Please use this identifier to cite or link to this item:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/94335Full metadata record
| ???org.dspace.app.webui.jsptag.ItemTag.dcfield??? | Value | Language |
|---|---|---|
| dc.contributor.advisor | 陳銘憲 | zh_TW |
| dc.contributor.advisor | Ming-Syan Chen | en |
| dc.contributor.author | 張立憲 | zh_TW |
| dc.contributor.author | Li-Hsien Chang | en |
| dc.date.accessioned | 2024-08-15T16:52:46Z | - |
| dc.date.available | 2024-08-16 | - |
| dc.date.copyright | 2024-08-15 | - |
| dc.date.issued | 2024 | - |
| dc.date.submitted | 2024-08-08 | - |
| dc.identifier.citation | [1] OpenAI. Openai models - gpt3.5, 2022.
[2] Xianjun Yang, Yan Li, Xinlu Zhang, Haifeng Chen, and Wei Cheng. Exploring the limits of chatgpt for query or aspect-based text summarization. arXiv preprint arXiv:2302.08081, 2023. [3] keqin Peng, Liang Ding, Qihuang Zhong, Li Shen, Xuebo Liu, Min Zhang, Yuanxin Ouyang, and Dacheng Tao. Towards making the most of chatGPT for machine translation. In The 2023 Conference on Empirical Methods in Natural Language Processing, 2023. [4] Suzanne Fergus, Michelle Botha, and Mehrnoosh Ostovar. Evaluating academic answers generated using chatgpt. Journal of Chemical Education, 100(4):1672–1675, 2023. [5] John Flowerdew. Some thoughts on english for research publication purposes (erpp) and related issues. Language Teaching, 48(2):250–262, 2015. [6] Sung Il Hwang, Joon Seo Lim, Ro Woon Lee, Yusuke Matsui, Toshihiro Iguchi,Takao Hiraki, and Hyungwoo Ahn. Is chatgpt a“fire of prometheus”for non-native englishㄦspeaking researchers in academic writing? Korean Journal of Radiology, 24(10):952, 2023. [7] Elinor Poole-Dayan, Deb Roy, and Jad Kabbara. Llm targeted underperformance disproportionately impacts vulnerable users. arXiv preprint arXiv:2406.17737, 2024. [8] Weixin Liang, Mert Yuksekgonul, Yining Mao, Eric Wu, and James Zou. Gpt detectors are biased against non-native english writers. Patterns, 4(7), 2023. [9] Weixin Liang, Zachary Izzo, Yaohui Zhang, Haley Lepp, Hancheng Cao, Xuandong Zhao, Lingjiao Chen, Haotian Ye, Sheng Liu, Zhi Huang, Daniel McFarland, and James Y. Zou. Monitoring AI-modified content at scale: A case study on the impact of chatGPT on AI conference peer reviews. In Forty-first International Conference on Machine Learning, 2024. [10] Weixin Liang, Yaohui Zhang, Zhengxuan Wu, Haley Lepp, Wenlong Ji, Xuandong Zhao, Hancheng Cao, Sheng Liu, Siyu He, Zhi Huang, et al. Mapping the increasing use of llms in scientific papers. arXiv preprint arXiv:2404.01268, 2024. [11] Dmitry Kobak, Rita González Márquez, Emoke-Agnes Horvát, and Jan Lause. Delving into chatgpt usage in academic writing through excess vocabulary. arXiv e-prints, pages arXiv–2406, 2024. [12] Xiaofei Wang, Hayley M Sanders, Yuchen Liu, Kennarey Seang, Bach Xuan Tran, Atanas G Atanasov, Yue Qiu, Shenglan Tang, Josip Car, Ya Xing Wang, et al. Chatgpt: promise and challenges for deployment in low-and middle-income countries. The Lancet Regional Health–Western Pacific, 41, 2023. [13] Bakhtiyar Syed, Gaurav Verma, Balaji Vasan Srinivasan, Anandhavelu Natarajan, and Vasudeva Varma. Adapting language models for non-parallel author-stylizedrewriting. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 34, pages 9008–9015, 2020. [14] Akhila Yerukola, Xuhui Zhou, Elizabeth Clark, and Maarten Sap. Don’t take this out of context! on the need for contextual models and evaluations for stylistic rewriting.arXiv preprint arXiv:2305.14755, 2023. [15] Avanti Bhandarkar, Ronald Wilson, Anushka Swarup, and Damon Woodard. Emulating author style: A feasibility study of prompt-enabled text stylization with off-the-shelf llms. In Proceedings of the 1st Workshop on Personalization of Generative AI Systems (PERSONALIZE 2024), pages 76–82, 2024. [16] Sumanth Dathathri, Andrea Madotto, Janice Lan, Jane Hung, Eric Frank, Piero Molino, Jason Yosinski, and Rosanne Liu. Plug and play language models: A simple approach to controlled text generation. arXiv preprint arXiv:1912.02164, 2019. [17] Ben Krause, Akhilesh Deepak Gotmare, Bryan McCann, Nitish Shirish Keskar, Shafiq Joty, Richard Socher, and Nazneen Fatema Rajani. Gedi: Generative discriminator guided sequence generation. arXiv preprint arXiv:2009.06367, 2020. [18] Alisa Liu, Maarten Sap, Ximing Lu, Swabha Swayamdipta, Chandra Bhagavatula, Noah A Smith, and Yejin Choi. Dexperts: Decoding-time controlled text generation with experts and anti-experts. arXiv preprint arXiv:2105.03023, 2021. [19] Xiaomeng Hu, Pin-Yu Chen, and Tsung-Yi Ho. Radar: Robust ai-text detection via adversarial learning. Advances in Neural Information Processing Systems, 36:15077–15095, 2023. [20] Yao Lu, Yue Dong, and Laurent Charlin. Multi-xscience: A large-scale datasetfor extreme multi-document summarization of scientific articles. arXiv preprint arXiv:2010.14235, 2020. [21] Hilary Nesi, Sheena Gardner, Paul Thompson, Paul Wickens, et al. British academic written english corpus. Oxford Text Archive Core Collection, 2008. [22] Hanqing Zhang, Haolin Song, Shaoyu Li, Ming Zhou, and Dawei Song. A survey of controllable text generation using transformer-based pre-trained language models. ACM Computing Surveys, 56(3):1–37, 2023. [23] Nitish Shirish Keskar, Bryan McCann, Lav R Varshney, Caiming Xiong, and Richard Socher. Ctrl: A conditional transformer language model for controllable generation.arXiv preprint arXiv:1909.05858, 2019. [24] Alvin Chan, Yew-Soon Ong, Bill Pung, Aston Zhang, and Jie Fu. Cocon: A self-supervised approach for controlled text generation. arXiv preprint arXiv:2006.03535, 2020. [25] Karin de Langis, Ryan Koo, and Dongyeop Kang. Reinforcement learning with dynamic multi-reward weighting for multi-style controllable generation. arXiv preprint arXiv:2402.14146, 2024. [26] Di Jin, Zhijing Jin, Zhiting Hu, Olga Vechtomova, and Rada Mihalcea. Deep learning for text style transfer: A survey. Computational Linguistics, 48(1):155–205, 2022. [27] Tianxiao Shen, Tao Lei, Regina Barzilay, and Tommi Jaakkola. Style transfer from non-parallel text by cross-alignment. Advances in neural information processing systems, 30, 2017. [28] Minh Tran, Yipeng Zhang, and Mohammad Soleymani. Towards a friendly online community: An unsupervised style transfer framework for profanity redaction. arXiv preprint arXiv:2011.00403, 2020. [29] Wei Xu, Alan Ritter, William B Dolan, Ralph Grishman, and Colin Cherry. Paraphrasing for style. In Proceedings of COLING 2012, pages 2899–2914, 2012. [30] Harsh Jhamtani, Varun Gangal, Eduard Hovy, and Eric Nyberg. Shakespearizing modern language using copy-enriched sequence-to-sequence models. arXiv preprint arXiv:1707.01161, 2017. [31] Emily Reif, Daphne Ippolito, Ann Yuan, Andy Coenen, Chris Callison-Burch, and Jason Wei. A recipe for arbitrary text style transfer with large language models. arXiv preprint arXiv:2109.03910, 2021. [32] Tyler A Chang and Benjamin K Bergen. Language model behavior: A comprehensive survey. Computational Linguistics, 50(1):293–350, 2024. [33] Eric Michael Smith, Melissa Hall, Melanie Kambadur, Eleonora Presani, and Adina Williams. ” i’m sorry to hear that”: Finding new biases in language models with a holistic descriptor dataset. arXiv preprint arXiv:2205.09209, 2022. [34] Stephanie Brandl, Ruixiang Cui, and Anders Søgaard. How conservative are language models? adapting to the introduction of gender-neutral pronouns. arXiv preprint arXiv:2204.10281, 2022. [35] Kaitlyn Zhou, Kawin Ethayarajh, and Dan Jurafsky. Richer countries and richer representations. arXiv preprint arXiv:2205.05093, 2022. [36] Nikita Nangia, Clara Vania, Rasika Bhalerao, and Samuel R Bowman. Crows-pairs:A challenge dataset for measuring social biases in masked language models. arXiv preprint arXiv:2010.00133, 2020. [37] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural information processing systems, 30, 2017. [38] Christopher Manning and Hinrich Schutze. Foundations of statistical natural language processing. MIT press, 1999. [39] Yoshua Bengio, Réjean Ducharme, and Pascal Vincent. A neural probabilistic language model. Advances in neural information processing systems, 13, 2000. [40] Song Feng, Ritwik Banerjee, and Yejin Choi. Characterizing stylistic elements in syntactic structure. In Proceedings of the 2012 joint conference on empirical methods in natural language processing and computational natural language learning, pages 1522–1533, 2012. [41] Chin-Yew Lin. Rouge: A package for automatic evaluation of summaries. In Text summarization branches out, pages 74–81, 2004. [42] Kishore Papineni, Salim Roukos, Todd Ward, and Wei-Jing Zhu. Bleu: a method for automatic evaluation of machine translation. In Proceedings of the 40th annual meeting of the Association for Computational Linguistics, pages 311–318, 2002. [43] Thibault Sellam, Dipanjan Das, and Ankur P Parikh. Bleurt: Learning robust metrics for text generation. arXiv preprint arXiv:2004.04696, 2020. [44] Wei Zhao, Maxime Peyrard, Fei Liu, Yang Gao, Christian M Meyer, and SteffenEger. Moverscore: Text generation evaluating with contextualized embeddings and earth mover distance. arXiv preprint arXiv:1909.02622, 2019. [45] Yihan Chen, Benfeng Xu, Quan Wang, Yi Liu, and Zhendong Mao. Benchmarking large language models on controllable generation under diversified instructions. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 38, pages 17808–17816, 2024. [46] Kevin Yang and Dan Klein. Fudge: Controlled text generation with future discriminators. In Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pages 3511–3535, 2021. [47] Jonathan Pei, Kevin Yang, and Dan Klein. Preadd: Prefix-adaptive decoding for controlled text generation. In Findings of the Association for Computational Linguistics: ACL 2023, pages 10018–10037, 2023. [48] Marzuki, Utami Widiati, Diyenti Rusdin, Darwin, and Inda Indrawati. The impact of ai writing tools on the content and organization of students’writing: Efl teachers’ perspective. Cogent Education, 10(2):2236469, 2023. [49] Mike Perkins. Academic integrity considerations of ai large language models in the post-pandemic era: Chatgpt and beyond. Journal of University Teaching and Learning Practice, 20(2), 2023. [50] Sudha Rao and Joel Tetreault. Dear sir or madam, may i introduce the gyafc dataset:Corpus, benchmarks and metrics for formality style transfer. In Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers), pages 129–140, 2018. [51] Samuel Gehman, Suchin Gururangan, Maarten Sap, Yejin Choi, and Noah A Smith. Realtoxicityprompts: Evaluating neural toxic degeneration in language models. arXiv preprint arXiv:2009.11462, 2020. [52] Alireza Salemi, Sheshera Mysore, Michael Bendersky, and Hamed Zamani. Lamp: When large language models meet personalization. arXiv preprint arXiv:2304.11406, 2023. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/94335 | - |
| dc.description.abstract | 自 ChatGPT 推出以來,使用者——尤其是非英語母語者——使用大型語言模型(LLMs)提供的服務,有效地幫助了他們表達想法和生產內容。然而,近期有觀察到大型語言模型使用率正急劇上升,也暴露了其輸出文本具有可識別的寫作風格,進而讓使用者沒有辦法去有效提高生產力且被污名化。為了要去處理這個問題,重要的地方在於使大型語言模型所產出的內容與人類撰寫的文本相似。本次的研究中,我們提出複合分佈對齊(Composite Distributional Alignment,簡稱 CoDA),其中包括零階偏差對齊啟發式算法(Zeroth-order Bias Alignment Heuristics,簡稱 ZoBAH)和判別器自舉提名(Discriminator Bootstrapped Nomination,簡稱 DiBoN)。CoDA 通過在 ZoBAH 中以正反文本的方法篩選文本中具有偏差的字符並給予校正,和在 DiBoN 中針對動態分數重新調整大型語言模型產出的字符流程。具體來說,ZoBAH 解決了大型語言模型產出與專家文本之間在詞彙層面的統計差異,而 DiBoN 進一步結合現成的 AI 檢測器、句法和語義特徵,考慮了更廣範圍的文本差異。
我們在 Multi-XScience 和 BAWE 資料集上的實驗,證實了 CoDA 的可行性。在白盒和黑盒場景中,它在傳統的字詞上、句型和文義檢測上取得了大量的改進。與現有最好的標準方法相比,將最先進 AI 檢測器的檢測率在白盒場景中降低了近 20%。另外,這個研究也展示了 CoDA 的可轉移性,展示了其構建通用權重的潛力,有效地消除了字詞、句型和文義特徵層面的誤差。 | zh_TW |
| dc.description.abstract | After the release of ChatGPT, large language models (LLMs) have provided significant assistance to non-native English speakers by refining their scientific writings. However, these models often generate text with a distinctive style that could potentially stigmatize its users. To mitigate this effect, it is essential to tailor LLM-generated content to more closely mimic human-produced texts. In this work, we present Composite Distributional Alignment (CoDA), which includes Zeroth-order Bias Alignment Heuristics (ZoBAH) and Discriminator Bootstrapped Nomination (DiBoN). CoDA modifies the autoregressive token generation in LLMs by adjusting logits using static biases from in data-driven fashion in ZoBAH and dynamic scores from DiBoN for top token options. Specifically, ZoBAH addresses word-level statistical disparities between LLM outputs and expert texts, while DiBoN further adjusts pattern-level criteria, incorporating off-the-shelf AI detectors, syntactic, and semantic features.
Our extensive tests on both Multi-XScience and BAWE datasets confirm that CoDA significantly outperforms existing methods according to standard word- and pattern-level metrics under both white-box and black-box conditions, achieving up to 15% reduction in detection rates by advanced AI detectors compared with the strongest baseline in white-box setups. Furthermore, our studies reveal that CoDA is effective not only in adjusting biases but also in transferring knowledge across different contexts, thereby improving overall text quality, which suggests its utility in developing a universal weight capable of mitigating biases effectively at multiple levels. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-08-15T16:52:45Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2024-08-15T16:52:46Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 口試委員會審定書 i
Acknowledgements ii 摘要 iii Abstract iv Contents v List of Figures vii List of Tables viii 1 Introduction 1 2 Related work 4 2.1 Controllable Text Generation . . . . . . . . . . . . . . . . . . . . . . . . . 4 2.2 Text Style Transfer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2.3 Bias within LLMs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 3 Problem 6 3.1 LLMs’ basic operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 3.2 Distributional Text Revision Style Alignment . . . . . . . . . . . . . . . . 6 4 Methodology 8 4.1 Zeroth-order Bias Alignment Heuristics (ZoBAH) . . . . . . . . . . . . . 8 4.2 Discriminator Bootstrapped Nomination (DiBoN) . . . . . . . . . . . . . 10 5 Experiment 13 5.1 Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 5.2 Evaluation Metric . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 5.2.1 Lexical Metric . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 5.2.2 Pattern-based Metric . . . . . . . . . . . . . . . . . . . . . . . . . 14 5.2.3 AI-text Detection Rate . . . . . . . . . . . . . . . . . . . . . . . . 14 5.3 Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 5.4 Baseline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 5.5 Experimental Setting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 6 Results and Analysis 18 6.1 Evaluaion on the White-box LLM (LLAMA3-70B) . . . . . . . . . . . . . 18 6.2 Evaluation on the Black-box LLM (GPT-3.5) . . . . . . . . . . . . . . . 19 6.3 Enhancing L2 Corpus Revision Quality . . . . . . . . . . . . . . . . . . . 20 6.4 Case study: Generalizability of ZoBAH . . . . . . . . . . . . . . . . . . . 21 7 Conclusion 22 References 24 Appendix A — Ablation study of CoDA 29 Appendix B — Visualization of Bias Mitigation 31 | - |
| dc.language.iso | en | - |
| dc.subject | 大型語言模型誤差 | zh_TW |
| dc.subject | 文字風格對齊 | zh_TW |
| dc.subject | LLMs’ Bias | en |
| dc.subject | Text Style Alignment | en |
| dc.title | 停止說‘Delve’! 通過復合分佈對齊適配大型語言模型以進行文本風格化 | zh_TW |
| dc.title | “Stop Saying Delve!”Adapting Large Language Models for Text Stylization with Composite Distributional Alignment | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 112-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 帥宏翰;丁川康;吳齊人 | zh_TW |
| dc.contributor.oralexamcommittee | Hong-Han Shuai;Chuan-Kang Ting;Chi-Jen Wu | en |
| dc.subject.keyword | 文字風格對齊,大型語言模型誤差, | zh_TW |
| dc.subject.keyword | Text Style Alignment,LLMs’ Bias, | en |
| dc.relation.page | 32 | - |
| dc.identifier.doi | 10.6342/NTU202403360 | - |
| dc.rights.note | 同意授權(全球公開) | - |
| dc.date.accepted | 2024-08-09 | - |
| dc.contributor.author-college | 電機資訊學院 | - |
| dc.contributor.author-dept | 電機工程學系 | - |
| Appears in Collections: | 電機工程學系 | |
Files in This Item:
| File | Size | Format | |
|---|---|---|---|
| ntu-112-2.pdf | 7.66 MB | Adobe PDF | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.
