Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 機械工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/94264
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor蘇偉儁zh_TW
dc.contributor.advisorWei-Jiun Suen
dc.contributor.author曾亮維zh_TW
dc.contributor.authorLiang-Wei Tsengen
dc.date.accessioned2024-08-15T16:30:50Z-
dc.date.available2024-08-16-
dc.date.copyright2024-08-15-
dc.date.issued2024-
dc.date.submitted2024-08-07-
dc.identifier.citation[1] A. Erturk and D. J. Inman, "A distributed parameter electromechanical model for cantilevered piezoelectric energy harvesters," Journal of Vibration and Acoustics, vol. 130, no. 4, p. 041002, 2008, doi: 10.1115/1.2890402.
[2] A. Erturk and D. J. Inman, "An experimentally validated bimorph cantilever model for piezoelectric energy harvesting from base excitations," Smart Materials and Structures, vol. 18, no. 2, 2009, doi: 10.1088/0964-1726/18/2/025009.
[3] S. Qi, R. Shuttleworth, S. Olutunde Oyadiji, and J. Wright, "Design of a multiresonant beam for broadband piezoelectric energy harvesting," Smart Materials and Structures, vol. 19, no. 9, 2010, doi: 10.1088/0964-1726/19/9/094009.
[4] R. Chen, L. Ren, H. Xia, X. Yuan, and X. Liu, "Energy harvesting performance of a dandelion-like multi-directional piezoelectric vibration energy harvester," Sensors and Actuators A: Physical, vol. 230, pp. 1-8, 2015, doi: 10.1016/j.sna.2015.03.038.
[5] H. Li, D. Liu, J. Wang, X. Shang, and M. R. Hajj, "Broadband bimorph piezoelectric energy harvesting by exploiting bending-torsion of L-shaped structure," Energy Conversion and Management, vol. 206, 2020, doi: 10.1016/j.enconman.2020.112503.
[6] F. Qian, S. Zhou, and L. Zuo, "Approximate solutions and their stability of a broadband piezoelectric energy harvester with a tunable potential function," Communications in Nonlinear Science and Numerical Simulation, vol. 80, 2020, doi: 10.1016/j.cnsns.2019.104984.
[7] Y. Fan, M. H. Ghayesh, T.-F. Lu, and M. Amabili, "Design, development, and theoretical and experimental tests of a nonlinear energy harvester via piezoelectric arrays and motion limiters," International Journal of Non-Linear Mechanics, vol. 142, 2022, doi: 10.1016/j.ijnonlinmec.2022.103974.
[8] Y. Yan et al., "Design and investigation of a quad-stable piezoelectric vibration energy harvester by using geometric nonlinearity of springs," Journal of Sound and Vibration, vol. 547, 2023, doi: 10.1016/j.jsv.2022.117484.
[9] K. Chen, Q. Gao, S. Fang, D. Zou, Z. Yang, and W.-H. Liao, "An auxetic nonlinear piezoelectric energy harvester for enhancing efficiency and bandwidth," Applied Energy, vol. 298, 2021, doi: 10.1016/j.apenergy.2021.117274.
[10] Q. Liu, W. Qin, Y. Yang, and Z. Zhou, "Promote performance of vibration energy harvesting by amplified inertial force and clamped piezoelectric beams," Mechanical Systems and Signal Processing, vol. 178, 2022, doi: 10.1016/j.ymssp.2022.109291.
[11] 游士寬, "基於懸臂梁之拉伸式非線性壓電能量採集器之設計與分析," 碩士論文, 機械工程學研究所, 國立台灣大學, 台北市, 2022.
[12] 陳厚勳, "剛體梁與懸臂梁結合之拉伸式非線性壓電能量採集器分析," 碩士論文, 機械工程學研究所, 國立台灣大學, 台北市, 2023.
[13] Y.-H. Shin et al., "Automatic resonance tuning mechanism for ultra-wide bandwidth mechanical energy harvesting," Nano Energy, vol. 77, 2020, doi: 10.1016/j.nanoen.2020.104986.
[14] L. M. Miller, P. Pillatsch, E. Halvorsen, P. K. Wright, E. M. Yeatman, and A. S. Holmes, "Experimental passive self-tuning behavior of a beam resonator with sliding proof mass," Journal of Sound and Vibration, vol. 332, no. 26, pp. 7142-7152, 2013, doi: 10.1016/j.jsv.2013.08.023.
[15] M. Krack, N. Aboulfotoh, J. Twiefel, J. Wallaschek, L. A. Bergman, and A. F. Vakakis, "Toward understanding the self-adaptive dynamics of a harmonically forced beam with a sliding mass," Archive of Applied Mechanics, vol. 87, no. 4, pp. 699-720, 2016, doi: 10.1007/s00419-016-1218-5.
[16] F. Müller and M. Krack, "On the locomotion of the slider within a self-adaptive beam–slider system," International Journal of Non-Linear Mechanics, vol. 159, 2024, doi: 10.1016/j.ijnonlinmec.2023.104595.
[17] N. Aboulfotoh, J. Twiefel, M. Krack, and J. Wallaschek, "Experimental Study on Performance Enhancement of a Piezoelectric Vibration Energy Harvester by applying Self-Resonating Behavior," Energy Harvesting and Systems, vol. 4, no. 3, pp. 131-136, 2017, doi: 10.1515/ehs-2016-0027.
[18] L. Yu, L. Tang, and T. Yang, "Experimental investigation of a passive self-tuning resonator based on a beam-slider structure," Acta Mechanica Sinica, vol. 35, no. 5, pp. 1079-1092, 2019, doi: 10.1007/s10409-019-00868-9.
[19] L. Yu, L. Tang, L. Xiong, T. Yang, B. R. Mace, and A. Erturk, "A passive self-tuning nonlinear resonator with beam-slider structure," presented at the Active and Passive Smart Structures and Integrated Systems XIII, 2019.
[20] N. A. Aboulfotoh, M. H. Arafa, and S. M. Megahed, "A self-tuning resonator for vibration energy harvesting," Sensors and Actuators A: Physical, vol. 201, pp. 328-334, 2013, doi: 10.1016/j.sna.2013.07.030.
[21] L. G. H. Staaf, A. D. Smith, P. Lundgren, P. D. Folkow, and P. Enoksson, "Effective piezoelectric energy harvesting with bandwidth enhancement by assymetry augmented self-tuning of conjoined cantilevers," International Journal of Mechanical Sciences, vol. 150, pp. 1-11, 2019, doi: 10.1016/j.ijmecsci.2018.09.050.
[22] G. Shi et al., "A Sensorless Self-Tuning Resonance System for Piezoelectric Broadband Vibration Energy Harvesting," IEEE Transactions on Industrial Electronics, vol. 68, no. 3, pp. 2225-2235, 2021, doi: 10.1109/tie.2020.2975457.
[23] C. Lan, Z. Chen, G. Hu, Y. Liao, and W. Qin, "Achieve frequency-self-tracking energy harvesting using a passively adaptive cantilever beam," Mechanical Systems and Signal Processing, vol. 156, 2021, doi: 10.1016/j.ymssp.2021.107672.
[24] L. Yu, L. Tang, and T. Yang, "Piezoelectric passive self-tuning energy harvester based on a beam-slider structure," Journal of Sound and Vibration, vol. 489, 2020, doi: 10.1016/j.jsv.2020.115689.
[25] J. Yang, An introduction to the theory of piezoelectricity. Springer, 2005.
[26] J. J. Thomsen, "Vibration suppression by using self-arranging mass eppects of adding restoring force," Journal of Sound and Vibration, vol. 197, no. 4, pp. 403-425, 1996.
[27] A. Bokaian, "Natural frequencies of beams under tensile axial loads," Journal of Sound and Vibration, vol. 142, no. 3, pp. 481-498, 1990.
[28] H. Y. Hwang, "Effect of strain rate on piezoelectric characteristics of unidirectional glass fiber epoxy composites," Journal of Composite Materials, vol. 45, no. 6, pp. 613-620, 2010, doi: 10.1177/0021998310376112.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/94264-
dc.description.abstract壓電能量採集器是將環境中機械能轉化成電能的一種裝置。傳統懸臂梁壓電能量採集器具有應變分布不均,適用頻率範圍狹窄,導致發電效率低的缺點。本研究提出一種自調頻壓電振動能量採集裝置,其主要是包含一個薄梁加厚梁組合而成的兩段式梁結構、由PVDF壓電材料構成彈性梁以及一個安裝於厚梁上之滑塊。本研究推導之數學模型以尤拉伯努力梁理論、拉格郎日方程式以及壓電本構方程式為基礎,推導出梁的運動方程式、滑動質量塊運動方程式以及壓電材料的電學方程式。之後製作出壓電能量採集器原型進行實驗,並將實驗結果與先前的理論模型作比較與驗證。藉由此結構可使整段壓電材料應變分布更為均勻,使輸出電壓效率增加。此外,因彈性梁對兩段式梁施加非線性外力,使得系統的頻率響應有著明顯的非線性硬化的效果,擁有更高輸出電壓及更寬的採集頻寬。此外,當梁振動幅度較小時,滑動質量塊會因重力作用而從彈性梁連接端向固定端來回移動,在此同時系統的頻率響應會被轉換到更高的頻率範圍;當梁振動幅度較大時,滑動質量塊會獲得足夠的慣性力並向彈性梁連接端移動。透過上述自調頻行為,使得最終穩態下的輸出功率有著顯著的增加,最大輸出電壓為28.98 V,比非自調頻拉伸式非線性能量採集器高出2.71倍,在頻寬的大小上也多了2.83倍。zh_TW
dc.description.abstractA piezoelectric energy harvester is a device that converts mechanical energy from the environment into electrical energy. Traditional cantilever beam piezoelectric energy harvesters suffer from uneven strain distribution and a narrow harvesting bandwidth, leading to low power generation efficiency. This study proposes a self-tuning piezoelectric energy harvester, primarily consisting of a two-segment beam formed by combining a thin stainless beam and a thick beam, an elastic beam made of PVDF piezoelectric material, and a sliding mass block. The mathematical model derived in this study is based on Euler-Bernoulli beam theory, Lagrange's equation, and piezoelectric constitutive equations, from which the motion equations of the beam, the sliding mass block, and the electrical equations of the piezoelectric material are derived. Subsequently, a prototype of the piezoelectric energy harvester was fabricated for experiment, and the experimental results were compared and validated against the previous theoretical model. This structure allows for a more uniform strain distribution across the entire piezoelectric material, increasing voltage output efficiency. Additionally, the elastic beam exerts a nonlinear force on the two-segment beam, resulting in a significant nonlinear hardening effect in the system's frequency response, leading to higher voltage output and harvesting bandwidth. Furthermore, when the beam's vibration amplitude is small, the sliding mass block moves back and forth from the elastic beam connection end to the fixed end due to gravity, simultaneously shifting the system's frequency response to a higher range. When the beam's vibration amplitude is large, the sliding mass block gains sufficient inertial force to move toward the elastic beam connection end. Through the aforementioned self-tuning behavior, the final steady-state output power is significantly increased, with a maximum output voltage of 28.98 V, which is 2.71 times higher than the non-self-tuning tensile nonlinear energy harvesters, and the frequency bandwidth is 2.83 times wider.en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-08-15T16:30:50Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2024-08-15T16:30:50Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents誌謝 i
中文摘要 ii
ABSTRACT iii
目次 v
圖次 vii
表次 x
符號表 xi
Chapter 1 緒論 1
1.1 前言 1
1.2 文獻回顧 2
1.3 研究動機與方法 6
1.4 論文架構 7
Chapter 2 壓電能量擷取理論 8
2.1 壓電效應 8
2.2 壓電本構方程式 10
Chapter 3 能量採集器模型 12
3.1 採集器之力學模型 12
3.2 壓電能量採集器之電學模型 21
Chapter 4 實驗設計 24
4.1 結構設計與製作 24
4.2 實驗設備與設備配置 26
4.3 實驗流程 30
Chapter 5 結果驗證與討論 32
5.1 掃頻實驗 34
5.2 定頻實驗 46
Chapter 6 結論與未來展望 60
6.1 結論 60
6.2 未來展望 61
參考文獻 62
附錄A M矩陣係數 65
附錄B A、B矩陣係數 68
-
dc.language.isozh_TW-
dc.subject自調頻結構zh_TW
dc.subject壓電能量採集器zh_TW
dc.subject非線性硬化效應zh_TW
dc.subject兩段式懸臂梁zh_TW
dc.subject軸向拉伸結構zh_TW
dc.subjectAxial stretching structureen
dc.subjectTwo-segment cantilever beamen
dc.subjectHardening effecten
dc.subjectSelf-tuning structureen
dc.subjectPiezoelectric energy harvesteren
dc.title基於滑塊自調頻之拉伸式非線性壓電能量採集器zh_TW
dc.titleA Self-Tuning Cantilever-Based Nonlinear Piezoelectric Energy Harvester Using a Sliding Massen
dc.typeThesis-
dc.date.schoolyear112-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee黃育熙;陳任之zh_TW
dc.contributor.oralexamcommitteeYu-Hsi Huang;Yum Ji CHANen
dc.subject.keyword壓電能量採集器,自調頻結構,軸向拉伸結構,兩段式懸臂梁,非線性硬化效應,zh_TW
dc.subject.keywordPiezoelectric energy harvester,Self-tuning structure,Axial stretching structure,Two-segment cantilever beam,Hardening effect,en
dc.relation.page68-
dc.identifier.doi10.6342/NTU202402523-
dc.rights.note未授權-
dc.date.accepted2024-08-09-
dc.contributor.author-college工學院-
dc.contributor.author-dept機械工程學系-
顯示於系所單位:機械工程學系

文件中的檔案:
檔案 大小格式 
ntu-112-2.pdf
  未授權公開取用
6.51 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved