Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 土木工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/94253
標題: 考量使用者偏好之高速公路服務區充電樁設置最佳化
Optimal Deployment of EV Chargers at Highway Service Areas Considering User Preference
作者: 林思源
Szu-Yuan Lin
指導教授: 朱致遠
James C. Chu
關鍵字: 電動車,充電樁設置,最佳化,使用者偏好,使用者均衡,
Electric Vehicle,Charging station deployment,Optimization,User preference,User equilibrium,
出版年 : 2024
學位: 碩士
摘要: 為因應全球暖化所帶來之極端氣候等影響,電動車已成為最主要之推廣運具 以減少二氧化碳於交通領域之排放量。而面對近年來電動車逐年增長之市占率, 勢必需要提供完善之充電服務以滿足未來不斷上升之需求。針對電動車較短之行 駛里程以及長時間之充電過程等相關特性,長途行駛的充電需求及使用者在充電 期間之時間價值差異性需進行充分討論,進而產生高速公路路網中充電站之設置 問題,並考慮電動車使用者對不同充電站間之偏好。
為解決該問題,本研究提出了一考量使用者均衡之雙層模型,以描述使用者 路徑選擇行為以及產生充電站位置及容量的最佳化設置決策。隨後,將該模型合 併為單層模型,以加強其尋找最佳解的能力。此外,本研究建立局部搜索和元啟 發式等演算法作為處理大規模問題之替代方案。這些方法被應用於一個簡易案例 中,以比較其解決問題之效率及效用。結果顯示,單層模型表現最佳,而局部搜 索和 ABC 算法亦能夠在較短的計算時間內產生良好之解決方案。另外,本研究也 針對不同假設情境進行敏感性分析,顯示電動車使用者偏好對充電站設置之結果 產生顯著之影響。最後,本研究套用一實際案例,以驗證該模型的應用於真實情 境之可行性。
面對未來充電需求之成長之議題,本研究提供一最佳化模型,協助決策者尋 找高速公路路網中充電樁設置之最佳方案,並考量電動車使用者之充電偏好,使 模型能充分模擬駕駛在選擇充電站之決策行為,提升電動車使用者於充電期間之 滿意度。該成果有助於持續推動電動車之普及,進而實現未來淨零排放之目標。
Electric vehicles (EVs) have emerged as a key solution for reducing carbon dioxide emissions in the transportation sector, addressing the exacerbation of global warming. With an observable growth of the EV adoption, comprehensive charging services must be provided to to meet the anticipated surge in demand. Given their shorter driving range and longer charging times compared to conventional vehicles, it is essential to focus on the charging demand of EV users traveling long distances and their value of time during charging. This necessitates addressing the problem of charging station deployment in highway networks, considering EV users' preferences among stations.

To solve this problem, this study proposed a bi-level model involving user equilibrium to describe route choice behavior and the optimization of deployment decisions for location and capacity. The model was then combined into a single level to enhance its ability to find optimal solutions. Additionally, algorithms such as local search and meta-heuristics were established as alternatives for solving large-scale problems. These methods were applied to a toy network to compare their effectiveness and efficiency. The results showed that the single-level model performed the best, while the local search and Artificial Bee Colony (ABC) algorithms could generate great solutions with shorter computational times. A sensitivity analysis was also conducted to demonstrate the significant impact of EV users' preferences on the final solution for charger distribution. Finally, a real-world case was established to verify the practical application of the model.

With the predictably increasing charging demand in the future, this study provides a useful tool for decision-makers to determine charger installation in each service area along highway networks. A specific focus on the preferences of EV users enables the model to capture practical driver behavior in the selection of charging stations, optimizing satisfaction with charging duration. This support for the continued promotion of EV adoption contributes to achieving the net-zero emission goal in the future.
URI: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/94253
DOI: 10.6342/NTU202402095
全文授權: 同意授權(全球公開)
電子全文公開日期: 2029-07-29
顯示於系所單位:土木工程學系

文件中的檔案:
檔案 大小格式 
ntu-112-2.pdf
  此日期後於網路公開 2029-07-29
10.69 MBAdobe PDF
顯示文件完整紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved