請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/94339完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 劉建豪 | zh_TW |
| dc.contributor.advisor | Chien-Hao Liu | en |
| dc.contributor.author | 魏珩育 | zh_TW |
| dc.contributor.author | Heng-Yu Wei | en |
| dc.date.accessioned | 2024-08-15T16:54:07Z | - |
| dc.date.available | 2024-08-16 | - |
| dc.date.copyright | 2024-08-15 | - |
| dc.date.issued | 2024 | - |
| dc.date.submitted | 2024-08-06 | - |
| dc.identifier.citation | [1] Y. Rahmat-Samii and A. Densmore, “ A history of reflector antenna development: Past, present and future, ” IMOC, pp. 17-23, 2009.
[2] J. Ramsay, “Highlights of antenna history,” IEEE Commun. Mag., vol. 19, no. 5, pp. 4-8, 1981. [3] L. C. Van Atta, “A history of early microwave antenna development,” AP-S Newsletter, vol. 23, no. 5, pp. 10-14, 1981. [4] H. G. Schantz, “Three centuries of UWB antenna development. ” Auswireless, pp. 506-512, 2012. [5] H. Wheeler, “Small antennas,” IEEE Trans. Antennas Propag., vol. 23, no. 4, pp. 462-469, 1975. [6] H. A. Wheeler, “Fundamental limitations of small antennas,” Proc. IRE, vol. 35, no. 12, pp. 1479-1484, 1947. [7] H. A. Wheeler, “The radiansphere around a small antenna, ” Proc. IRE, vol. 47, no. 8, pp. 1325-1331, 1959. [8] R. C. Hansen, “Fundamental limitations in antennas,” Proc. IEEE, vol. 69, no. 2, pp. 170-182, 1981. [9] A. Boes, L. Chang, C. Langrock, M. Yu, M. Zhang, Q. Lin, M. Lončar, M. Fejer, J. Bowers and A. Mitchell, “Lithium niobate photonics: Unlocking the electromagnetic spectrum,” Science, vol. 379, no. 6627, p.4396, 2023. [10] D. A. Cohen, “Lithium Niobate Microphotonic Modulators, ”Ph.D. dissertation, Dept. of Electrical Engineering, Univ. of Southern California, 2001. [11] R. Citroni, A. Leggieri, D. Passi, F. Di Paolo and A. Di Carlo, “Nano energy harvesting with plasmonic nano-antennas: a review of MID-IR rectenna and application,” Adv. Electromagn., vol. 6, no. 2, pp. 1-13, 2017. [12] G. S. Gund, M. G. Jung, K.-Y. Shin and H. S. Park, “Two-dimensional metallic niobium diselenide for sub-micrometer-thin antennas in wireless communication systems,” ACS Nano, vol. 13, no. 12, pp. 14114-14121, 2019. [13] J. Sheng, Y. Chao and J. P. Shaffer, “Strong coupling of Rydberg atoms and surface phonon polaritons on piezoelectric superlattices,” PRL, vol. 117, no. 10, p. 103201, 2016. [14] Y.-F. Chou and C.-H. Shih, “Electromagnetic radiation of polaritons in piezoelectric superlattices. ” Behavior and Mechanics of Multifunctional and Composite Materials, pp. 501-508, 2011. [15] W.-C. Bai, H. Zhang, L. Jiang, H.-Z. Zhang and L.-Q. Zhang, “Theoretical investigation of phonon-polariton modes in undoped and ion-doped PPLN crystals,” Solid State Commun., vol. 151, no. 18, pp. 1261-1265, 2011. [16] Y.-F. Chou and M.-Y. Yang, “Energy conversion in piezoelectric superlattices,” Behavior and Mechanics of Multifunctional and Composite Materials, pp. 156-165, 2007. [17] X. Wang, and X. Xu, “Thermoelastic wave induced by pulsed laser heating,” Appl. Phys. A, vol. 73, pp. 107-114, 2001. [18] A. Cavuto, F. Sopranzetti, M. Martarelli and G. M. Revel, “Laser-ultrasonics wave generation and propagation FE model in metallic materials,” COMSOL Conference, 2013. [19] J. D. Achenbach, “The thermoelasticity of laser-based ultrasonics,” J. Therm. Stresses, vol. 28, no. 6-7, pp. 713-727, 2005. [20] R. Von Gutfeld and R. Melcher, “20‐MHz acoustic waves from pulsed thermoelastic expansions of constrained surfaces,” Appl. Phys. Lett., vol. 30, no. 6, pp. 257-259, 1977. [21] C. Scruby, R. Dewhurst, D. Hutchins and S. Palmer, “Quantitative studies of thermally generated elastic waves in laser‐irradiated metals,” J. Appl. Phys., vol. 51, no. 12, pp. 6210-6216, 1980. [22] 白立宇,“脈衝雷射激發壓電超晶格受聲學致動的電磁輻射”,碩士論文,國立臺灣大學,2021 [23] C. C. Fulton and H. Gao, “Effect of local polarization switching on piezoelectric fracture,” J. Mech. Phys. Solids, vol. 49, no. 4, pp. 927-952, 2001. [24] M. Marsilius, J. Frederick, W. Hu, X. Tan, T. Granzow and P. Han, “Mechanical confinement: An effective way of tuning properties of piezoelectric crystals,” Adv. Funct. Mater., vol. 22, no. 4, pp. 797-802, 2012. [25] S. I. Shkuratov, J. Baird, V. G. Antipov, W. Hackenberger, J. Luo, S. Zhang, C. S. Lynch, J. B. Chase, H. R. Jo and C. C. Roberts, “Complete stress-induced depolarization of relaxor ferroelectric crystals without transition through a non-polar phase,” Appl. Phys. Lett., vol. 112, no. 12, p. 122903, 2018. [26] A. Roytburd, S. Alpay, V. Nagarajan, C. Ganpule, S. Aggarwal, E. Williams and R. Ramesh, “Measurement of internal stresses via the polarization in epitaxial ferroelectric films,” Phys. Rev. Lett., vol. 85, no. 1, p. 190, 2000. [27] W. Wang, Y. Jiang and P. J. Thomas, “Structural design and physical mechanism of axial and radial sandwich resonators with piezoelectric ceramics: a review,” Sensors, vol. 21, no. 4, p. 1112, 2021. [28] A. R. Lopez, “Fundamental hmrations of small antennas: validation of wheeler's formulas,” IEEE Antennas Propag. Mag., vol. 48, no. 4, pp. 28-36, 2006. [29] L. J. Chu, “Physical limitations of omni‐directional antennas,” J. Appl. Phys., vol. 19, no. 12, pp. 1163-1175, 1948. [30] R. Collin and S. Rothschild, “Evaluation of antenna Q,” IEEE Trans. Antennas Propag., vol. 12, no. 1, pp. 23-27, 1964. [31] J. S. McLean, “A re-examination of the fundamental limits on the radiation Q of electrically small antennas,” IEEE Trans. Antennas Propag., vol. 44, no. 5, p. 672, 1996. [32] D. J. Griffiths, Introduction to Electrodynamics, Cambridge University Press, 2023. [33] N. Barani, J. F. Harvey, and K. Sarabandi, “Fragmented antenna realization using coupled small radiating elements,” IEEE Trans. Antennas Propag., vol. 66, no. 4, pp. 1725-1735, 2018. [34] M. S. Prasad, S. Selvin, R. U. Tok, Y. Huan and Y. Wang, “Directly modulated spinning magnet arrays for ULF communications, ” RWS, pp. 171-173, 2018. [35] N. Barani, M. Kashanianfard and K. Sarabandi, “A mechanical antenna with frequency multiplication and phase modulation capability,” IEEE Trans. Antennas Propag., vol. 69, no. 7, pp. 3726-3739, 2020. [36] Z. Yao, Y. E. Wang, S. Keller and G. P. Carman, “Bulk acoustic wave-mediated multiferroic antennas: Architecture and performance bound,” IEEE Trans. Antennas Propag., vol. 63, no. 8, pp. 3335-3344, 2015. [37] T. Nan, H. Lin, Y. Gao, A. Matyushov, G. Yu, H. Chen, N. Sun, S. Wei, Z. Wang and M. Li, “Acoustically actuated ultra-compact NEMS magnetoelectric antennas,” Nat. Commun., vol. 8, no. 1, p. 296, 2017. [38] R. Mindlin, “Electromagnetic radiation from a vibrating quartz plate,” Int. J. Solids Struct., vol. 9, no. 6, pp. 697-702, 1973. [39] J. P. Domann, and G. P. Carman, “Strain powered antennas,” J. Appl. Phys., vol. 121, no. 4, p. 44905, 2017. [40] P. Lee, Y. G. Kim and J.-H. Prevost, “Electromagnetic radiation from doubly rotated piezoelectric crystal plates vibrating at thickness frequencies,” J. Appl. Phys., vol. 67, no. 11, pp. 6633-6642, 1990. [41] G. Xu and S. Xiao, “Modeling of piezoelectric resonator antennas for VLF electromagnetic radiation.” CSRSWTC, pp. 1-3, 2020. [42] X. Ma and H. Zheng, “A VLF resonant antenna based on piezoelectric ceramics, ” CSRSWTC, pp. 338-341, 2021. [43] M. A. Kemp, M. Franzi, A. Haase, E. Jongewaard, M. T. Whittaker, M. Kirkpatrick and R. Sparr, “A high Q piezoelectric resonator as a portable VLF transmitter,” Nat. Commun., vol. 10, no. 1, p. 1715, 2019. [44] E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett., vol. 58, no. 20, p. 2059, 1987. [45] S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett., vol. 58, no. 23, p. 2486, 1987. [46] D. Feng, N. B. Ming, J. F. Hong, Y. S. Yang, J. S. Zhu, Z. Yang and Y. N. Wang, “Enhancement of second‐harmonic generation in LiNbO3 crystals with periodic laminar ferroelectric domains,” Appl. Phys. Lett., vol. 37, no. 7, pp. 607-609, 1980. [47] M. M. Fejer, G. Magel, D. H. Jundt and R. L. Byer, “Quasi-phase-matched second harmonic generation: tuning and tolerances,” IEEE J. Quantum Electron., vol. 28, no. 11, pp. 2631-2654, 1992. [48] R. L. Byer, “Nonlinear optics and solid-state lasers: 2000,” IEEE J. Sel. Top. Quantum Electron., vol. 6, no. 6, pp. 911-930, 2000. [49] J. O. Vasseur, P. A. Deymier, B. Chenni, B. Djafari-Rouhani, L. Dobrzynski and D. Prevost, “Experimental and theoretical evidence for the existence of absolute acoustic band gaps in two-dimensional solid phononic crystals,” Phys. Rev. Lett., vol. 86, no. 14, p. 3012, 2001. [50] J. Danglot, J. Carbonell, M. Fernandez, O. Vanbésien and D. Lippens, “Modal analysis of guiding structures patterned in a metallic photonic crystal,” Appl. Phys. Lett., vol. 73, no. 19, pp. 2712-2714, 1998. [51] P. Sheng, Scattering and Localization of Classical Waves in Random Media, World Scientific, 1990. [52] S.-n. Zhu, Y.-y. Zhu and N.-b. Ming, “Quasi-phase-matched third-harmonic generation in a quasi-periodic optical superlattice,” Science, vol. 278, no. 5339, pp. 843-846, 1997. [53] S.-n. Zhu, Y.-y. Zhu, Y.-q. Qin, H.-f. Wang, C.-z. Ge and N.-b. Ming, “Experimental Realization of Second Harmonic Generation in a Fibonacci Optical Superlattice of LiTa O 3,” Phys. Rev. Lett., vol. 78, no. 14, p. 2752, 1997. [54] V. Berger, “Nonlinear photonic crystals,” Phys. Rev. Lett., vol. 81, no. 19, p. 4136, 1998. [55] N. Broderick, G. Ross, H. Offerhaus, D. Richardson and D. Hanna, “Hexagonally poled lithium niobate: a two-dimensional nonlinear photonic crystal,” Phys. Rev. Lett., vol. 84, no. 19, p. 4345, 2000. [56] C. Kittel and P. McEuen, Introduction to Solid State Physics, John Wiley & Sons, 2018. [57] T. Shimuta, O. Nakagawara, T. Makino, S. Arai, H. Tabata and T. Kawai, “Enhancement of remanent polarization in epitaxial BaTiO 3/SrTiO 3 superlattices with “asymmetric” structure,” J. Appl. Phys., vol. 91, no. 4, pp. 2290-2294, 2002. [58] H. Yamada, M. Kawasaki, Y. Ogawa and Y. Tokura, “Perovskite oxide tricolor superlattices with artificially broken inversion symmetry by interface effects,” Appl. Phys. Lett., vol. 81, no. 25, pp. 4793-4795, 2002. [59] N. Sai, B. Meyer and D. Vanderbilt, “Compositional inversion symmetry breaking in ferroelectric perovskites,” Phys. Rev. Lett., vol. 84, no. 24, p. 5636, 2000. [60] X.-j. Zhang, R.-q. Zhu, J. Zhao, Y.-f. Chen and Y.-y. Zhu, “Phonon-polariton dispersion and the polariton-based photonic band gap in piezoelectric superlattices,” Phys. Rev. B, vol. 69, no. 8, p. 85118, 2004. [61] A. Barker Jr, J. Merz and A. Gossard, “Study of zone-folding effects on phonons in alternating monolayers of GaAs-AlAs,” Phys. Rev. B, vol. 17, no. 8, p. 3181, 1978. [62] C. Colvard, R. Merlin, M. Klein and A. Gossard, “Observation of folded acoustic phonons in a semiconductor superlattice,” Phys. Rev. Lett., vol. 45, no. 4, p. 298, 1980. [63] R. Merlin, C. Colvard, M. Klein, H. Morkoc, A. Cho and A. Gossard, “Raman scattering in superlattices: Anisotropy of polar phonons,” Appl. Phys. Lett., vol. 36, no. 1, pp. 43-45, 1980. [64] J. Sapriel, J. Michel, J. Toledano, R. Vacher, J. Kervarec and A. Regreny, “Light scattering from vibrational modes in Ga As− Ga 1− x Al x As superlattices and related alloys,” Phys. Rev. B, vol. 28, no. 4, p. 2007, 1983. [65] B. Jusserand, D. Paquet and A. Regreny, “" Folded" optical phonons in GaAs Ga 1− x Al x As superlattices,” Phys. Rev. B, vol. 30, no. 10, p. 6245, 1984. [66] S.-k. Yip and Y.-C. Chang, “Theory of phonon dispersion relations in semiconductor superlattices,” Phys. Rev. B, vol. 30, no. 12, p. 7037, 1984. [67] C. Colvard, T. Gant, M. Klein, R. Merlin, R. Fischer, H. Morkoc and A. Gossard, “Folded acoustic and quantized optic phonons in (GaAl) As superlattices,” Phys. Rev. B, vol. 31, no. 4, p. 2080, 1985. [68] M. Nakayama, K. Kubota, T. Kanata, H. Kato, S. Chika and N. Sano, “Zone-folding effects on phonons in GaAs-AlAs superlattices,” Japanese J. Appl. Phys., vol. 24, no. 10R, p. 1331, 1985. [69] B. Jusserand, D. Paquet, F. Mollot, F. Alexandre and G. Le Roux, “Influence of the supercell structure on the folded acoustical Raman line intensities in superlattices,” Phys. Rev. B, vol. 35, no. 6, p. 2808, 1987. [70] M. Nakayama, H. Kato and S. Nakashima, “Folded acoustic phonons in (Al, Ga) As quasiperiodic superlattices,” Phys. Rev. B, vol. 36, no. 6, p. 3472, 1987. [71] A. Nougaoui and B. D. Rouhani, “Elastic waves in periodically layered infinite and semi-infinite anisotropic media,” Surf. Sci., vol. 185, no. 1-2, pp. 125-153, 1987. [72] Y. Lu, Y. Zhu, Y. Chen, S. Zhu, N. Ming and Y. Feng, “Optical properties of an ionic-type phononic crystal,” Science, vol. 284, no. 5421, pp. 1822-1824, 1999. [73] Y. Zhu, X.-j. Zhang, Y. Lu, Y. Chen, S. Zhu and N. Ming, “New type of polariton in a piezoelectric superlattice,” Phys. Rev. Lett., vol. 90, no. 5, p. 53903, 2003. [74] 陳柏云,“機械制動壓電極子天線之電磁輻射效應 ”,碩士論文, 國立臺灣大學, 2023 [75] B. A. Boley and J. H. Weiner, J. Therm. Stresses, John Wiley & Sons, 1962. [76] H. W. Lord and Y. Shulman, “A generalized dynamical theory of thermoelasticity,” J. Mech. Phys. Solids, vol. 15, no. 5, pp. 299-309, 1967. [77] A. E. Green, and K. Lindsay, “Thermoelasticity,” J. Elast., vol. 2, no. 1, pp. 1-7, 1972. [78] D. Y. Tzou, “A unified field approach for heat conduction from macro-to micro-scales,” J. Heat Transfer, pp. 8-16, 1995. [79] M. Bamber, K. Cooke, A. Mann and B. Derby, “Accurate determination of Young's modulus and Poisson's ratio of thin films by a combination of acoustic microscopy and nanoindentation,” Thin Solid Films, vol. 398, pp. 299-305, 2001. [80] N. Vijayan, M. Vij, H. Yadav, R. Kumar, D. Sur, B. Singh, S. M. B. Dhas and S. Verma, “Evaluation of structural, optical and mechanical behaviour of L-argininium bis (trifluoroacetate) single crystal: An efficient organic material for second harmonic generation applications,” J. Phys. Chem. Solids, vol. 129, pp. 401-412, 2019. [81] S. A. Zawawi, A. A. Hamzah, B. Y. Majlis and F. Mohd-Yasin, “Nanoindentation of cubic silicon carbide on silicon film,” Japanese J. Appl. Phys., vol. 58, no. 5, p. 51006, 2019. [82] C. M. Donahue, M. C. Remillieux, G. Singh, T. J. Ulrich, R. J. Migliori and T. A. Saleh, “Measuring the elastic tensor of a monolithic SiC hollow cylinder with resonant ultrasound spectroscopy,” NDT & E Int., vol. 101, pp. 29-33, 2019. [83] C. Pei, K. Demachi, T. Fukuchi, K. Koyama and M. Uesaka, “Cracks measurement using fiber-phased array laser ultrasound generation,” J. Appl. Phys., vol. 113, no. 16, p. 163101, 2013. [84] Q. Cheng, J. He, S. Yang, X. Gu, H. Huang and Y. Luo, “Propagation characteristics of ultrasonic waves generated by phased array laser in coating/substrate structure,” Int. J. Thermophys., vol. 44, no. 8, p. 116, 2023. [85] C. Comte and J. Von Stebut, “Microprobe-type measurement of Young's modulus and Poisson coefficient by means of depth sensing indentation and acoustic microscopy,” Surf. Coat. Technol., vol. 154, no. 1, pp. 42-48, 2002. [86] B. Lascoup, F. Ablitzer and C. Pezerat, “Broadband identification of material properties of an orthotropic composite plate using the force analysis technique,” Exp. Mech., vol. 58, pp. 1339-1350, 2018. [87] D. Cerniglia and N. Montinaro, “Defect detection in additively manufactured components: laser ultrasound and laser thermography comparison,” Procedia Struct. Integrity, vol. 8, pp. 154-162, 2018. [88] I. A. Abbas and M. Marin, “Analytical solution of thermoelastic interaction in a half-space by pulsed laser heating,” Physica E, vol. 87, pp. 254-260, 2017. [89] M. I. Othman, “Lord-Shulman theory under the dependence of the modulus of elasticity on the reference temperature in two-dimensional generalized thermoelasticity,” J. Therm. Stresses, vol. 25, no. 11, pp. 1027-1045, 2002. [90] P. Hosseini-Tehrani, M. Eslami and M. Shojaeefard, “Generalized thermoelastic analysis of layer interface excited by pulsed laser heating,” Eng. Anal. Boundary Elem., vol. 27, no. 9, pp. 863-869, 2003. [91] H. M. Youssef and A. A. El-Bary, “Thermoelastic material response due to laser pulse heating in context of four theorems of thermoelasticity,” J. Therm. Stresses, vol. 37, no. 12, pp. 1379-1389, 2014. [92] Y. Liu, Z. Peng, S. Liu and P. Hu, “Numerical simulation of laser ultrasonic detection of the surface microdefects on laser powder bed fusion additive manufactured 316L stainless steel,” Theor. Appl. Mech. Lett., vol. 12, no. 6, p. 100398, 2022. [93] S.Choi, and Y.Jhang, “Internal defect detection using laser-generated longitudinal waves in ablation regime,” J. Mech. Sci. Technol., vol. 32, pp. 4191-4200, 2018. [94] T. Požar, J. Laloš, A. Babnik, R. Petkovšek, M. Bethune-Waddell, K. J. Chau, G. V. Lukasievicz and N. G. Astrath, “Isolated detection of elastic waves driven by the momentum of light,” Nat. Commun., vol. 9, no. 1, p. 3340, 2018. [95] 高育暐,“壓電晶體之電磁輻射研究 ”,碩士論文,國立臺灣大學, 2008 [96] G. Piazza, P. J. Stephanou and A. P. Pisano, “Piezoelectric aluminum nitride vibrating contour-mode MEMS resonators,” J. Microelectromech. Syst., vol. 15, no. 6, pp. 1406-1418, 2006. [97] E.Hassanien, M.Breen, M.-H. Li and S.Gong, “Acoustically driven electromagnetic radiating elements,” Sci. Rep., vol. 10, no. 1, p. 17006, 2020. [98] B. Thidé, Electromagnetic Field Theory,pp.275, Upsilon books Uppsala, 2004. [99] M. Leidinger, S. Fieberg, N. Waasem, F. Kühnemann, K. Buse and I. Breunig, “Comparative study on three highly sensitive absorption measurement techniques characterizing lithium niobate over its entire transparent spectral range,” Opt. Express, vol. 23, no. 17, pp. 21690-21705, 2015. [100] W. Zeng, Y. Yao, S. Qi and L. Liu, “Finite element simulation of laser-generated surface acoustic wave for identification of subsurface defects,” Optik, vol. 207, p. 163812, 2020. [101] H. M. Al-Qahtani and S. K. Datta, “Laser-generated thermoelastic waves in an anisotropic infinite plate: exact analysis,” J. Therm. Stresses, vol. 31, no. 6, pp. 569-583, 2008. [102] G. Malyavanatham, D. T. O’Brien, M. F. Becker, W. T. Nichols, J. W. Keto, D. Kovar, S. Euphrasie, T. Loué and P. Pernod, “Thick films fabricated by laser ablation of PZT microparticles,” J. Mater. Process. Technol., vol. 168, no. 2, pp. 273-279, 2005. [103] P. Bunton, M. Binkley and G. Asbury, “Laser ablation from Lithium niobate,” Appl. Phys. A, p.411, vol. 65, 1997. [104] F. Christensen and M. Mullenborn, “Improved laser processing of lithium niobate,” IUS, pp. 391-396, 1994. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/94339 | - |
| dc.description.abstract | 壓電晶體能夠利用壓電效應,將機械能和電磁能互相轉換,在這些晶體結構中,壓電效應主要由材料本身的晶格變形來實現,電場與機械應變之間的耦合強度取決於單一材料的固有特性,因此耦合相對較弱,在過去,很多研究都致力於提高能量耦合強度。
而壓電超晶格是一種具有週期性的結構的壓電材料,它通常由兩種不同極化方向的壓電晶體交替排列而成,通常透過施加外部電場(電磁式激發),將輸入的機械能和電磁能透過強耦合的方式產生出電磁輻射。相較於前面提到的壓電晶體,壓電超晶格具有較強的能量耦合程度。然而,電磁式激發中的電極會影響電場的分布,因此,本研究將會專注於機械式激發的部分。雖然多數的機械式激發方法都會直接接觸材料而影響波傳,但在過去研究中,有學者利用非破壞性檢測的脈衝雷射,在材料的表面和內部激發出不同種類的機械波傳,而脈衝雷射不須直接接觸材料,因此是眾多的機械式激發方法中,不錯的嘗試。 本論文的研究目的主要分成兩部分,第一部分為探討壓電晶體弱耦合射出電磁波的理論和模擬,透過等效電路模型和赫茲電偶模型推論出輻射功率,並利用商用有限元素COMSOL模擬軟體的壓電模組和電磁波模組來模擬弱耦合的現象,算出遠場輻射的功率,再和理論解模型去做比對。第二部分則是模擬脈衝雷射激發壓電超晶格的波傳現象,先列出基本的運動方程式和熱傳導方程式,然後聯立解出此微分方程式的諧振解,得到溫度隨時間變化的函數。接著再用COMSOL模擬軟體的熱傳模組和固體力學模組兩者耦合的熱膨脹模組來驗證先前的結果,好觀測出體波在鈮酸鋰晶體中傳遞的情況。 | zh_TW |
| dc.description.abstract | Piezoelectric crystal is a kind of material that can convert mechanical energy and electric energy by utilizing piezoelectric effect. When piezoelectric crystal is subjected to external mechanical stress or vibration, it will generate charge separation or movement, which in turn will generate voltage and electric field. If we equate the electric field to an external current, it can be used as an excitation source to radiate electromagnetic waves like an antenna.
While piezoelectric superlattice is a kind of piezoelectric material with periodic structure, which usually consists of piezoelectric crystals alternately arranged in two different polarization directions, with phonons representing mechanical wave propagation, photons representing electromagnetic wave propagation, and polariton generated by strong coupling of mechanical and electromagnetic waves. Compared to weakly coupled piezoelectric crystals, this material can radiate electromagnetic waves of greater energy. Piezoelectric superlattices are usually excited by electromagnetic inputs. Mechanical excitation is not common in practice because it usually touches the material and affects the wave propagation phenomenon. However, pulse lasers do not require direct contact with the material and are therefore a good alternative to mechanical excitation methods. By using the principle of thermal expansion and contraction, thermal stress is continuously generated around the material, which can be used as a high-frequency vibration source. This paper is divided into two parts, the first half of which is to explore the theory and simulation of weakly coupled electromagnetic waves emitted from piezoelectric crystals. The radiant energy is deduced from the equivalent circuit model and the Hertzian dipole model, and the weakly coupled phenomenon is simulated by using piezoelectric and electromagnetic wave modules of the COMSOL simulation software, and compared with the theoretical model. In the second half, the wave propagation phenomenon of pulsed laser in piezoelectric superlattice and the temperature change of the crystal are simulated. The distribution of heat flow inside the two-dimensional isotropic material is given first, so as to list the basic equations of motion and thermal conduction equations, and finally the harmonic solution of this differential equation is solved jointly to get the function of temperature change with time. Then, the thermal expansion module of COMSOL simulation software is used to verify the previous results, and the laser parameters are adjusted after confirming the accuracy, so as to further determine what kind of pulse laser specification is needed to produce the results of BAW with a frequency of 76 MHz. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-08-15T16:54:07Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2024-08-15T16:54:07Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 目次
口試委員會審定書 i 誌謝 ii 中文摘要 iii 英文摘要 iv 目次 vi 圖次 viii 表次 xiii 符號表 xiv 第一章 緒論 1 1.1 研究動機 1 1.2 文獻回顧 3 1.2.1 壓電晶體激發電磁輻射 3 1.2.2 壓電超晶格 10 1.2.3 脈衝雷射激發彈性波 18 第二章 晶格內可傳遞之平面諧和波 32 2.1 壓電材料波傳理論 32 2.1.1 座標平面 32 2.1.2 機械彈性波動方程式 33 2.1.3 電磁波動方程式 35 2.2 壓電本構方程式 37 2.2.1 方程式推導 37 2.2.2 平面波傳遞 38 第三章 等效電路模型與COMSOL模擬 41 3.1 理論與等效電路模型 41 3.2 ADS等效電路模擬 46 3.3 Hertzian dipole模型 51 3.4 COMSOL模擬壓電晶體輻射 54 3.4.1 模型和材料參數 54 3.4.2 邊界條件和推導 56 3.4.3 壓電部分結果 58 3.4.4 天線遠場輻射結果 62 3.5 各理論解和模擬的整理與比較 63 第四章 機械式激發壓電晶體電磁輻射 64 4.1 雷射激發彈性波 64 4.1.1 雷射波長對鈮酸鋰吸收率的影響 65 4.2 基本公式與推導 66 4.2.1 比爾朗伯定律(Beer-Lambert law) 66 4.2.2 脈衝雷射能量原理和計算 68 4.2.3 座標平面 71 4.2.4 熱傳導方程式與運動方程式 71 4.2.5 無因次化 73 4.2.6 輸入熱源脈衝雷射 74 4.3 微分方程式通解 77 4.3.1 諧振解推導 77 4.4 Matlab數值模擬 81 4.5 COMSOL軟體模擬脈衝雷射激發彈性波 84 4.5.1 金屬鋁的彈性波模擬 84 4.5.2 體波的篩選方法 94 4.6 鈮酸鋰的彈性波模擬 98 4.6.1 週期性極化鈮酸鋰(PPLN)座標軸定義 98 4.6.2 奈秒等級脈衝雷射 99 4.6.3 皮秒等級脈衝雷射 111 4.7 模擬與學長之比較 119 第五章 結論與未來展望 123 5.1 結論 123 5.2 未來展望 124 參考文獻 125 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 壓電晶體 | zh_TW |
| dc.subject | 有限元素模擬 | zh_TW |
| dc.subject | 脈衝雷射 | zh_TW |
| dc.subject | 熱彈性理論 | zh_TW |
| dc.subject | 壓電超晶格 | zh_TW |
| dc.subject | Finite element simulation | en |
| dc.subject | Thermoelasticity theory | en |
| dc.subject | Pulsed laser | en |
| dc.subject | Piezoelectric superlattice | en |
| dc.subject | Piezoelectric crystal | en |
| dc.title | 脈衝雷射激發引致彈性波傳與電磁輻射之有限元素分析 | zh_TW |
| dc.title | FEM modeling of pulsed-laser-induced elastic waves and electromagnetic wave radiations | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 112-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 周元昉;莊嘉揚 | zh_TW |
| dc.contributor.oralexamcommittee | Yuan-Fang Zhou;Jia-Yang Zhuang | en |
| dc.subject.keyword | 壓電晶體,壓電超晶格,有限元素模擬,脈衝雷射,熱彈性理論, | zh_TW |
| dc.subject.keyword | Piezoelectric crystal,Piezoelectric superlattice,Finite element simulation,Pulsed laser,Thermoelasticity theory, | en |
| dc.relation.page | 134 | - |
| dc.identifier.doi | 10.6342/NTU202402732 | - |
| dc.rights.note | 同意授權(全球公開) | - |
| dc.date.accepted | 2024-08-09 | - |
| dc.contributor.author-college | 工學院 | - |
| dc.contributor.author-dept | 機械工程學系 | - |
| 顯示於系所單位: | 機械工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-112-2.pdf | 9.71 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
