請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/94315完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 林坤佑 | zh_TW |
| dc.contributor.advisor | Kun-You Lin | en |
| dc.contributor.author | 梁宏 | zh_TW |
| dc.contributor.author | Hung Liang | en |
| dc.date.accessioned | 2024-08-15T16:46:34Z | - |
| dc.date.available | 2024-08-16 | - |
| dc.date.copyright | 2024-08-15 | - |
| dc.date.issued | 2024 | - |
| dc.date.submitted | 2024-08-06 | - |
| dc.identifier.citation | [1] A. H. Masnadi Shirazi et al., “On the design of mm-wave self-mixing-VCO architecture for high tuning-range and low phase noise,” IEEE J. Solid-State Circuits, vol. 51, no. 5, pp. 1210–1222, May 2016.J. Clerk Maxwell, A Treatise on Electricity and Magnetism, 3rd ed., vol. 2. Oxford: Clarendon, 1892, pp.68–73.
[2] M. Nariman, R. Rofougaran, and F. De Flaviis, “A switched-capacitor mm-wave VCO in 65 nm digital CMOS,” in Proc. IEEE Radio Freq. Integr. Circuits Symp., Oct. 2010, pp. 157–160. [3] M. Tiebout, “A CMOS fully integrated 1 GHz and 2 GHz dual band VCO with a voltage controlled inductor,” Proceedings of the 28th European Solid-State Circuits Conference, Florence, Italy, 2002, pp. 799-802. [4] J. Zhang, N. Sharma, and K. K. O, “21.5-to-33.4 GHz voltage-controlled oscillator using NMOS switched inductors in CMOS,” IEEE Microw. Wireless Compon. Lett., vol. 24, no. 7, pp. 478-480, July 2014. [5] P. Agarwal, et al., “Switched substrate-shield-based low-loss CMOS inductors for wide tuning range VCOs,” IEEE Trans. Microw. Theory Techn., vol. 65, no. 8, pp. 2964-2976, Aug. 2017. [6] M. Haghi Kashani, R. Molavi and S. Mirabbasi, "A 2.3-mW 26.3-GHz Gm -Boosted Differential Colpitts VCO With 20% Tuning Range in 65-nm CMOS," in IEEE Transactions on Microwave Theory and Techniques, vol. 67, no. 4, pp. 1556-1565, April 2019. [7] Y. Shu, H. J. Qian and X. Luo, "17.4 A 18.6-to-40.1GHz 201.7dBc/Hz FoMT Multi-Core Oscillator Using E-M Mixed-Coupling Resonance Boosting," 2020 IEEE International Solid-State Circuits Conference - (ISSCC), San Francisco, CA, USA, 2020, pp. 272-274. [8] Y. Shu, H. J. Qian and X. Luo, "A 20.7–31.8GHz Dual-Mode Voltage Waveform-Shaping Oscillator with 195.8dBc/Hz FoMT in 28nm CMOS," 2018 IEEE Radio Frequency Integrated Circuits Symposium (RFIC), Philadelphia, PA, USA, 2018, pp. 216-219. [9] C. Li, J. Guo, P. Qin and Q. Xue, "A Wideband Mode-Switching Quad-Core VCO Using Compact Multi-Mode Magnetically Coupled LC Network," in IEEE Journal of Solid-State Circuits, vol. 58, no. 7, pp. 1959-1972, July 2023. [10] O. Esmaeeli et al., "A Transformer-Based Technique to Improve Tuning Range and Phase Noise of a 20–28GHz LCVCO and a 51–62GHz Self-Mixing LCVCO," in IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 69, no. 6, pp. 2351-2363, June 2022. [11] S. Shakib, H.-C. Park, J. Dunworth, V. Aparin, and K. Entesari, “A highly efficient and linear power amplifier for 28-GHz 5G phased array radios in 28-nm CMOS,” IEEE J. Solid-State Circuits, vol. 51, no. 12, pp. 3020–3036, Dec. 2016. [12] J. A. Jayamon, J. F. Buckwalter, and P. M. Asbeck, “Multigate-cell stacked FET design for millimeter-wave CMOS power amplifiers,” IEEE J. Solid-State Circuits, vol. 51, no. 9, pp. 2027–2039, Sep. 2016. [13] Y. Cho, et al., "Voltage-Combined CMOS Doherty Power Amplifier Based on Transformer," IEEE Transactions on Microwave Theory and Techniques, vol. 64, no. 11, pp. 3612-3622, Nov. 2016. [14] P. Indirayanti and P. Reynaert, “A 32-GHz 20-dBm PSAT transformerbased Doherty power amplifier for multi-Gb/s 5G applications in 28-nm bulk CMOS,” in Proc. IEEE RFIC, Jun. 2017, pp. 45–48. [15] J. -L. Lin, Y. -H. Lin, Y. -H. Hsiao and H. Wang, "A K-band transformer based power amplifier with 24.4-dBm output power and 28% PAE in 90-nm CMOS technology," 2017 IEEE MTT-S International Microwave Symposium (IMS), Honololu, HI, USA, 2017, pp. 31-34. [16] Y. -C. Chen, Y. -H. Lin, J. -L. Lin and H. Wang, "A Ka-Band Transformer-Based Doherty Power Amplifier for Multi-Gb/s Application in 90-nm CMOS," in IEEE Microwave and Wireless Components Letters, vol. 28, no. 12, pp. 1134-1136, Dec. 2018. [17] S. Hu, F. Wang and H. Wang, "A 28-/37-/39-GHz Linear Doherty Power Amplifier in Silicon for 5G Applications," in IEEE Journal of Solid-State Circuits, vol. 54, no. 6, pp. 1586-1599, June 2019. [18] H. Gao, S. M. Mahani, D. Seebacher, G. Hueber and M. Bassi, "A 28 GHz Doherty PA with 22.9% PAEmax and 17.4% PAE at 6-dB PBO in 0.13μm SiGe Technology for 5G Application," 2022 17th European Microwave Integrated Circuits Conference (EuMIC), Milan, Italy, 2022, pp. 193-195. [19] Z. Zong et al., "A 28GHz Voltage-Combined Doherty Power Amplifier with a Compact Transformer-based Output Combiner in 22nm FD-SOI," 2020 IEEE Radio Frequency Integrated Circuits Symposium (RFIC), Los Angeles, CA, USA, 2020, pp. 299-302. [20] H.-T. Dabag, B. Hanafi, F. Golcuk, A. Agah, J. F. Buckwalter, and P. M. Asbeck, "Analysis and design of stacked-FET millimeter-wave power amplifiers," in IEEE Transactions on Microwave Theory and Techniques, vol. 61, no. 4, pp. 1543-1556, April. 2013. [21] Y. -H. Hsiao, Z. -M. Tsai, H. -C. Liao, J. -C. Kao and H. Wang, "Millimeter-Wave CMOS Power Amplifiers With High Output Power and Wideband Performances," in IEEE Transactions on Microwave Theory and Techniques, vol. 61, no. 12, pp. 4520-4533, Dec. 2013. [22] C. Y. Law and A. -V. Pham, "A high-gain 60GHz power amplifier with 20dBm output power in 90nm CMOS," 2010 IEEE International Solid-State Circuits Conference -(ISSCC), San Francisco, CA, USA, 2010, pp. 426-427. [23] Y. Chang, B. -Z. Lu, Y. Wang, and H. Wang, "A Ka-Band Stacked Power Amplifier with 24.8-dBm Output Power and 24.3% PAE in 65-nm CMOS Technology," 2019 IEEE MTT-S International Microwave Symposium (IMS), Boston, MA, USA, 2019, pp. 316-319. [24] M. A. Elgamal, M. Weheiba, M. M. R. Esmael, M. A. Y. Abdalla, and A. N. Mohieldin, "A 37-43GHz Two Way Current Combining Power Amplifier with 19.6-dBm P1dB for 5G Phased Arrays in 45nm-SOI CMOS," 2021 28th IEEE International Conference on Electronics, Circuits, and Systems (ICECS), Dubai, United Arab Emirates, 2021, pp. 1-4. [25] T. -H. Fan, Y. Wang, and H. Wang, "A Broadband Transformer-Based Power Amplifier Achieving 24.5-dBm Output Power Over 24–41 GHz in 65-nm CMOS Process," in IEEE Microwave and Wireless Components Letters, vol. 31, no. 3, pp. 308-311. [26] A. Bevilacqua and P. Andreani, "An Analysis of 1/f Noise to Phase Noise Conversion in CMOS Harmonic Oscillators," in IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 59, no. 5, pp. 938-945, May 2012. [27] A. Mazzanti et al., "Class-C harmonic CMOS VCOs, with a general result on phase noise", IEEE J. Solid-State Circuits, vol. 43, no. 12, pp. 2716-2729, Dec. 2008. [28] E. Hegazi, H. Sjoland and A. A. Abidi, "A filtering technique to lower LC oscillator phase noise," in IEEE Journal of Solid-State Circuits, vol. 36, no. 12, pp. 1921-1930, Dec. 2001. [29] A. Bevilacqua, F. P. Pavan, C. Sandner, A. Gerosa and A. Neviani, "Transformer-Based Dual-Mode Voltage-Controlled Oscillators," in IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 54, no. 4, pp. 293-297, April 2007. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/94315 | - |
| dc.description.abstract | 這篇論文分為三個部分,都是用於第五代行動通信系統之電路。
第一部分呈現了使用90奈米互補性氧化金屬半導體製程基於變壓器共振腔的K波段壓控振盪器,該設計著重於提供低相位雜訊和寬調諧範圍,並具有相對合理的壓控振盪器增益,此外,變容器的工作電壓需低於系統最高操作電壓,以便應用於實際的通信系統。因此在設計中使用變壓器共振腔和電容器陣列來實現合理的壓控振盪器增益,並且使用到可變電容的全部工作範圍。 第二部分呈現了使用90奈米互補性氧化金屬半導體製程的Ka波段的多爾蒂功率放大器,在本設計中採用電壓型輸出合成器來降低匹配損耗,並且由主路徑和輔助路徑組成,它們由兩級共源放大器結構組成,分別偏壓在在AB類和C類工作區,通過輸出匹配網路的阻抗轉換和自適應偏置電路,提高了輸出回退效率。 第三部分呈現了使用90奈米互補性氧化金屬半導體製程的Q波段使用離散主動式變壓器功率放大器。由於功率級的最佳負載接近25歐姆,這非常接近使用串聯輸出合成器時的阻抗。因此,採用了電壓型合成架構的離散主動式變壓器來減少負載變換比。在分析了離散主動式變壓器二次側的寄生電容效應後,設計了一個補償電感來提高功率合成效率。 | zh_TW |
| dc.description.abstract | This thesis is divided into three parts. They are all designed to use in fifth-generation (5G) mobile communication systems.
The first presents a K-band VCO using transformer-based resonance tank fabricated in 90-nm CMOS process. The design is focused on providing low phase noise and wide-tuning range with reasonable low KVCO. Moreover, the operation voltage of the varactors is designed to be lower than system VDD to apply in practical communication systems. As a result, a transformer-based resonance tank and capacitor bank is designed to realize a reasonable low KVCO and utilize all the operation range of the varactors. The second presents a Ka-band Doherty PA fabricated in 90-nm CMOS process. The voltage-type output combiner is adopted to decrease the matching loss. The circuit is composed of the main path and an auxiliary path, which are composed of two-stage common-source amplifier structures biased in class-AB and class-C, respectively. It enhances the back-off PAE through the impedance conversion of the output matching network and the adaptive bias circuit. The last presents a Q-band PA using DAT structure in 90-nm CMOS process. The optimum load of the power stage is closed to 25 Ω, which is very closed to the impedance when using the series output combiner. As a result, a voltage type combining architecture, DAT, is adopted to reduce load transformation ratio. After analyzing the effect of the parasitic capacitors at the secondary side of the DAT, a compensated inductor is designed to increase the power combining efficiency. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-08-15T16:46:34Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2024-08-15T16:46:34Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 口試委員審定書 i
中文摘要 ii Abstract iii CONTENTS v LIST OF FIGURES vii LIST OF TABLES xiv Chapter 1 Introduction 1 1.1 Background and Literature Survey 1 1.1.1 Voltage-controlled oscillator 1 1.1.2 Power Amplifier 3 1.3 Thesis Organization 10 Chapter 2 Design of a K-band VCO Using Transformer-Based Resonance Tank 11 2.1 Introduction 11 2.2.1 Cross-coupled Pair and Tail Current Source 13 2.2.2 Transformer-based Resonator Design 19 Chapter 3 Design of a Ka-Band Doherty Power Amplifier 47 3.1 Introduction 47 3.3.1 Device and Bias Selection of Power Stage 53 3.3.2 Output Matching 56 3.3.3 Device and Bias Selection of Driver Stage 60 3.3.4 Inter-Stage and Input Matching 60 3.3.5 Adaptive Biasing Circuit 63 Chapter 4 Design of a Q-Band Power Amplifier Using DAT Structure 72 4.1 Introduction 72 4.2.1 Device and Bias Selection of Power Stage 73 4.2.2 Output Matching 76 4.2.3 Device and Bias Selection of Driver Stage 81 4.2.4 Inter-stage Matching and Input Matching 82 Chapter 5 Conclusion 102 Reference 104 | - |
| dc.language.iso | en | - |
| dc.subject | 毫米波 | zh_TW |
| dc.subject | 第五代行動通訊 | zh_TW |
| dc.subject | K波段 | zh_TW |
| dc.subject | Q波段 | zh_TW |
| dc.subject | 壓控振盪器 | zh_TW |
| dc.subject | 功率放大器 | zh_TW |
| dc.subject | 多爾蒂功率放大器 | zh_TW |
| dc.subject | 變壓器 | zh_TW |
| dc.subject | 離散主動式變壓器 | zh_TW |
| dc.subject | Doherty power amplifier | en |
| dc.subject | Millimeter-wave | en |
| dc.subject | Power amplifier | en |
| dc.subject | fifth-generation (5G) | en |
| dc.subject | K-band | en |
| dc.subject | Q-band | en |
| dc.subject | Voltage-controlled-oscillator | en |
| dc.subject | DAT | en |
| dc.subject | Transformer | en |
| dc.title | 應用於第五代行動通訊毫米波頻段之壓控振盪器、多爾蒂功率放大器、與電感補償之分布式主動變壓器功率放大器研究 | zh_TW |
| dc.title | Research on Voltage-controlled Oscillator, Doherty Power Amplifier and Distributed-active-transformer Power Amplifiers with Compensation Inductor for the Fifth Generation Mobile Communication Millimeter-Wave Bands | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 112-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 蔡作敏;蔡政翰;張鴻埜;高堃堯 | zh_TW |
| dc.contributor.oralexamcommittee | Zuo-Min Tsai;Jeng-Han Tsai;Hong-Yeh Chang;Kun-Yao Kao | en |
| dc.subject.keyword | 毫米波,第五代行動通訊,K波段,Q波段,壓控振盪器,功率放大器,多爾蒂功率放大器,變壓器,離散主動式變壓器, | zh_TW |
| dc.subject.keyword | Millimeter-wave,fifth-generation (5G),K-band,Q-band,Voltage-controlled-oscillator,Power amplifier,Doherty power amplifier,Transformer,DAT, | en |
| dc.relation.page | 108 | - |
| dc.identifier.doi | 10.6342/NTU202403299 | - |
| dc.rights.note | 未授權 | - |
| dc.date.accepted | 2024-08-09 | - |
| dc.contributor.author-college | 電機資訊學院 | - |
| dc.contributor.author-dept | 電信工程學研究所 | - |
| 顯示於系所單位: | 電信工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-112-2.pdf 未授權公開取用 | 5.88 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
