Please use this identifier to cite or link to this item:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/94311
Full metadata record
???org.dspace.app.webui.jsptag.ItemTag.dcfield??? | Value | Language |
---|---|---|
dc.contributor.advisor | 謝馬利歐 | zh_TW |
dc.contributor.advisor | Mario Hofmann | en |
dc.contributor.author | 施睦辰 | zh_TW |
dc.contributor.author | Mu-Chen Shih | en |
dc.date.accessioned | 2024-08-15T16:45:16Z | - |
dc.date.available | 2024-08-16 | - |
dc.date.copyright | 2024-08-15 | - |
dc.date.issued | 2024 | - |
dc.date.submitted | 2024-07-31 | - |
dc.identifier.citation | 1. Geim, A.K. and K.S. Novoselov, The rise of graphene. Nature materials, 2007. 6(3): p. 183-191.
2. Cooper, D.R., et al., Experimental review of graphene. International Scholarly Research Notices, 2012. 2012(1): p. 501686. 3. Lee, C., et al., Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science, 2008. 321(5887): p. 385-388. 4. Morozov, S.V., et al., Giant intrinsic carrier mobilities in graphene and its bilayer. Physical review letters, 2008. 100(1): p. 016602. 5. Zhou, X., et al., Booming development of group IV–VI semiconductors: fresh blood of 2D family. Advanced science, 2016. 3(12): p. 1600177. 6. Wang, B., et al., Broadband photodetectors based on 2D group IVA metal chalcogenides semiconductors. Applied Materials Today, 2019. 15: p. 115-138. 7. Cui, Y., et al., Versatile crystal structures and (opto) electronic applications of the 2D metal mono‐, di‐, and tri‐chalcogenide nanosheets. Advanced Functional Materials, 2019. 29(24): p. 1900040. 8. Zhou, X., et al., Ultrathin SnSe2 flakes grown by chemical vapor deposition for high‐performance photodetectors. Advanced Materials, 2015. 27(48): p. 8035-8041. 9. Zhou, X., et al., Exploring interlayer interaction of SnSe2 by low-frequency Raman spectroscopy. Physica E: Low-dimensional Systems and Nanostructures, 2019. 105: p. 7-12. 10. Mukhokosi, E.P., S.B. Krupanidhi, and K.K. Nanda, Band gap engineering of hexagonal SnSe2 nanostructured thin films for infra-red photodetection. Scientific reports, 2017. 7(1): p. 15215. 11. Chung, K.-M., et al., Investigation of SnSe, SnSe2, and Sn2Se3 alloys for phase change memory applications. Journal of applied physics, 2008. 103(8). 12. Kang, M., et al., Photodetector based on multilayer SnSe2 field effect transistor. Journal of Nanoscience and Nanotechnology, 2018. 18(6): p. 4243-4247. 13. Hien, N.D., et al., First principles study of single-layer SnSe2 under biaxial strain and electric field: Modulation of electronic properties. Physica E: Low-dimensional Systems and Nanostructures, 2019. 111: p. 201-205. 14. Mei, J., T. Liao, and Z. Sun, 2D/2D heterostructures: rational design for advanced batteries and electrocatalysis. Energy & Environmental Materials, 2022. 5(1): p. 115-132. 15. Huang, F., et al., Controllable resistive switching in ReS2/WS2 heterostructure for nonvolatile memory and synaptic simulation. Advanced Science, 2023. 10(28): p. 2302813. 16. Novoselov, K.S., et al., 2D materials and van der Waals heterostructures. Science, 2016. 353(6298): p. aac9439. 17. Zhang, R., et al., The More, the Better–Recent Advances in Construction of 2D Multi‐Heterostructures. Advanced Functional Materials, 2021. 31(26): p. 2102049. 18. Thakkar, P., et al., From fundamentals to frontiers: a review of memristor mechanisms, modeling and emerging applications. Journal of Materials Chemistry C, 2024. 19. He, Z.-Y., et al., CMOS back-end compatible memristors for in situ digital and neuromorphic computing applications. Materials Horizons, 2021. 8(12): p. 3345-3355. 20. Sun, W., et al., Understanding memristive switching via in situ characterization and device modeling. Nature communications, 2019. 10(1): p. 3453. 21. Panisilvam, J., et al., Two-dimensional material-based memristive devices for alternative computing. Nano Convergence, 2024. 11(1): p. 1-20. 22. Chang, T.-C., et al., Resistance random access memory. Materials Today, 2016. 19(5): p. 254-264. 23. Duan, H., et al., Low-power memristor based on two-dimensional materials. The Journal of Physical Chemistry Letters, 2022. 13(31): p. 7130-7138. 24. Huh, W., D. Lee, and C.H. Lee, Memristors based on 2D materials as an artificial synapse for neuromorphic electronics. Advanced materials, 2020. 32(51): p. 2002092. 25. Wang, L., et al., Review of applications of 2D materials in memristive neuromorphic circuits. Journal of Materials Science, 2022. 57(8): p. 4915-4940. 26. Zhuge, F., et al., Mechanism for resistive switching in chalcogenide-based electrochemical metallization memory cells. AIP Advances, 2015. 5(5). 27. Roy, A. and P.-R. Cha, Electric field induced charge migration and formation of conducting filament during resistive switching in electrochemical metallization (ECM) memory cells. Journal of Applied Physics, 2020. 128(20). 28. Le Gallo, M. and A. Sebastian, An overview of phase-change memory device physics. Journal of Physics D: Applied Physics, 2020. 53(21): p. 213002. 29. Liu, M., et al., 2D ferroelectric devices: working principles and research progress. Physical Chemistry Chemical Physics, 2021. 23(38): p. 21376-21384. 30. Jin, L., et al., The rise of 2D materials/ferroelectrics for next generation photonics and optoelectronics devices. Apl Materials, 2022. 10(6). 31. Shirodkar, S.N. and U.V. Waghmare, Emergence of ferroelectricity at a metal-semiconductor transition in a 1 T monolayer of MoS2. Physical review letters, 2014. 112(15): p. 157601. 32. Fei, Z., et al., Ferroelectric switching of a two-dimensional metal. Nature, 2018. 560(7718): p. 336-339. 33. Hsieh, Y.-P., M. Hofmann, and J. Kong, Promoter-assisted chemical vapor deposition of graphene. Carbon, 2014. 67: p. 417-423. 34. Hsieh, Y.-P., et al., High-throughput graphene synthesis in gapless stacks. Chemistry of Materials, 2016. 28(1): p. 40-43. 35. Mattevi, C., H. Kim, and M. Chhowalla, A review of chemical vapour deposition of graphene on copper. Journal of Materials Chemistry, 2011. 21(10): p. 3324-3334. 36. Suk, J.W., et al., Transfer of CVD-grown monolayer graphene onto arbitrary substrates. ACS nano, 2011. 5(9): p. 6916-6924. 37. Lin, Y.-C., et al., Graphene annealing: how clean can it be? Nano letters, 2012. 12(1): p. 414-419. 38. Wang, Y.-Y., et al., Two-dimensional mechano-thermoelectric heterojunctions for self-powered strain sensors. Nano Letters, 2021. 21(16): p. 6990-6997. 39. Saito, R., et al., Raman spectroscopy of graphene and carbon nanotubes. Advances in Physics, 2011. 60(3): p. 413-550. 40. Ning, J., et al., Combined effects of hydrogen annealing on morphological, electrical and structural properties of graphene/r-sapphire. Carbon, 2014. 75: p. 262-270. 41. Huang, C.-H., et al., Artificial synapse based on a 2D-SnO2 memtransistor with dynamically tunable analog switching for neuromorphic computing. ACS Applied Materials & Interfaces, 2021. 13(44): p. 52822-52832. 42. Lim, E.W. and R. Ismail, Conduction mechanism of valence change resistive switching memory: a survey. Electronics, 2015. 4(3): p. 586-613. 43. Chen, Z., et al., Artificial synapses with photoelectric plasticity and memory behaviors based on charge trapping memristive system. Materials & Design, 2020. 188: p. 108415. | - |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/94311 | - |
dc.description.abstract | 由於影像辨識、語音辨識在電子裝置中的快速發展,大規模數據處理的需求也隨之提升。為了提高運算的速度且降低所需的能量,人們開始研究新穎的材料與技術。其中以二維材料製作的憶阻器因其高寫入速度、低功耗、結構簡單、體積極小等優點備受人們研究。
在我們的研究中,我們將二硒化錫以低溫合成於石墨烯表面,形成垂直的二維異質結構。根據此結構量測到電阻開關行為,表示在此二維異質結構中有資料存儲的現象。元件經過重複量測仍維持穩定的開關大小,展現出以化學氣相沉積系統生長出的二維異質結構應用於電阻式記憶體的潛力。 | zh_TW |
dc.description.abstract | Due to the rapid development of image recognition and voice recognition in electronic devices, the demand for large-scale data processing has increased significantly. To enhance computing speed while reducing power consumption, researchers are investigating novel materials and technologies. Recently, two-dimensional (2D) memristors have garnered considerable attention due to their high write speeds, low power consumption, simple structure, and extremely small size.
In our research, SnSe₂ is synthesized at low temperature on the surface of graphene, forming a vertical 2D heterostructure. This structure exhibited memristive switching behavior, indicating data storage capabilities within 2D heterostructure. Repeated measurements showed consistent on/off ratio, demonstrating the potential of 2D heterostructure memristor grown by chemical vapor deposition for use in resistive random-access memory (RRAM). | en |
dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-08-15T16:45:16Z No. of bitstreams: 0 | en |
dc.description.provenance | Made available in DSpace on 2024-08-15T16:45:16Z (GMT). No. of bitstreams: 0 | en |
dc.description.tableofcontents | Acknowledgment I
摘要 II ABSTRACT III CONTENTS IV LIST OF FIGURES VI Chapter 1 Introduction 1 1.1 Graphene 1 1.2 Group IV metal chalcogenides 2 1.3 Tin diselenide (SnSe2) 3 1.4 2D Heterostucture 3 1.5 Memristor 4 1.6 Memristive Switching Behavior 6 1.7 Motivation 8 Chapter 2 Experiments and Apparatus 9 2.1 Experimental Process 9 2.1.1 Graphene Synthesis 9 2.1.2 Wet Transfer 10 2.1.3 Graphene Annealing 11 2.1.4 SnSe2 Synthesis 12 2.1.5 Device Fabrication 13 2.2 Apparatus 14 2.2.1 Chemical Vapor Deposition (CVD) System 14 2.2.2 Raman Spectroscopy 15 2.2.3 Atomic Force Microscope (AFM) 16 2.2.4 Photolithography 17 2.2.5 Thermal Evaporator 18 2.2.6 Scanning Electron Microscopy (SEM) 19 2.2.7 Electrical measurement system (Smaract) 20 2.2.8 DFT software (QuantumATK) 21 Chapter 3 Result and Discussion 22 3.1 Simulation 22 3.2 Characterization of few-layered SnSe2 23 3.2.1 Raman characterization 23 3.2.2 AFM characterization 28 3.2.3 Electrical property 29 3.3 Characterization of SnSe2 Nanosheet 30 3.3.1 Raman characterization 31 3.3.2 SEM characterization 32 3.4 Device Performance 33 3.4.1 Memristive Switching Behavior 34 Chapter 4 Conclusion 38 Reference 39 | - |
dc.language.iso | en | - |
dc.title | 二硒化錫與石墨烯二維異質結構中的憶阻轉換現象 | zh_TW |
dc.title | Memristive Switching Behavior of SnSe2/Graphene Two Dimensional Heterostructure | en |
dc.type | Thesis | - |
dc.date.schoolyear | 112-2 | - |
dc.description.degree | 碩士 | - |
dc.contributor.oralexamcommittee | 謝雅萍;陳永芳;王偉華 | zh_TW |
dc.contributor.oralexamcommittee | Ya-Ping Hsieh;Yang-Fang Chen;Wei-Hua Wang | en |
dc.subject.keyword | 二硒化錫,石墨烯,化學氣相沉積,憶阻器,憶阻切換, | zh_TW |
dc.subject.keyword | SnSe2,Graphene,Chemical Vapor Deposition,memristor,memristive switching, | en |
dc.relation.page | 41 | - |
dc.identifier.doi | 10.6342/NTU202402379 | - |
dc.rights.note | 同意授權(全球公開) | - |
dc.date.accepted | 2024-08-02 | - |
dc.contributor.author-college | 理學院 | - |
dc.contributor.author-dept | 應用物理研究所 | - |
Appears in Collections: | 應用物理研究所 |
Files in This Item:
File | Size | Format | |
---|---|---|---|
ntu-112-2.pdf | 2.85 MB | Adobe PDF | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.