請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/94333完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 林耿慧 | zh_TW |
| dc.contributor.advisor | Keng-Hui Lin | en |
| dc.contributor.author | 張庭瑞 | zh_TW |
| dc.contributor.author | Ting-Jui Chang | en |
| dc.date.accessioned | 2024-08-15T16:52:06Z | - |
| dc.date.available | 2024-08-16 | - |
| dc.date.copyright | 2024-08-15 | - |
| dc.date.issued | 2024 | - |
| dc.date.submitted | 2024-08-05 | - |
| dc.identifier.citation | 1. A. D. Sanchez, J. L. Feldman, Microtubule-organizing centers: from the centrosome to non-centrosomal sites. Current opinion in cell biology 44, 93-101 (2017).
2. M. Moritz, M. B. Braunfeld, J. W. Sedat, B. Alberts, D. A. Agard, Microtubule nucleation by γ-tubulin-containing rings in the centrosome. Nature 378, 638-640 (1995). 3. E. A. Nigg, J. W. Raff, Centrioles, centrosomes, and cilia in health and disease. Cell 139, 663-678 (2009). 4. M. Paintrand, M. Moudjou, H. Delacroix, M. Bornens, Centrosome organization and centriole architecture: their sensitivity to divalent cations. Journal of structural biology 108, 107-128 (1992). 5. M. Winey, E. O'Toole, Centriole structure. Philosophical Transactions of the Royal Society B: Biological Sciences 369, 20130457 (2014). 6. S. Graser et al., Cep164, a novel centriole appendage protein required for primary cilium formation. The Journal of cell biology 179, 321-330 (2007). 7. J. E. Sillibourne et al., Primary ciliogenesis requires the distal appendage component Cep123. Biology open 2, 535-545 (2013). 8. Q. Wei et al., Transition fibre protein FBF1 is required for the ciliary entry of assembled intraflagellar transport complexes. Nature communications 4, 1-10 (2013). 9. X. Ye, H. Zeng, G. Ning, J. F. Reiter, A. Liu, C2cd3 is critical for centriolar distal appendage assembly and ciliary vesicle docking in mammals. Proceedings of the National Academy of Sciences 111, 2164-2169 (2014). 10. B. E. Tanos et al., Centriole distal appendages promote membrane docking, leading to cilia initiation. Genes & development 27, 163-168 (2013). 11. K. Joo et al., CCDC41 is required for ciliary vesicle docking to the mother centriole. Proceedings of the National Academy of Sciences 110, 5987-5992 (2013). 12. T. Kobayashi, B. D. Dynlacht, Regulating the transition from centriole to basal body. Journal of Cell Biology 193, 435-444 (2011). 13. K. N. Schmidt et al., Cep164 mediates vesicular docking to the mother centriole during early steps of ciliogenesis. Journal of Cell Biology 199, 1083-1101 (2012). 14. N. Delgehyr, J. Sillibourne, M. Bornens, Microtubule nucleation and anchoring at the centrosome are independent processes linked by ninein function. Journal of cell science 118, 1565-1575 (2005). 15. M. Bornens, Centrosome composition and microtubule anchoring mechanisms. Current opinion in cell biology 14, 25-34 (2002). 16. D. Kong et al., Centriole maturation requires regulated Plk1 activity during two consecutive cell cycles. Journal of Cell Biology 206, 855-865 (2014). 17. J. F. Reiter, O. E. Blacque, M. R. Leroux, The base of the cilium: roles for transition fibres and the transition zone in ciliary formation, maintenance and compartmentalization. EMBO reports 13, 608-618 (2012). 18. F. R. Garcia-Gonzalo, J. F. Reiter, Scoring a backstage pass: mechanisms of ciliogenesis and ciliary access. Journal of Cell Biology 197, 697-709 (2012). 19. J. L. Rosenbaum, G. B. Witman, Intraflagellar transport. Nature reviews Molecular cell biology 3, 813-825 (2002). 20. H. Kashihara et al., Cep128 associates with Odf2 to form the subdistal appendage of the centriole. Genes to Cells 24, 231-243 (2019). 21. G. Mazo, N. Soplop, W.-J. Wang, K. Uryu, M.-F. B. Tsou, Spatial control of primary ciliogenesis by subdistal appendages alters sensation-associated properties of cilia. Developmental cell 39, 424-437 (2016). 22. N. Huang et al., Hierarchical assembly of centriole subdistal appendages via centrosome binding proteins CCDC120 and CCDC68. Nature communications 8, 15057 (2017). 23. H. Ishikawa, A. Kubo, S. Tsukita, S. Tsukita, Odf2-deficient mother centrioles lack distal/subdistal appendages and the ability to generate primary cilia. Nature cell biology 7, 517-524 (2005). 24. K. Tateishi et al., Two appendages homologous between basal bodies and centrioles are formed using distinct Odf2 domains. Journal of Cell Biology 203, 417-425 (2013). 25. S. Kuhns et al., The microtubule affinity regulating kinase MARK4 promotes axoneme extension during early ciliogenesis. Journal of Cell Biology 200, 505-522 (2013). 26. L. Viol et al., Nek2 kinase displaces distal appendages from the mother centriole prior to mitosis. Journal of Cell Biology 219, (2020). 27. W. M. Chong et al., Super-resolution microscopy reveals coupling between mammalian centriole subdistal appendages and distal appendages. Elife 9, e53580 (2020). 28. B. Kurtulmus et al., LRRC45 contributes to early steps of axoneme extension. Journal of cell science 131, jcs223594 (2018). 29. L. Wang, M. Failler, W. Fu, B. D. Dynlacht, A distal centriolar protein network controls organelle maturation and asymmetry. Nature communications 9, 1-15 (2018). 30. L. Čajánek, E. A. Nigg, Cep164 triggers ciliogenesis by recruiting Tau tubulin kinase 2 to the mother centriole. Proceedings of the National Academy of Sciences 111, E2841-E2850 (2014). 31. C.-H. Lo et al., Phosphorylation of CEP83 by TTBK2 is necessary for cilia initiation. Journal of Cell Biology 218, 3489-3505 (2019). 32. T. T. Yang et al., Super-resolution architecture of mammalian centriole distal appendages reveals distinct blade and matrix functional components. Nature communications 9, 1-11 (2018). 33. J. E. Sillibourne et al., Assessing the localization of centrosomal proteins by PALM/STORM nanoscopy. Cytoskeleton 68, 619-627 (2011). 34. L. Lau, Y. L. Lee, S. J. Sahl, T. Stearns, W. Moerner, STED microscopy with optimized labeling density reveals 9-fold arrangement of a centriole protein. Biophysical journal 102, 2926-2935 (2012). 35. M. Bowler et al., High-resolution characterization of centriole distal appendage morphology and dynamics by correlative STORM and electron microscopy. Nature communications 10, 1-15 (2019). 36. P. Le Borgne et al., The evolutionary conserved proteins CEP90, FOPNL, and OFD1 recruit centriolar distal appendage proteins to initiate their assembly. PLoS biology 20, e3001782 (2022). 37. D. Kumar et al., A ciliopathy complex builds distal appendages to initiate ciliogenesis. Journal of Cell Biology 220, e202011133 (2021). 38. S. Dunst, P. Tomancak, Imaging flies by fluorescence microscopy: principles, technologies, and applications. Genetics 211, 15-34 (2019). 39. J. W. Lichtman, J.-A. Conchello, Fluorescence microscopy. Nature methods 2, 910-919 (2005). 40. R. Dixit, R. Cyr, Cell damage and reactive oxygen species production induced by fluorescence microscopy: effect on mitosis and guidelines for non‐invasive fluorescence microscopy. The Plant Journal 36, 280-290 (2003). 41. M. Lelek et al., Single-molecule localization microscopy. Nature Reviews Methods Primers 1, 39 (2021). 42. M. J. Rust, M. Bates, X. Zhuang, Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM). Nature methods 3, 793-796 (2006). 43. E. Betzig et al., Imaging intracellular fluorescent proteins at nanometer resolution. Science 313, 1642-1645 (2006). 44. M. Heilemann et al., Subdiffraction-resolution fluorescence imaging with conventional fluorescent probes. Angewandte Chemie-International Edition 47, (2008). 45. H. Li, J. C. Vaughan, Switchable fluorophores for single-molecule localization microscopy. Chemical reviews 118, 9412-9454 (2018). 46. L. von Diezmann, Y. Shechtman, W. Moerner, Three-dimensional localization of single molecules for super-resolution imaging and single-particle tracking. Chemical reviews 117, 7244-7275 (2017). 47. S. T. Hess, T. P. Girirajan, M. D. Mason, Ultra-high resolution imaging by fluorescence photoactivation localization microscopy. Biophysical journal 91, 4258-4272 (2006). 48. S. Van de Linde et al., Direct stochastic optical reconstruction microscopy with standard fluorescent probes. Nature protocols 6, 991-1009 (2011). 49. A. Sharonov, R. M. Hochstrasser, Wide-field subdiffraction imaging by accumulated binding of diffusing probes. Proceedings of the National Academy of Sciences 103, 18911-18916 (2006). 50. R. Jungmann et al., Single-molecule kinetics and super-resolution microscopy by fluorescence imaging of transient binding on DNA origami. Nano letters 10, 4756-4761 (2010). 51. S. Markus, H. Mike, Single-Molecule Localization Microscopy in Eukaryotes. (2017). 52. Y. M. Sigal, R. Zhou, X. Zhuang, Visualizing and discovering cellular structures with super-resolution microscopy. Science 361, 880-887 (2018). 53. B. Huang, S. A. Jones, B. Brandenburg, X. Zhuang, Whole-cell 3D STORM reveals interactions between cellular structures with nanometer-scale resolution. Nature methods 5, 1047-1052 (2008). 54. H. Shroff et al., Dual-color superresolution imaging of genetically expressed probes within individual adhesion complexes. Proceedings of the National Academy of Sciences 104, 20308-20313 (2007). 55. G. T. Dempsey, J. C. Vaughan, K. H. Chen, M. Bates, X. Zhuang, Evaluation of fluorophores for optimal performance in localization-based super-resolution imaging. Nature methods 8, 1027-1036 (2011). 56. A. Pertsinidis, Y. Zhang, S. Chu, Subnanometre single-molecule localization, registration and distance measurements. Nature 466, 647-651 (2010). 57. M. Bossi et al., Multicolor far-field fluorescence nanoscopy through isolated detection of distinct molecular species. Nano letters 8, 2463-2468 (2008). 58. A. Lampe, V. Haucke, S. J. Sigrist, M. Heilemann, J. Schmoranzer, Multi‐colour direct STORM with red emitting carbocyanines. Biology of the Cell 104, 229-237 (2012). 59. Y. Zhang et al., Nanoscale subcellular architecture revealed by multicolor three-dimensional salvaged fluorescence imaging. Nature methods 17, 225-231 (2020). 60. W. Wu et al., Tetra-color superresolution microscopy based on excitation spectral demixing. Light: Science & Applications 12, 9 (2023). 61. Z. Zhang, S. J. Kenny, M. Hauser, W. Li, K. Xu, Ultrahigh-throughput single-molecule spectroscopy and spectrally resolved super-resolution microscopy. Nature methods 12, 935-938 (2015). 62. K.-H. Song, Y. Zhang, B. Brenner, C. Sun, H. F. Zhang, Symmetrically dispersed spectroscopic single-molecule localization microscopy. Light: Science & Applications 9, 92 (2020). 63. J. C. Thiele et al., Confocal fluorescence-lifetime single-molecule localization microscopy. ACS nano 14, 14190-14200 (2020). 64. N. Oleksiievets et al., Single-molecule fluorescence lifetime imaging using wide-field and confocal-laser scanning microscopy: A comparative analysis. Nano Letters 22, 6454-6461 (2022). 65. J. Tam, G. A. Cordier, J. S. Borbely, A. Sandoval Alvarez, M. Lakadamyali, Cross-talk-free multi-color STORM imaging using a single fluorophore. PloS one 9, e101772 (2014). 66. C. C. Valley, S. Liu, D. S. Lidke, K. A. Lidke, Sequential superresolution imaging of multiple targets using a single fluorophore. PloS one 10, e0123941 (2015). 67. J. Yi et al., madSTORM: a superresolution technique for large-scale multiplexing at single-molecule accuracy. Molecular biology of the cell 27, 3591-3600 (2016). 68. M. Klevanski et al., Automated highly multiplexed super-resolution imaging of protein nano-architecture in cells and tissues. Nature communications 11, 1552 (2020). 69. R. Jungmann et al., Multiplexed 3D cellular super-resolution imaging with DNA-PAINT and Exchange-PAINT. Nature methods 11, 313-318 (2014). 70. S. S. Agasti et al., DNA-barcoded labeling probes for highly multiplexed Exchange-PAINT imaging. Chemical science 8, 3080-3091 (2017). 71. S. Strauss, R. Jungmann, Up to 100-fold speed-up and multiplexing in optimized DNA-PAINT. Nature methods 17, 789-791 (2020). 72. F. Schueder et al., Unraveling cellular complexity with transient adapters in highly multiplexed super-resolution imaging. Cell 187, 1769-1784. e1718 (2024). 73. F. Chen, P. W. Tillberg, E. S. Boyden, Expansion microscopy. Science 347, 543-548 (2015). 74. P. W. Tillberg et al., Protein-retention expansion microscopy of cells and tissues labeled using standard fluorescent proteins and antibodies. Nature biotechnology 34, 987-992 (2016). 75. T. J. Chozinski et al., Expansion microscopy with conventional antibodies and fluorescent proteins. Nature methods 13, 485-488 (2016). 76. A. T. Wassie, Y. Zhao, E. S. Boyden, Expansion microscopy: principles and uses in biological research. Nature methods 16, 33-41 (2019). 77. S. M. Asano et al., Expansion microscopy: protocols for imaging proteins and RNA in cells and tissues. Current protocols in cell biology 80, e56 (2018). 78. T. Ku et al., Multiplexed and scalable super-resolution imaging of three-dimensional protein localization in size-adjustable tissues. Nature biotechnology 34, 973-981 (2016). 79. F. Chen et al., Nanoscale imaging of RNA with expansion microscopy. Nature methods 13, 679-684 (2016). 80. R. Gao et al., Cortical column and whole-brain imaging with molecular contrast and nanoscale resolution. Science 363, eaau8302 (2019). 81. Y. Zhao et al., Nanoscale imaging of clinical specimens using pathology-optimized expansion microscopy. Nature biotechnology 35, 757-764 (2017). 82. G. Wen, V. Leen, T. Rohand, M. Sauer, J. Hofkens, Current progress in expansion microscopy: chemical strategies and applications. Chemical Reviews 123, 3299-3323 (2023). 83. A. R. Halpern, G. C. Alas, T. J. Chozinski, A. R. Paredez, J. C. Vaughan, Hybrid structured illumination expansion microscopy reveals microbial cytoskeleton organization. ACS nano 11, 12677-12686 (2017). 84. M. Gao et al., Expansion stimulated emission depletion microscopy (ExSTED). ACS nano 12, 4178-4185 (2018). 85. H. Xu et al., Molecular organization of mammalian meiotic chromosome axis revealed by expansion STORM microscopy. Proceedings of the National Academy of Sciences 116, 18423-18428 (2019). 86. F. U. Zwettler et al., Tracking down the molecular architecture of the synaptonemal complex by expansion microscopy. Nature communications 11, 1-11 (2020). 87. F. U. Zwettler et al., Molecular resolution imaging by post-labeling expansion single-molecule localization microscopy (Ex-SMLM). Nature communications 11, 3388 (2020). 88. D. Gambarotto et al., Imaging cellular ultrastructures using expansion microscopy (U-ExM). Nature methods 16, 71-74 (2019). 89. N. Banterle, K. H. Bui, E. A. Lemke, M. Beck, Fourier ring correlation as a resolution criterion for super-resolution microscopy. Journal of structural biology 183, 363-367 (2013). 90. R. P. Nieuwenhuizen et al., Measuring image resolution in optical nanoscopy. Nature methods 10, 557-562 (2013). 91. J.-J. Tsai, W.-B. Hsu, J.-H. Liu, C.-W. Chang, T. K. Tang, CEP120 interacts with C2CD3 and Talpid3 and is required for centriole appendage assembly and ciliogenesis. Scientific reports 9, 1-15 (2019). 92. N. Gaudin et al., Evolutionary conservation of centriole rotational asymmetry in the human centrosome. Elife 11, e72382 (2022). 93. A. N. Hoover et al., C2cd3 is required for cilia formation and Hedgehog signaling in mouse. (2008). 94. C. Thauvin-Robinet et al., The oral-facial-digital syndrome gene C2CD3 encodes a positive regulator of centriole elongation. Nature genetics 46, 905-911 (2014). 95. D. A. Helmerich, G. Beliu, S. S. Matikonda, M. J. Schnermann, M. Sauer, Photoblueing of organic dyes can cause artifacts in super-resolution microscopy. Nature Methods 18, 253-257 (2021). 96. K. M. Esvelt et al., Orthogonal Cas9 proteins for RNA-guided gene regulation and editing. Nature methods 10, 1116-1121 (2013). 97. R. G. Anderson, The three-dimensional structure of the basal body from the rhesus monkey oviduct. The Journal of cell biology 54, 246-265 (1972). 98. S.-n. Uno et al., A spontaneously blinking fluorophore based on intramolecular spirocyclization for live-cell super-resolution imaging. Nature chemistry 6, 681-689 (2014). 99. M. B. Stone, S. L. Veatch, Far‐Red Organic Fluorophores Contain a Fluorescent Impurity. ChemPhysChem 15, 2240-2246 (2014). 100. T.-J. B. Chang, J. C.-C. Hsu, T. T. Yang, Single-molecule localization microscopy reveals the ultrastructural constitution of distal appendages in expanded mammalian centrioles. Nature Communications 14, 1688 (2023). 101. V. N. Belov, M. L. Bossi, J. Fölling, V. P. Boyarskiy, S. W. Hell, Rhodamine spiroamides for multicolor single‐molecule switching fluorescent nanoscopy. Chemistry–A European Journal 15, 10762-10776 (2009). 102. S.-n. Uno, M. Kamiya, A. Morozumi, Y. Urano, A green-light-emitting, spontaneously blinking fluorophore based on intramolecular spirocyclization for dual-colour super-resolution imaging. Chemical Communications 54, 102-105 (2018). 103. J. Tyson et al., Extremely bright, near-IR emitting spontaneously blinking fluorophores enable ratiometric multicolor nanoscopy in live cells. ACS central science 7, 1419-1426 (2021). 104. U. Endesfelder, S. Malkusch, F. Fricke, M. Heilemann, A simple method to estimate the average localization precision of a single-molecule localization microscopy experiment. Histochemistry and cell biology 141, 629-638 (2014). | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/94333 | - |
| dc.description.abstract | 遠端附屬物在纖毛形成中至關重要,因為它們在早期纖毛發生過程中調控囊泡和纖毛與質膜的對接。許多遠端附屬物蛋白,其九重對稱排列,已通過超分辨率顯微鏡分析進行研究。然而,由於空間分辨率和資料產出率不足,要達到對從中心粒壁發展出的遠端附屬物結構的全面超微結構理解仍然具有挑戰性。為了提高蛋白質映射的空間分辨率,我們提出了一種實用的兩色Ex-dSTORM成像策略。我們的成像工作流程使我們能夠將光學顯微鏡的解析度極限推向分子級水平,從而能夠在完整細胞架構內以前所未有的分辨率解開遠端附屬物及其相關蛋白質的高階蛋白質結構。根據我們的成像結果,我們建立了一個超高解析度的遠端附屬物對中心粒的三維模型。此外,我們的研究發現表明ODF2在協調和維持遠端附屬物的九重對稱中起輔助作用。總的來說,我們制定了一個基於細胞器的漂移校正方法和一種最小串擾的兩色解決方案,可靠地促進了在水凝膠樣品複合體的深處進行擴展的遠端附屬物結構的定位顯微鏡成像。為了進一步提高資料產出率,我們提出了一種簡單的多目標單分子定位顯微術方法,稱為buffer-exchanged STORM(beSTORM),用於在單輪標記中可視化多個超高解析度蛋白質複合物。此方法利用不同緩衝條件下可區分的光子閃爍反應,引入了一個額外的維度,以區分單個分子,而不考慮其光譜特性。通過簡單的緩衝液交換,beSTORM實現了光譜無限制的多目標單分子定位顯微術成像,並且串擾極小。與擴展顯微鏡的直接結合顯示了在單一發射顏色中在分子級水平上解析多達六種蛋白質的能力,而不會出現色差。總的來說,beSTORM提供了一個高度兼容的成像方法之平台,為高度多通道奈米顯微術的發展提供了重要的一步,使其在生物系統中探索多個目標並有著奈米級精度。 | zh_TW |
| dc.description.abstract | Distal appendages (DAs) are vital in cilia formation, as they mediate vesicular and ciliary docking to the plasma membrane during early ciliogenesis. Numerous DA proteins, which arrange in a nine-fold symmetry, have been studied using superresolution microscopy analyses. However, achieving an extensive ultrastructural understanding of the DA structure developing from the centriole wall remains challenging due to insufficient spatial resolution and throughput. To enhance the spatial resolution of protein mapping, we proposed a pragmatic imaging strategy for two-color Ex-dSTORM. Our imaging workflow enables us to push the resolution limit of a light microscope well close to a molecular level, allowing us to unravel the ultra-resolved higher-order protein complexes of the DA and its associated proteins with an unprecedented mapping resolution inside intact cells. Based on our imaging results, we constructed an ultra-resolved 3D model of the DA against the centriole. Moreover, our findings suggest that ODF2 plays an auxiliary role in coordinating and maintaining the nine-fold symmetry of DA. Collectively, we devised an organelle-based drift correction protocol and a two-color solution with minimum crosstalk, facilitating robust localization microscopy imaging of expanded DA structures within the depths of gel-specimen composites. To further increase throughput, we proposed a simple multi-target SMLM approach called buffer-exchanged STORM (beSTORM), for visualizing multiple super-resolved protein complexes in a single round of labeling. This method leverages the distinguishable photo-blinking responses to distinct buffer conditions, introducing an additional dimension to differentiate between single molecules irrespective of their spectral properties. Through straightforward buffer exchanges, beSTORM achieves spectrum-unlimited multi-target SMLM imaging with minimal crosstalk. Direct integration with expansion microscopy (ExM) demonstrates its capability to resolve up to six proteins at the molecular level within a single emission color, without experiencing chromatic aberration. Overall, beSTORM presents a highly compatible imaging platform, promising significant advancements in highly multiplexed nanoscopy for exploring multiple targets in biological systems with nanoscale precision. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-08-15T16:52:06Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2024-08-15T16:52:06Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 審定書 i
Acknowledgements ii 中文摘要 iii ABSTRACT v CONTENTS vii LIST OF FIGURES xii LIST OF TABLES xviii Chapter 1 Backgrounds and Motivations 1 1.1 The centrosome 1 1.2 Centriolar Appendages 3 1.3 Architecture of Centriolar Distal Appendages 7 1.4 Fluorescence Microscopy 9 1.4.1 Basic Principles of Fluorescence 10 1.4.2 Fluorescent Labeling Schemes 14 1.4.3 Optical Diffraction Limit 15 1.5 Single-molecule Localization Microscopy 18 1.5.1 Principles of SMLM 18 1.5.2 Overview of Multi-target SMLM 20 1.6 Expansion Microscopy 24 1.7 Motivations of the Dissertation 26 Chapter 2 Materials and Methods 28 2.1 Reagents 28 2.2 Cell culture 29 2.3 Antibodies 29 2.4 Expanded Sample Preparation (UExM) 33 2.5 Immunostaining 34 2.5.1 Staining of the expanded samples (for Chapter 3). 34 2.5.2 Immunostaining of the samples (for Chapter 4) 34 2.6 Re-embedding of Expanded Hydrogels 38 2.6.1 Without chemically binding 38 2.6.2 With chemically binding 39 2.7 Optical Setup 40 2.8 Imaging 41 2.8.1 Ex-dSTORM 41 2.8.2 beSTORM 42 2.8.3 Ex-beSTORM 43 2.9 Drift Correction and Image Registration 44 Chapter 3 SMLM reveals the ultrastructural constitution of distal appendages in expanded mammalian centrioles 45 3.1 Introduction 45 3.2 Results 46 3.2.1 In-situ drift correction enables systematical molecular-resolution protein mapping with optimized Ex-dSTORM 46 3.2.2 Revealing nine-fold symmetry of C2CD3 and ultrastructural contexts of DA proteins with Ex-dSTORM 51 3.2.3 Optimized dye combination for minimum crosstalk in two-color Ex-dSTORM 55 3.2.4 Ex-dSTORM axial-view imaging reveals ultra-resolved angular and radial relationships among DA proteins 57 3.2.5 Ultra-detailed analyses of the relative longitudinal relationship among DA proteins 61 3.2.6 Ex-dSTORM reveals the ultrastructural constitution of the DA base 64 3.2.7 Ex-dSTORM unravels the specific spatial correlation between the distal-layered ODF2 and DAs 69 3.2.8 Distal-layer of ODF2 as an auxiliary role for coordinating and maintaining the DA Structure 73 3.3 Discussion 77 3.4 Supporting Information 82 3.4.1 Specific methods in this study 82 3.4.2 Supplementary Note 1: Optimizatoin of expansion factor in the re-embedding process 85 3.4.3 Supplementary Note 2: Workflow of in-situ drift correction 86 3.4.4 Supplementary Note 3: Intensity asymmetry of C2CD3 87 3.4.5 Supplementary Figures 89 3.4.6 Supplementary Tables 100 Chapter 4 Multiplexed Nanoscopy via Buffer Exchange 103 4.1 Introduction 103 4.2 Results 104 4.2.1 Principle of beSTORM 104 4.2.2 Performance of beSTORM with AF647 and HMSiR 108 4.2.3 Dye combinations for red-emitting beSTORM. 111 4.2.4 Multiplexed beSTORM enables simple four-target SMLM imaging. 114 4.2.5 Extended multi-target molecular-resolution imaging by expansion beSTORM (Ex-beSTORM) 116 4.3 Discussion and Future Outlook 120 4.4 Supporting Information 123 4.4.1 Specific methods in this study 123 4.4.2 Supplementary Figures 124 4.4.3 Supplementary Tables 132 Chapter 5 Conclusions 133 REFERENCES 135 | - |
| dc.language.iso | en | - |
| dc.subject | 超分辨率顯微術 | zh_TW |
| dc.subject | 單分子定位顯微術 | zh_TW |
| dc.subject | 擴展顯微術 | zh_TW |
| dc.subject | (直接)隨機光學重 建顯微術 | zh_TW |
| dc.subject | 多通道成像 | zh_TW |
| dc.subject | 主纖毛 | zh_TW |
| dc.subject | 遠端附屬物 | zh_TW |
| dc.subject | Multiplexed imaging | en |
| dc.subject | Single-molecule localization microscopy | en |
| dc.subject | Expansion microscopy | en |
| dc.subject | Distal appendage | en |
| dc.subject | Primary cilium | en |
| dc.subject | (direct) Stochastic optical reconstruction microscopy ((d)STORM) | en |
| dc.subject | Super-resolution microscopy | en |
| dc.title | 多功奈米顯微術揭示哺乳類中心粒遠端附屬物之超微結構 | zh_TW |
| dc.title | Multiplexed nanoscopy unveils the ultrastructural constitution of mammalian centriole distal appendages | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 112-2 | - |
| dc.description.degree | 博士 | - |
| dc.contributor.coadvisor | 楊東霖 | zh_TW |
| dc.contributor.coadvisor | Tony Yang | en |
| dc.contributor.oralexamcommittee | 鍾邦柱;謝佳龍;王琬菁 | zh_TW |
| dc.contributor.oralexamcommittee | Bon-Chu Chung;Chia-Lung Hsieh;Won-Jing Wang | en |
| dc.subject.keyword | 超分辨率顯微術,單分子定位顯微術,擴展顯微術,(直接)隨機光學重 建顯微術,多通道成像,主纖毛,遠端附屬物, | zh_TW |
| dc.subject.keyword | Super-resolution microscopy,Single-molecule localization microscopy,Expansion microscopy,(direct) Stochastic optical reconstruction microscopy ((d)STORM),Multiplexed imaging,Primary cilium,Distal appendage, | en |
| dc.relation.page | 144 | - |
| dc.identifier.doi | 10.6342/NTU202402766 | - |
| dc.rights.note | 同意授權(全球公開) | - |
| dc.date.accepted | 2024-08-07 | - |
| dc.contributor.author-college | 理學院 | - |
| dc.contributor.author-dept | 物理學系 | - |
| 顯示於系所單位: | 物理學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-112-2.pdf | 7.48 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
