請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/94329完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 李貫銘 | zh_TW |
| dc.contributor.advisor | Kuan-Ming Li | en |
| dc.contributor.author | 林孝桓 | zh_TW |
| dc.contributor.author | Xiao-Huan Lin | en |
| dc.date.accessioned | 2024-08-15T16:50:52Z | - |
| dc.date.available | 2024-08-16 | - |
| dc.date.copyright | 2024-08-15 | - |
| dc.date.issued | 2024 | - |
| dc.date.submitted | 2024-08-05 | - |
| dc.identifier.citation | 參考文獻
[1] L. Ou, Z. An, Z. Gao, S. Zhou and Z. Men, "Effects of Process Parameters on the Thickness Uniformity in Two-Point Incremental Forming (TPIF) with a Positive Die for an Irregular Stepped Part," Materials (Basel), vol. 13, no. 11, 2020. [2] Tomasz Trzepieci, Valentin Oleksi, Tomaž Pepelnjak, Sherwan Mohammed Najm, Imre Paniti, Kuntal Maji, "Emerging Trends in Single Point Incremental Sheet Forming of Lightweight Metals," Metals, vol. 11, no. 8, 2021. [3] Y. Liu, F. Li, C. Li and J. Xu, "Effect of reverse pre-bulging on magnetic medium deep drawing formability of aluminum spherical bottom cylindrical parts," The International Journal of Advanced Manufacturing Technology, vol. 103, no. 9-12, pp. 4649-4657, 2019. [4] Y. Xiang, J.J. Vlassak, "Bauschinger effect in thin metal films," Scripta Materialia, vol. 53, no. 2, pp. 177-182, 2005. [5] Satoshi Hatori, Akio Sekiguchi, Abdullah Özer, "Conceptual design of multipurpose forming machine and experiments on force-controlled shear spinning of truncated cone," Procedia Manufacturing, vol. 15, pp. 1255-1262, 2018. [6] L. Filice, L. Fratin, F. Micari, "Analysis of Material Formability in Incremental Forming," CIRP Annals, vol. 51, no. 1, pp. 199-202, 2002. [7] Rajiv Malhotra, Liang Xue, Ted Belytschko, Jian Cao, "Mechanics of fracture in single point incremental forming," Journal of Materials Processing Technology, vol. 212, no. 7, pp. 1573-1590, 2012. [8] M. B. Silva and P. A. F. Martins, "Two-Point Incremental Forming with Partial Die: Theory and Experimentation," Journal of Materials Engineering and Performance, vol. 22, no. 4, pp. 1018-1027, 2012. [9] Al-Ghamdi, Khalid A, "Spring back analysis in incremental forming of polypropylene sheet: An experimental study," Journal of Mechanical Science and Technology, vol. 32, no. 10, pp. 4859-4869, 2018. [10] G.Ambrogio, J. Duflou, L.Filice, R. Aerens, "Some considerations on force trends in Incremental Forming of different materials," AIP Conference Proceedings, vol. 907, no. 1, pp. 193-198, 2007. [11] J. Jeswiet, F. Micari, G. Hirt, A. Bramley, J. Duflou, J. Allwood, "Asymmetric Single Point Incremental Forming of Sheet Metal," CIRP Annals, vol. 54, no. 2, pp. 88-114, 2005. [12] Rajiv Malhotra, N. V. Reddy, Jian Cao, "Automatic 3D Spiral Toolpath Generation for Single Point Incremental Forming," journal of manufacturing science and engineering, vol. 132, no. 6, 2010. [13] Ravinder Pal Singh, Ghansham Goyal, “FEA Analysis to Study the Influence of Various Forming Parameters on Springback Occurs In Single Point Incremental Forming,” International Journal of Engineering Research and Applications. [14] Felix Dionisius, Sugiri,Tito Endramawan,Emin Haris, "Geometrical Study of Channel Profile under Incremental Forming Process: Numerical Simulation," Journal of Mechanical Engineering, vol. 16, no. 2, pp. 1-10, 2019. [15] X. Guo, Y. Gu, H. Wang, K. Jin and J. Tao, "The Bauschinger effect and mechanical properties of AA5754 aluminum alloy in incremental forming process," The International Journal of Advanced Manufacturing Technology, vol. 94, no. 1-4, pp. 1387-1396, 2017. [16] Muhamad Sani Buang*, Shahrul Azam Abdullah, Juri Saedon, "An Overview of the Impacts of Material Parameters on Springback," Applied Mechanics and Materials, vol. 564, pp. 323-328, 2014. [17] K. Bouchaala, M.F. Ghanameh, M. Faqir, M. Mada, E. Essadiqi, "Numerical investigation of the effect of punch corner radius and die shoulder radius on the flange earrings for AA1050 and AA1100 aluminum alloys in cylindrical deep drawing process," Heliyon, vol. 7, no. 4, p. e06662, 2021. [18] E.F. Rauch, J.J. Gracio,F. Barlat,A.B. Lopes,J. Ferreira Duarte, "Hardening behavior and structural evolution upon strain reversal of aluminum alloys," Scripta Materialia, vol. 46, no. 12, pp. 881-886, 2002. [19] M Härtel, B Bohne and M F-X Wagner, “Microstructural evolution during tension-compression in-plane deformation of a pure aluminum sheet,” IOP Conference Series: Materials Science and Engineering, 2017. [20] F.A. Mirza, K. Liu, and X.-G. Chen, "Cyclic Stress-Strain Behavior and Low Cycle Fatigue Life of AA6061 Aluminum Alloy," Light Metals 2017 , pp. 447-452, 2017 . [21] Kyu-Seok Jung, Jae-Hyeong Yu, Wan-Jin Chung, Chang-Whan Lee, "Tool Path Design of the Counter Single Point Incremental Forming Process to Decrease Shape Error," Materials (Basel), vol. 13, no. 21, 2020. [22] Jackson, K. and J. Allwood, "The mechanics of incremental sheet forming," Journal of Materials Processing Technology, vol. 209, no. 3, pp. 1158-1174, 2009. [23] 陳家揚, "反向多道次單點增量成形之研究," 2019. [24] 顏子翔, “多階段單點增量成形之板厚分配策略,” 2019. [25] C. Labergere, H. Badreddine, S. Msolli, K. Saanouni, M. Martiny, F. Choquart , "Modeling and simulation of AA1050-O embossed sheet metal stamping," Procedia Engineering, vol. 207, pp. 72-77, 2017. [26] Shuhui Li, Xing Hu, Yixi Zhao, Zhongqin Lin, Nanqiao Xu, "Cyclic hardening behavior of roller hemming in the case of aluminum alloy sheets," Materials & Design, vol. 32, no. 4, pp. 2308-2316, 2011. [27] Lemaitre, J., J.-L. Chaboche,, Mechanics of Solid Materials,, Cambridge University Press, 1990. [28] Grigorios Tsinidis, Kyriazis Pitilakis, Areti Despina Trikalioti, "Numerical simulation of round robin numerical test on tunnels using a simplified kinematic hardening model," Acta Geotechnica, vol. 9, p. 641–659, 2014. [29] "Advanced Manufacturing Processes Laboratory," [Online]. Available: https://ampl.mech.northwestern.edu/research/current-research/ampltoolpaths.html. [30] Haibo Lu, Hui Liu, Chenhao Wang, "Review on strategies for geometric accuracy improvement in incremental sheet forming," The International Journal of Advanced Manufacturing Technology, vol. 102, p. 3381–3417, 2019. [31] Marwan T. Mezher*, Béla Kovács, "An Investigation of the Impact of Forming Process Parameters in Single Point Incremental Forming Using Experimental and Numerical Verification," Periodica Polytechnica Mechanical Engineering, vol. 66, no. 3, pp. 183-196, 2022. [32] Suresh Kurra, Nasih Hifzur Rahman, Srinivasa Prakash Regalla, Amit Kumar Gupta, "Modeling and optimization of surface roughness in single point incremental forming process," Journal of Materials Research and Technology, vol. 4, no. 3, pp. 304-313, 2015. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/94329 | - |
| dc.description.abstract | 漸進成形加工乃利用成形工具沿著設定的路徑移動,逐步造成板材變形以製作出所需要的工件,無需製作和更換昂貴的模具,因此能有效地進行少量製造,從而實現產品的客製化。儘管漸進成形技術具有高度的自由度,其精度控制與預測仍未得到充分解決。本研究運用有限元素軟體Abaqus對AA1050-O板材單點、雙點漸進成形進行回彈分析,目的是研究兩種加工方法的異同。本研究主要分析單點、雙點漸進成形的回彈現象,量化回彈並討論漸進成形中回彈的成因。
從模擬的結果得知,雙點漸進成形和單點漸進成形相比,雙點漸進成形整體的回彈量較大,不過可以透過路徑補償提高加工精度,也因此使用雙點漸進成形可以更有效地控制變形,從而達更好的輪廓和精度。由於單點漸進成形與雙點漸進成形的加工路徑不同,造成單點漸進成形的局部回彈是向杯內回彈、雙點漸進成形則會是向杯外回彈。同時,因為包辛格效應會導致材料軟化,在同樣的加工條件與加工路徑下,其模擬結果的應變會比沒有考慮包辛格效應的模型來得大。而單點漸進成形和雙點漸進成形不管有沒有考慮包辛格效應的模型產生的輪廓與實驗的輪廓都差異不大,代表方杯的形狀在漸進成形中可忽略包辛格效應的影響。在同樣的加工路徑下,因AA6061-T6的降伏強度較高,模擬結果的殘留應力會比AA1050-O來得大,且AA6061-T6在側壁回彈量的部分會比AA1050-O多。未來可建立不同材質板材的模型(如高強度鋼)進行CAE分析,或使用全模具來代替部分模具,以提升漸進成形在加工產業的應用。 | zh_TW |
| dc.description.abstract | Incremental forming utilizes forming tools that move along a predetermined path, gradually deforming the sheet metal to create the desired workpiece. This process eliminates the need to create and replace expensive molds, making it efficient for small-scale manufacturing and enabling product customization. Despite the high degree of freedom offered by incremental forming technology, accuracy control and prediction remain unresolved issues. This study uses the finite element software Abaqus to analyze the springback in single-point and two-point incremental forming of AA1050-O sheets, aiming to investigate the differences between the two methods. The research mainly analyzes the springback phenomenon in single-point and double-point incremental forming, quantifies the springback, and discusses its causes in incremental forming.
Simulation results indicate that two-point incremental forming exhibits greater overall springback compared to single-point incremental forming. However, precision can be improved through path compensation, making two-point incremental forming more effective in controlling deformation, thus achieving better contours and accuracy. Due to the different processing paths of single-point and two-point incremental forming, single-point incremental forming results in inward springback towards the cup, while two-point incremental forming results in outward springback away from the cup. Additionally, since the Bauschinger effect causes material softening, the strain in the simulation results under the same processing conditions and path is greater in models considering the Bauschinger effect compared to those that do not. The contours produced by single-point and two-point incremental forming models that do not consider the Bauschinger effect are closer to the experimental contours, indicating that the shape of the square cup in incremental forming can disregard the influence of the Bauschinger effect. Under the same processing path, the residual stress in the simulation results for AA6061-T6, which has higher yield strength, is greater than that for AA1050-O. In the future, models for sheets of different materials (such as high-strength steel) can be established for CAE analysis, or full molds can be used instead of partial molds to enhance the application of incremental forming in the manufacturing industry. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-08-15T16:50:52Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2024-08-15T16:50:52Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 口試委員會審定書 I
誌謝 II 中文摘要 III 英文摘要 IV 第一章 緒論 1 1.1 前言 1 1.2 研究動機與目的 4 1.3 研究方法 5 1.4 文獻回顧 6 1.5 論文總覽 9 第二章 單、雙點漸進成形加工 10 2.1單、雙點漸進成形機制 10 2.1.1漸進成形的成形性 10 2.1.2板材受力模式 11 2.2漸進成形回彈機制 14 2.3鋁合金性質探討 16 2.3.1鋁合金分類方法 16 2.3.2 AA1050鋁合金簡介 17 2.3.3 AA6061鋁合金簡介 18 2.3.4材料模型建立 19 2.3.5加工硬化準則探討 20 第三章 實驗與模擬模型建立 25 3.1 實驗架設 25 3.1.1 單點漸進成形夾具 25 3.1.2 雙點漸進成形夾具 28 3.1.3 實驗設備及儀器 33 3.1.4 成形工具 35 3.1.5 成形工具固定夾具 35 3.1.6 實驗用板材 37 3.1.7 工具路徑生成 37 3.1.8 手臂模擬軟體 39 3.1.9 實驗流程 41 3.2 FEA模型建立 42 3.2.1 Abaqus/Explicit 43 3.2.2成形形狀 43 3.2.3模型建立 44 3.2.4收斂性測試結果 46 3.2.5 Predefined Field功能 54 3.2.6後處理 55 3.3模型驗證 56 第四章 單、雙點漸進成形回彈分析 58 4.1漸進成形實驗數據的後處理 61 4.2回彈及加工誤差的量化分析 70 4.2.1杯口處彎曲(bending) 70 4.2.2漸進成形之包辛格效應探討 71 4.2.3漸進成形的局部回彈(local springback) 74 4.2.4漸進成形的整體回彈(global springback) 83 4.2.5漸進成形的路徑補償 85 4.3板材材質的影響 86 4.4小結 91 第五章 結論與未來展望 94 5.1結論 94 5.2未來展望 95 參考文獻 96 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | CAE | zh_TW |
| dc.subject | 回彈量化 | zh_TW |
| dc.subject | 雙點漸進成形 | zh_TW |
| dc.subject | 單點漸進成形 | zh_TW |
| dc.subject | AA1050-O | zh_TW |
| dc.subject | AA1050-O | en |
| dc.subject | Springback | en |
| dc.subject | Single Point Incremental Forming(SPIF) | en |
| dc.subject | Two Point Incremental Forming(TPIF) | en |
| dc.subject | Computer Aided Engineering (CAE) | en |
| dc.title | 利用有限元素軟體進行漸進成形的回彈現象分析 | zh_TW |
| dc.title | Analysis of Springback Phenomena in Incremental Forming Using the Finite Element Method | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 112-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 陳復國;潘正堂 | zh_TW |
| dc.contributor.oralexamcommittee | Fuh-Kuo Chen;Cheng-Tang Pan | en |
| dc.subject.keyword | 單點漸進成形,雙點漸進成形,回彈量化,AA1050-O,CAE, | zh_TW |
| dc.subject.keyword | Single Point Incremental Forming(SPIF),Two Point Incremental Forming(TPIF),Springback,AA1050-O,Computer Aided Engineering (CAE), | en |
| dc.relation.page | 99 | - |
| dc.identifier.doi | 10.6342/NTU202403491 | - |
| dc.rights.note | 同意授權(限校園內公開) | - |
| dc.date.accepted | 2024-08-09 | - |
| dc.contributor.author-college | 工學院 | - |
| dc.contributor.author-dept | 機械工程學系 | - |
| dc.date.embargo-lift | 2025-05-31 | - |
| 顯示於系所單位: | 機械工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-112-2.pdf 授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務) | 5.62 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
