請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/94303完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 廖文正 | zh_TW |
| dc.contributor.advisor | Wen-Cheng Liao | en |
| dc.contributor.author | 張峻輔 | zh_TW |
| dc.contributor.author | Chun-Fu Chang | en |
| dc.date.accessioned | 2024-08-15T16:42:39Z | - |
| dc.date.available | 2024-08-16 | - |
| dc.date.copyright | 2024-08-15 | - |
| dc.date.issued | 2024 | - |
| dc.date.submitted | 2024-08-07 | - |
| dc.identifier.citation | 1. 陳育聖,詹穎雯,楊仲家。臺灣臨海環境受鹽害鋼筋混凝土耐久性之本土化研究。中國土木水利工程學刊,31(3): p. 217-229,2019。
2. Yang, C.C. and C.T. Chiang, On the relationship between pore structure and charge passed from RCPT in mineral-free cement-based materials. Materials Chemistry and Physics. 93(1): p. 202-207, 2005. 3. Young, J.F., Review of the Pore Structure of Cement Paste and Concrete and its Influence on Permeability. ACI Symposium Publication. 108, 1988. 4. Mehta, P.K. and P.J.M. Monteiro, Concrete: Microstructure, Properties, and Materials. 4th Edition ed., New York: McGraw-Hill Education, 2014. 5. CNS 1237, "Method of test for mixing water of concrete.", 1997. 6. CNS 61, "Portland cement.", 2021. 7. CNS 1240, "Concrete aggregates.", 2014. 8. CNS 3090, "Ready − mixed concrete.", 2015. 9. Crank, J., The Mathematics of Diffusion. Clarendon Press, 1979. 10. Shah, S., Determination of Fracture Parameters (KsIC and CTODc) of Plain Concrete Using Three-Point Bend Tests. Materials and Structures. 23: p. 457-460, 1990. 11. Li, Y., et al., Experimental and numerical study on chloride transmission in cracked concrete. Construction and Building Materials. 127: p. 425-435, 2016. 12. Wang, H.-L., et al., Characteristics of concrete cracks and their influence on chloride penetration. Construction and Building Materials. 107: p. 216-225, 2016. 13. Jang, S.Y., B.S. Kim, and B.H. Oh, Effect of crack width on chloride diffusion coefficients of concrete by steady-state migration tests. Cement and Concrete Research. 41(1): p. 9-19, 2011. 14. Djerbi, A., et al., Influence of traversing crack on chloride diffusion into concrete. Cement and Concrete Research. 38(6): p. 877-883, 2008. 15. Poursaee, A. and C.M. Hansson, Reinforcing steel passivation in mortar and pore solution. Cement and Concrete Research. 37(7): p. 1127-1133, 2007. 16. John, F., Review of Electrochemical Principles as Applied to Corrosion of Steel in a Concrete or Grout Environment. ACI Symposium Publication. 102, 1987. 17. Da-Zhan, H., Experimental Design for Long-Term Corrosion Current Models Considering the Different Corrosion Types of Steel Bars and Chloride Ion Concentration in Concrete. National Taiwan University, Institute of Department of Civil Engineering Master thesis, 2018. 18. Thompson, N.G. and J.H. Payer, DC Electrochemical Test Methods. NACE International, 1998. 19. Frølund, T., F. Jensen, and R. Bäßler, Determination of reinforcement corrosion rate by means of the galvanostatic pulse technique. p. 14-17, 2002. 20. Meng-Lin, W., Long-Term Corrosion Prediction Model Considering the Factors Influencing Corrosion Current Density. National Taiwan University, Institute of Department of Civil Engineering Master thesis, 2020. 21. Shao-Ming, L., Verification of the Applicability of Long-Term Corrosion Prediction Model to Building with High Chloride Ion. National Taiwan University, Institute of Department of Civil Engineering Master thesis, 2021. 22. Hwang, J.P., M. Kim, and K.Y. Ann, Porosity generation arising from steel fibre in concrete. Construction and Building Materials. 94: p. 433-436, 2015. 23. Frazão, C., et al., Durability of steel fiber reinforced self-compacting concrete. Construction and Building Materials. 80: p. 155-166, 2015. 24. Wang, X.H., et al., Application of nanoindentation testing to study of the interfacial transition zone in steel fiber reinforced mortar. Cement and Concrete Research. 39(8): p. 701-715, 2009. 25. Marcos-Meson, V., et al., Corrosion resistance of steel fibre reinforced concrete - A literature review. Cement and Concrete Research. 103: p. 1-20, 2018. 26. JSCE,「混凝土標準示方書,施工篇。」,1996。 27. AASHTO T260, "Standard Method of Test for Sampling and Testing for Chloride Ion in Concrete and Concrete Raw Materials.", 1997. 28. ACI 301-20, "Specifications for Concrete Construction.", 2020. 29. ACI 222R-19, "Guide to Protection of Reinforcing Steel in Concrete against Corrosion.", 2019. 30. John S. Lawler, J.C.K.S.M.G. and D.K. Paul, Statistical Distributions for Chloride Thresholds of Reinforcing Bars. ACI Materials Journal. 118(2), 2021. 31. ACI 318R-19, "Commentary on Building Code Requirements for Structural Concrete.", 2019. 32. BS EN 206:2013, "Concrete — Specification, performance, production and conformity.", 2013. 33. NZS 3101.1&2:2006, "Concrete structures standard.", 2006. 34. TB 10424-2018, "Standard for Acceptance of Concrete Works in Railway.", 2018. 35. GB/T 50476-2019, "Standard for design of concrete structure durability.", 2019. 36. Yu-Shan, H., Study of the Durability of High Strength Concrete with Steel Fiber by Ponding Test and Salt Spray Test. National Taiwan University, Institute of Department of Civil Engineering Master thesis, 2016. 37. Wen-Guo, C., Analysis of Accelerated Corrosion Test and Study on Mechanical Behavior of Long-term Cyclic Salt Spray Deterioration of SFRC. National Taiwan University, Institute of Department of Civil Engineering Master thesis, 2023. 38. AASHTO T259, "Standard Method of Test for Resistance of Concrete to Chloride Ion Penetration.", 2021. 39. CNS 14703, "Method of test for water-soluble chloride in mortar and concrete.", 2002. 40. CNS 14702, "Method of test for acid-soluble chloride in mortar and concrete.", 2002. 41. Tzu-Yu, H., Expreimental Design for Mechanical Behavior of Deteriorated SFRC Beam with Working Stress Cracks by Accelerated Salt Spray Test. National Taiwan University, Institute of Department of Civil Engineering Master thesis, 2017. 42. ASTM G1-03, "Standard Practice for Preparing, Cleaning, and Evaluating Corrosion Test Specimens.", 2012. 43. CNS 14122 Z7284, "Corrosion of metals and alloys-Removal of corrosion products from corrosion test specimens.", 1998. 44. Huang, K.-S. and C.-C. Yang, Using RCPT determine the migration coefficient to assess the durability of concrete. Construction and Building Materials. 167: p. 822-830, 2018. 45. Poursaee, A., Potentiostatic transient technique, a simple approach to estimate the corrosion current density and Stern–Geary constant of reinforcing steel in concrete. Cement and Concrete Research. 40(9): p. 1451-1458, 2010. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/94303 | - |
| dc.description.abstract | 近年來氯離子耐久性逐漸受到重視,台灣於氯離子耐久性研究也漸趨成熟:全台飛來鹽統計、混凝土氯離子擴散行為、鋼筋銹蝕之耐震性能折減等研究之間,逐漸可開始成形為一套系統。然而目前針對混凝土內部鋼筋銹蝕程度尚無法以非破壞形式對其進行準確評估,因此若能在實際鋼筋腐蝕與非破壞性監測結果建立起關聯,將可使氯離子耐久性研究更為完善。
本研究接續本研究團隊過去設計鹽霧加速劣化約2100天之預裂梁進行實驗,藉此探討實驗設計之3項變因(混凝土開裂、是否配置箍筋、不同鋼纖維添加量)對3項實驗結果(混凝土氯離子耐久性、腐蝕電流量測、鋼筋重量損失率)之影響,並將實驗結果用於驗證鋼筋腐蝕預測模型之適用性。希望可透過上述實驗獲得本研究試驗變因對腐蝕電流應用於評估鋼筋腐蝕程度影響之定性結論。 依不同實驗變因之研究結論顯示,混凝土開裂將導致鋼筋銹蝕加劇;箍筋配置不會導致腐蝕電流評估鋼筋真實腐蝕狀態失準;鋼纖維添加於高強度混凝土則會導致腐蝕電流低估鋼筋真實腐蝕狀態。 將實驗結果透過腐蝕預測模型進行驗證後,得知NS+2試體可透過腐蝕電流量測準確評估內部鋼筋腐蝕狀態;HSSF0+2試體驗證結果雖然有所差異,但相去不遠,進一步完善腐蝕預測模型應可獲得準確結果;而HSSF075與HSSF150則受到鋼纖維影響,驗證結果差異甚大。綜上所述,本研究未添加鋼纖維之試體,可透過腐蝕預測模型獲得一定程度精準之評估結果,然而含有鋼纖維之試體,該模型目前尚不適用。 | zh_TW |
| dc.description.abstract | In recent years, the durability of concrete structures against chloride has garnered increasing attention, with Taiwan's research in this field gradually maturing. Studies including nationwide statistical data on airborne salt deposition, chloride diffusion in concrete, and the seismic performance reduction due to reinforcement corrosion are beginning to form a comprehensive system. However, current methods for non-destructive evaluation of internal reinforcement corrosion in concrete remain insufficiently accurate. Establishing correlations between actual reinforcement corrosion and non-destructive monitoring results could significantly enhance the study of chloride durability.
This study continues experiments on pre-cracked beams, exposed to salt spray for approximately 2100 days, previously designed by our research team. The aim is to investigate the effects of three experimental variables (concrete cracking, use of stirrups, varying steel fiber content) on three experimental outcomes (chloride durability of concrete, corrosion current measurement, steel weight loss rate). These results will be used to validate the applicability of a corrosion prediction model for reinforcing steel. Through these experiments, the study seeks to draw qualitative conclusions on how the experimental variables influence the assessment of steel corrosion severity using corrosion current. According to the findings from different experimental variables, concrete cracking exacerbates steel reinforcement corrosion. The presence of stirrups does not lead to accurate assessment of corrosion current in evaluating actual steel corrosion status. The addition of steel fibers to high-strength concrete results in underestimation of corrosion current in assessing actual steel corrosion status. Validation of the experimental results through corrosion prediction models reveals that the NS+2 specimen allows accurate evaluation of internal steel reinforcement corrosion status through corrosion current measurements. Although there are some discrepancies in the verification results of the HSSF0+2 specimen, they are relatively minor, suggesting that further refinement of corrosion prediction models could yield accurate results. However, significant differences are observed in the verification results of the HSSF075 and HSSF150 specimens due to the influence of steel fibers. In summary, the specimen without steel fibers provides reasonably accurate evaluation results through the corrosion prediction model. Yet, the model currently proves inadequate for specimens containing steel fibers. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-08-15T16:42:39Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2024-08-15T16:42:39Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 謝辭 I
摘要 III Abstract IV 目次 VI 圖次 XI 表次 XIV 第一章、緒論 1 1.1 研究動機與目的 1 1.2 研究內容 2 1.3 研究架構 2 第二章、文獻回顧 5 2.1 混凝土內部孔隙 5 2.2 氯離子擴散行為 6 2.2.1 氯離子來源 7 2.2.2 氯離子擴散行為 7 2.2.3 混凝土開裂對氯離子擴散影響 8 2.2.3.1 裂縫產生形式 9 2.2.3.2 裂縫對加速氯離子侵入混凝土研究統整 9 2.3 氯離子腐蝕鋼筋機理 10 2.4 鋼筋腐蝕電流密度與腐蝕預測模型 11 2.4.1 腐蝕電流量測儀器 12 2.4.2 腐蝕電流密度計算鋼筋重量損失 14 2.4.3 鋼筋腐蝕預測模型 15 2.5 鋼纖維與混凝土氯離子耐久性 17 2.6 國內外氯離子濃度規範整理 18 第三章、貯鹽試驗研究彙整 23 3.1 配比設計 24 3.2 氯離子分布曲線與氯離子擴散係數統整 24 3.3 Life 365 26 3.4 貯鹽試驗修正方法 28 3.5 貯鹽試驗勘誤結果 30 3.6 小結 32 第四章、實驗計畫 33 4.1 配比設計 34 4.2 實驗材料 35 4.3 試體尺寸與檢核 36 4.3.1 試體尺寸 36 4.3.2 檢核結果 36 4.4 試體編號 37 4.5 試體前處理 37 4.5.1 工作載重預裂 37 4.5.2 鹽霧加速劣化試驗 38 4.6 裂縫區域編號 38 4.7 實驗方法 39 4.7.1 氯離子分布實驗 39 4.7.2 鋼筋損失重 47 第五章、實驗結果 53 5.1 氯離子濃度分布 53 5.1.1 曲線擬合修正 54 5.1.2 水溶法試驗結果 55 5.1.3 酸溶法試驗結果 60 5.2 鋼筋重量損失 63 5.2.1 鋼筋重量損失率 63 5.2.2 鋼筋直徑損失量 65 5.3 不合理結果試體移除與鹽霧預裂梁腐蝕電流統整 68 5.3.1 不合理結果試體移除 68 5.3.2 鹽霧劣化預裂梁腐蝕電流量測之不合理數據判定與移除 68 第六章、分析與討論 71 6.1 研究變因對實驗結果影響之分析 73 6.1.1 混凝土開裂之影響 73 6.1.1.1 氯離子分布曲線 73 6.1.1.2 主筋重量損失 75 6.1.2 配置箍筋之影響 76 6.1.2.1 腐蝕電流 76 6.1.2.2 主筋重量損失 79 6.1.3 鋼纖維含量之影響 81 6.1.3.1 混凝土氯離子擴散係數 81 6.1.3.2 腐蝕電流 82 6.1.3.3 主筋重量損失 83 6.2 預裂鹽霧梁於腐蝕預測模型適用性 85 6.2.1 Gecor 8與Galva Pulse結果修正 85 6.2.2 腐蝕預測模型參數選定 87 6.2.3 適用性結果判斷 88 第七章、結論與建議 90 7.1 結論 90 7.2 建議 92 參考文獻 93 附錄 A. 普通強度混凝土梁試體設計圖 96 附錄 B. 高強度混凝土梁試體設計圖 97 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 纖維混凝土 | zh_TW |
| dc.subject | 鹽霧加速劣化試驗 | zh_TW |
| dc.subject | 氯離子擴散係數 | zh_TW |
| dc.subject | 鋼筋重量損失率 | zh_TW |
| dc.subject | 腐蝕電流密度 | zh_TW |
| dc.subject | diffusion coefficient | en |
| dc.subject | fiber reinforced concrete | en |
| dc.subject | corrosion current density | en |
| dc.subject | weight loss test | en |
| dc.subject | salt spray accelerated deterioration test | en |
| dc.title | 鋼纖維混凝土預裂梁於長期循環鹽霧劣化氯離子分佈與鋼筋腐蝕研究 | zh_TW |
| dc.title | Chloride Distribution and Reinforcement Corrosion in Long-Term Cyclic Salt Spray Deterioration of Steel Fiber Reinforced Concrete Pre-cracked Beams | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 112-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 楊仲家;詹穎雯;胡瑋秀 | zh_TW |
| dc.contributor.oralexamcommittee | Chung-Chia Yang;Yin-Wen Chan;Wei-Hsiu Hu | en |
| dc.subject.keyword | 纖維混凝土,鹽霧加速劣化試驗,氯離子擴散係數,鋼筋重量損失率,腐蝕電流密度, | zh_TW |
| dc.subject.keyword | fiber reinforced concrete,salt spray accelerated deterioration test,diffusion coefficient,weight loss test,corrosion current density, | en |
| dc.relation.page | 97 | - |
| dc.identifier.doi | 10.6342/NTU202402593 | - |
| dc.rights.note | 同意授權(限校園內公開) | - |
| dc.date.accepted | 2024-08-11 | - |
| dc.contributor.author-college | 工學院 | - |
| dc.contributor.author-dept | 土木工程學系 | - |
| 顯示於系所單位: | 土木工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-112-2.pdf 授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務) | 5.72 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
