn, Billy Haeberlein, Samantha Budd Holtzman, David M Jagust, William Jessen, Frank Karlawish, Jason Liu, Enchi Molinuevo, Jose Luis Montine, Thomas Phelps, Creighton Rankin, Katherine P Rowe, Christopher C Scheltens, Philip Siemers, Eric Snyder, Heather M Sperling, Reisa Contributors R01 AG041851/AG/NIA NIH HHS/United States P30 AG010124/AG/NIA NIH HHS/United States K24 AG035007/AG/NIA NIH HHS/United States R01 AG011378/AG/NIA NIH HHS/United States P30 AG010161/AG/NIA NIH HHS/United States Journal Article Review United States 2018/04/15 Alzheimers Dement. 2018 Apr;14(4):535-562. doi: 10.1016/j.jalz.2018.02.018.
[35] Clifford R. Jack Jr., J. Scott Andrews, Thomas G. Beach, Teresa Buracchio, Billy Dunn, Ana Graf, Oskar Hansson, Carole Ho, William Jagust, Eric McDade, Jose Luis Molinuevo, Ozioma C. Okonkwo, Luca Pani, Michael S. Rafii, Philip Scheltens, Eric Siemers, Heather M. Snyder, Reisa Sperling, Charlotte E. Teunissen, and Maria C. Carrillo. Revised criteria for diagnosis and staging of alzheimer’s disease: Alzheimer’s association workgroup. Alzheimer’s & Dementia, n/a(n/a), 2024.
[36] R. Mohtasib, J. Alghamdi, A. Jobeir, A. Masawi, N. Pedrosa de Barros, T. Billiet, H. Struyfs, T. V. Phan, W. Van Hecke, and A. Ribbens. Mri biomarkers for alzheimer’s disease: the impact of functional connectivity in the default mode network and structural connectivity between lobes on diagnostic accuracy. Heliyon, 8(2):e08901, 2022.
[37] K. Ishii. Pet approaches for diagnosis of dementia. American Journal of Neuroradiology, 2013.
[38] Marshal F. Folstein, Susan E. Folstein, and Paul R. McHugh. “mini-mental state”: A practical method for grading the cognitive state of patients for the clinician. Journal of Psychiatric Research, 12(3):189–198, 1975.
[39] Muriel Deutsch Lezak, Diane B. Howieson, Erin D. Bigler, and Daniel Tranel. Neuropsychological assessment, 5th ed. Neuropsychological assessment, 5th ed. Oxford University Press, New York, NY, US, 2012.
[40] J. Cummings. The neuropsychiatric inventory: Development and applications. J Geriatr Psychiatry Neurol, 33(2):73–84, 2020. Cummings, Jeffrey Orcid: 0000-0001-8944-4158 P20 AG068053/AG/NIA NIH HHS/United States P20 GM109025/GM/NIGMS NIH HHS/United States R01 AG053798/AG/NIA NIH HHS/United States U01 NS093334/NS/NINDS NIH HHS/United States Journal Article Research Support, N.I.H., Extramural Research Support, Non U.S. Gov’t Review United States 2020/02/06 J Geriatr Psychiatry Neurol. 2020 Mar;33(2):73-84. doi: 10.1177/0891988719882102.
[41] Javaid I. Sheikh and Jerome A. Yesavage. Geriatric depression scale (gds): Recent evidence and development of a shorter version, 1986.
[42] Kevin T. Chen, Stephanie Salcedo, Kuang Gong, Daniel B. Chonde, David Izquierdo-Garc´ ıa, Alexander Drzezga, Bruce R. Rosen, Jinyi Qi, Bradford C. Dickerson, and Ciprian Catana. An efficient approach to perform mr-assisted pet data optimization in simultaneous pet/mr neuroimaging studies. The Journal of Nuclear Medicine, 60(2):272–278, 6 2018. 9
[43] Kevin T. Chen, Enhao Gong, Fab´ ıola Bezerra De Carvalho Macruz, Junshen Xu, Athanasia Boumis, Mehdi Khalighi, Kathleen L. Poston, Sharon J. Sha, Michael D. Greicius, Elizabeth C. Mormino, John M. Pauly, Shyam Srinivas, and Greg Zaharchuk. Ultra–low-dose18f-florbetaben amyloid pet imaging using deep learning with multi-contrast mri inputs. Radiology, 290(3):649656, 3 2019.
[44] William E. Klunk, Robert A. Koeppe, Julie C. Price, Tammie L. Benzinger, Michael D. Devous, William J. Jagust, Keith A. Johnson, Chester A. Mathis, Davneet Minhas, Michael J. Pontecorvo, Christopher C. Rowe, Daniel M. Skovronsky, and Mark A. Mintun. The centiloid project: Standardizing quantitative amyloid plaque estimation by pet. Alzheimer’s & Dementia, 11(1):1, 2015.
[45] Seung Kwan Kang, Hongyoon Choi, and Jae Sung Lee. Translating amyloid pet of different radiotracers by a deep generative model for interchangeability. Journal of Nuclear Medicine, 61(supplement 1):1420–1420, 2020. 9, 19
[46] R. Wang, H. Liu, T. Toyonaga, L. Shi, J. Wu, J. A. Onofrey, Y. J. Tsai, M. Naganawa, T. Ma, Y. Liu, M. K. Chen, A. P. Mecca, R. S. O’Dell, C. H. van Dyck, R. E. Carson, and C. Liu. Generation of synthetic pet images of synaptic density and amyloid from (18) f-fdg images using deep learning. Med Phys, 48(9):5115–5129, 2021. Journal Article United States 2021/07/06 Med Phys. 2021 Sep;48(9):5115-5129. doi: 10.1002/mp.15073. Epub 2021 Jul 27.
[47] Sanka Amadoru, Vincent Dor´e, Catriona McLean, Fairlie Hinton, Claire Shepherd, Glenda Halliday, Cristian Leyton, Paul Yates, John Hodges, Colin Masters, Victor Villemagne, and Christopher Rowe. Comparison of amyloid pet measured in centiloid units with neuropathological findings in alzheimer’s disease. Alzheimer’s Research & Therapy, 12, 03 2020.
[48] Mark R. Battle, Lovena Chedumbarum Pillay, Val J. Lowe, David Knopman, Bradley Kemp, Christopher C. Rowe, Vincent Dor´e, Victor L. Villemagne, and Christopher J. Buckley. Centiloid scaling for quantification of brain amyloid with [18f]flutemetamol using multiple processing methods. EJNMMI Research, 8(1):107, 2018.
[49] M. Navitsky, A. D. Joshi, I. Kennedy, W. E. Klunk, C. C. Rowe, D. F. Wong, M. J. Pontecorvo, M. A. Mintun, and Sr. Devous, M. D. Standardization of amyloid quantitation with florbetapir standardized uptake value ratios to the centiloid scale. Alzheimers Dement, 14(12):1565–1571, 2018. 1552-5279 Navitsky, Michael Joshi, Abhinay D Kennedy, Ian Klunk, William E Rowe, Christopher C Wong, Dean F Pontecorvo, Michael J Mintun, Mark A Devous, Michael D Sr Journal Article Multicenter Study Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov’t United States 2018/07/15 Alzheimers Dement. 2018 Dec;14(12):1565-1571. doi: 10.1016/j.jalz.2018.06.1353. Epub 2018 Jul 11.
[50] Ian J. Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde Farley, Sherjil Ozair, Aaron Courville, and Yoshua Bengio. Generative adversarial networks, 2014.
[51] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net: Convolutional networks for biomedical image segmentation, May 01, 2015.
[52] T. Toyonaga, L. M. Smith, S. J. Finnema, J. D. Gallezot, M. Naganawa, J. Bini, T. Mulnix, Z. Cai, J. Ropchan, Y. Huang, S. M. Strittmatter, and R. E. Carson. In vivo synaptic density imaging with (11)c-ucb-j detects treatment effects of saracatinib in a mouse model of alzheimer disease. J Nucl Med, 60(12):1780–1786, 2019.
[53] Michael Tran Duong, Sandhitsu R. Das, Pulkit Khandelwal, Xueying Lyu, Long Xie, Paul A. Yushkevich, David A. Wolk, and Ilya M. Nasrallah. Image-to-image translation between tau pathology and neuronal metabolism pet in alzheimer disease with multi-domain contrastive learning. In Ahmed Abdulkadir, Deepti R. Bathula, Nicha C. Dvornek, Sindhuja T. Govindarajan Mohamad Habes, Vinod Kumar, Esten Leonardsen, Thomas Wolfers, and Yiming Xiao, editors, Machine Learning in Clinical Neuroimaging, pages 3–13. Springer Nature Switzerland, 2023.
[54] Jifeng Dai, Haozhi Qi, Yuwen Xiong, Yi Li, Guodong Zhang, Han Hu, and Yichen Wei. Deformable convolutional networks, March 01, 2017 2017.
[55] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz Kaiser, and Illia Polosukhin. Attention is all you need, June 01, 2017 2017. 15 pages, 5 figures.
[56] Wenhai Wang, Jifeng Dai, Zhe Chen, Zhenhang Huang, Zhiqi Li, Xizhou Zhu, Xiaowei Hu, Tong Lu, Lewei Lu, Hongsheng Li, Xiaogang Wang, and Yu Qiao. Internimage: Exploring large-scale vision foundation models with deformable convolutions, November 01, 2022 2022. Accepted to CVPR 2023. 21, 26, 27
[57] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszkoreit, and Neil Houlsby. An image is worth 16x16 words: Transformers for image recognition at scale, October 01, 2020.
[58] Alan Evans, Louis Collins, S.R. Mills, E.D. Brown, R.L. Kelly, and Terence Peters. 3d statistical neuroanatomical models from 305 mri volumes, 01 1993. 26
[59] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas K¨ opf, Edward Yang, Zach DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang, Junjie Bai, and Soumith Chintala. Pytorch: An imperative style, high-performance deep learning library, December 01, 2019. 12 pages, 3 figures, NeurIPS 2019. 27
[60] Huimin Huang, Lanfen Lin, Ruofeng Tong, Hongjie Hu, Qiaowei Zhang, Yutaro Iwamoto, Xianhua Han, Yen-Wei Chen, and Jian Wu. Unet 3+: A full-scale connected unet for medical image segmentation, April 01, 2020.
[61] Hu Cao, Yueyue Wang, Joy Chen, Dongsheng Jiang, Xiaopeng Zhang, Qi Tian, and Manning Wang. Swin-unet: Unet-like pure transformer for medical image segmentation, May 01, 2021 2021. a drafted manuscript.
[62] Jieneng Chen, Yongyi Lu, Qihang Yu, Xiangde Luo, Ehsan Adeli, Yan Wang, Le Lu, Alan L. Yuille, and Yuyin Zhou. Transunet: Transformers make strong encoders for medical image segmentation, February 01, 2021 2021. 13 pages, 3 figures.
[63] Joseph A. Thie. Understanding the standardized uptake value, its methods, and implications for usage. Journal of Nuclear Medicine, 45(9):1431–1434, 2004.
[64] Bernard J. Hanseeuw, Rebecca A. Betensky, Elizabeth C. Mormino, Aaron P. Schultz, Jorge Sepulcre, John A. Becker, Heidi I.L. Jacobs, Rachel F. Buckley, Molly R. LaPoint, Patrizia Vannini, Nancy J. Donovan, Jasmeer P. Chhatwal, Gad A. Marshall, Kathryn V. Papp, Rebecca E. Amariglio, Dorene M. Rentz, Reisa A. Sperling, and Keith A. Johnson. Pet staging of amyloidosis using striatum. Alzheimer’s & Dementia, 14(10):1281–1292, 2018.
[65] Lars Frings, Sabine Hellwig, Timo S. Spehl, Tobias Bormann, Ralph Buchert, Werner Vach, Lora Minkova, Bernhard Heimbach, Stefan Kl¨oppel, and Philipp T. Meyer. Asymmetries of amyloid-beta burden and neuronal dysfunction are positively correlated in alzheimer’s disease. Brain, 138(10):3089 3099, 2015.
[66] M.-Marsel Mesulam, Sandra Weintraub, Emily J. Rogalski, Christina Wieneke, Changiz Geula, and Eileen H. Bigio. Asymmetry and heterogeneity of alzheimer’s and frontotemporal pathology in primary progressive aphasia. Brain, 137(4):1176–1192, 2014.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/94341-
dc.description.abstract類澱粉蛋白正子造影成像是一個現今用於檢查阿茲海默症的非侵入式方法。放射性示蹤劑如[11C]-Pittsburgh Compound-B (PiB)、[18F]-florbetaben (FBB)、[18F]-florbetapir都是臨床上常用的藥物,但不同藥物的影像難以轉換導致長期研究以及跨組織的研究皆難以進行,Centiloid方法被提出用於標準化各個藥物(Klunk et al., 2015)。Centiloid方法使用單一數值來評估受測者的類澱粉蛋白沈積程度,而影像間的轉換仍是一個困難的任務。因此,本研究提出了以變形卷積為基礎的U-Net模型(DCN-based U-Net)來進行PiB至FBB的影像轉換。
GAAIN資料集包含成對核磁共振、PiB以及FBB正子造影影像;資料集中的受試者包含9位健康年輕者(YHC)、6位健康年長者(EHC)、9位輕度認知障礙者(MCI)、8位阿茲海默症患者(AD)以及2位額顳葉失智症患者(FTD)。為了避免腦組織以外的雜訊干擾模型訓練,在進行訓練前影像經過對位以及去頭骨的處理。所有的影像在進行訓練前皆在0到1之間進行個體歸一化。DCN-based U-Net模型用基本模塊替換了原始U-Net的雙卷積模塊。這種方法結合了自適應空間聚合和卷積計算效率較高的優點,同時利用自注意力捕捉大範圍資訊的優勢。損失函數是L1-L2結構相似性(SSIM)的混合函數。數據集按比例分層並分割用於模型訓練和測試,應用了5折交叉驗證。模型性能使用多種指標評估,包括峰值信噪比(PSNR)、SSIM和均方根誤差(RMSE)。此外還使用了AmPQ軟體進行SUVr以及Centiloid的計算;線性回歸分析、Bland-Altman圖和相對變化圖等可視化工具亦被用於分析,以全面評估模型性能。
本研究中使用五位具代表性的受測者(YHC, EHC, MCI, AD, FTD)的分析結果顯示了我們提出的模型可以在PET影像轉換任務中得到很好的成果。模型預測的影像相較於輸入的PiB影像有更好的同質性,並且更接近FBB的特徵。相對變化圖也顯示了模型預測的影像與FBB更無差距。Bland-Altman圖顯示了我們與FBB一致性,在數值指標方面我們的模型也顯著優於PiB PET (P<0.001)。
本研究提出DCN-based U-Net並在類澱粉蛋白正子造影影像轉換上有很好的表現,然而使用過小的資料集進行訓練使得模型的可信度不足。另外,單方向的影像轉換模型亦無法達成增加類澱粉蛋白正子造影影像互換性的目的。DCN-based U-Net提供了當Centiloid分數與影像評估不一致時的一個新的診斷選擇,另外一個可能的應用為生成假的FBB影像資料來增大現存的資料集並用於模型的訓練。
zh_TW
dc.description.abstractIntroduction Amyloid PET imaging has been extensively employed in the noninvasive assessment of amyloid-beta accumulation in Alzheimer's disease. Various radiotracers, including [C-12]-Pittsburgh compound-B (PiB), [F-18]-florbetaben (FBB), and [F-18]-florbetapir, are commonly used in clinical settings. However, the limited interchangeability among these radiotracers hinders the feasibility of long-term clinical trials and multicenter comparisons. While the Centiloid scaling method (Klunk et al., 2015) was proposed to standardize radiotracer estimations, this scaling method provides a single score and voxel-wise translation remains a formidable task. Herein, we propose a deformable convolution-based (DCN) U-Net model for PiB-to-FBB image translation.
Materials and Methods The GAAIN dataset used in this work included 35 subjects with paired MRI, PiB, and FBB data, including young, healthy controls (YHC, 9), elderly healthy controls (EHC, 6), and patients with mild cognitive impairment (MCI, 9), Alzheimer's disease (AD, 8), and frontotemporal dementia (FTD, 2). During preprocessing, each subject's PET images were coregistered with their corresponding MRI. Next, the MRI images underwent skull stripping and spatial normalization. All images were individually normalized between 0 and 1 before training.
The DCN-based U-Net replaced the double convolution module of the original U-Net with basic blocks. This approach combined the benefits of adaptive spatial aggregation and efficient computation from convolutions with the advantage of capturing long-range dependencies from the multi-head self-attention. The loss function was an L1-L2-structural similarity (SSIM) mixed loss. The dataset was stratified and split for model training and testing, and 5-fold cross-validation was applied. The performance was evaluated against the ground truth FBB images using various metrics, including peak noise-to-signal ratio (PSNR), SSIM, and root-mean-square error (RMSE). Visualization tools such as correlation plots, Bland-Altman plots, and relative change maps were also implemented to provide a comprehensive assessment of our model's performance. AmPQ, which is an amyloid PET quantification tool including global and regional SUVr, Centiloid score, and Z-score, was used to evaluate the similarity in medical view.
Results The performance of our proposed model was demonstrated on five representative subjects (YHC, EHC, MCI, FTD, and AD). The prediction images, when compared with PiB PET images, showed increased homogeneity, closely resembling the texture of FBB. The relative change maps indicated that the visual disparities between the predicted and FBB images were less conspicuous than those between PiB and FBB images. The Bland-Altman plot illustrated consistency between the prediction images and the ground truth. High overall PSNR, SSIM, and RMSE values further confirmed the significant improvement (p < 0.001) in image quality.
Discussion and Conclusion The DCN-based U-Net is proposed for amyloid PET image conversion and demonstrates high performance for the PET image-to-image translation task. However, the model trained by a limited dataset is not trustworthy enough. In addition, the one-directional translation could not improve the interchangeability of the amyloid PET tracers. The proposed model provides modality translation and an image-based alternative when inconsistencies between visual assessments and the Centiloid scale occur; another potential application of the proposed model is generating pseudo-FBB images to augment existing datasets for model training.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-08-15T16:54:47Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2024-08-15T16:54:47Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontentsAcknowledgements i
Abstract v
ListofFigures xi
ListofTables xvii
ListofAbbreviations xix
1 Introduction 1
1.1 MethodologiesinMedicalImaging. . . . . . . . . . . . . . . . . 1
1.1.1 PETMethodology . . . . . . . . . . . . . . . . . . . . . 2
1.1.2 MRIMethodology . . . . . . . . . . . . . . . . . . . . . 4
1.2 Alzheimer’sDiseaseandOtherNeurodegenerativeDiseases . . . 6
1.3 DeepGenerativeModelsonMedicalImagingSynthesis. . . . . . 8
2 RelatedWorks 17
2.1 CentiloidProject . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.2 MultimodalImageTranslationTasks . . . . . . . . . . . . . . . . 19
2.3 DeformableConvolutionModel . . . . . . . . . . . . . . . . . . 20
3 MaterialsandMethods 25
3.1 SubjectPopulation . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.2 DataPreprocessing . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.3 ModelDevelopment . . . . . . . . . . . . . . . . . . . . . . . . 26
3.4 ExperimentalSettings . . . . . . . . . . . . . . . . . . . . . . . . 28
3.5 AblationStudy . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.6 ImageAnalysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.6.1 Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.6.2 PET-basedEvaluationIndices . . . . . . . . . . . . . . . 31
3.6.3 InformationVisualization . . . . . . . . . . . . . . . . . 32
4 Results 37
4.1 Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
4.2 QuantitativeAssessment . . . . . . . . . . . . . . . . . . . . . . 38
4.3 InformationVisualization . . . . . . . . . . . . . . . . . . . . . . 39
4.4 AblationStudy . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
5 Discussion 53
6 Conclusion 57
Reference 59
Appendix 73
A ModifiedAALAtlas . . . . . . . . . . . . . . . . . . . . . . . . 73
B NetworkDetailsandConfigurations . . . . . . . . . . . . . . . . 74
C SupplementaryResults . . . . . . . . . . . . . . . . . . . . . . . 75
-
dc.language.isoen-
dc.subject醫學影像轉換zh_TW
dc.subject類澱粉蛋白zh_TW
dc.subject正子造影zh_TW
dc.subject阿茲海默症zh_TW
dc.subject深度學習zh_TW
dc.subjectAmyloiden
dc.subjectAlzheimer's diseaseen
dc.subjectDeep learningen
dc.subjectMedical image translationen
dc.subjectPETen
dc.title以深度學習模型進行成對資料集之類澱粉蛋白放射性示蹤劑影像轉換zh_TW
dc.titleDeep-Learning-Based Amyloid PET Inter-Radiotracer Image Translation on a Paired Dataseten
dc.typeThesis-
dc.date.schoolyear112-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee陳中明;蕭穎聰zh_TW
dc.contributor.oralexamcommitteeChung-Ming Chen;Ing-Tsung Hsiaoen
dc.subject.keyword類澱粉蛋白,阿茲海默症,深度學習,醫學影像轉換,正子造影,zh_TW
dc.subject.keywordAmyloid,Alzheimer's disease,Deep learning,Medical image translation,PET,en
dc.relation.page93-
dc.identifier.doi10.6342/NTU202304320-
dc.rights.note同意授權(全球公開)-
dc.date.accepted2024-08-06-
dc.contributor.author-college工學院-
dc.contributor.author-dept醫學工程學系-
dc.date.embargo-lift2029-07-30-
顯示於系所單位:醫學工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-112-2.pdf
  此日期後於網路公開 2029-07-30
26.01 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved