請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/94248完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 羅弘岳 | zh_TW |
| dc.contributor.advisor | Hong-Yueh Lo | en |
| dc.contributor.author | 林芝宇 | zh_TW |
| dc.contributor.author | Chih-Yu Lin | en |
| dc.date.accessioned | 2024-08-15T16:26:05Z | - |
| dc.date.available | 2024-08-16 | - |
| dc.date.copyright | 2024-08-15 | - |
| dc.date.issued | 2024 | - |
| dc.date.submitted | 2024-08-08 | - |
| dc.identifier.citation | 陳玟諭(2023), ‘前導下沉N 型海嘯波於不同傳遞距離之溯升’, 國立臺灣大學工程科學及海洋工程研究所碩士論文,台北.
施文育(2022), ‘前導下沉N 型波下速度場之探討’, 國立臺灣大學工程科學及海洋工程研究所碩士論文,台北. 林立剛(2021), ‘N 型波傳遞之數值模擬與實驗驗證, 國立臺灣大學工程科學及海洋工程研究所碩士論文,台北. 柯秉辰(2023), ‘以NHWAVE 模擬N 型波之溯升’, 國立臺灣大學工程科學及海洋工程研究所碩士論文,台北. 黄俊瑞(2022), ‘前導下沉N 型海嘯波之傳遞與溯升’, 國立臺灣大學工程科學及海洋工程研究所碩士論文,台北. Allen, J. (1998), ‘The early history of solitons (solitary waves)’, Physica Scripta 57(3), 436. Boussinesq, J. (1872), ‘Théorie des ondes et des remous qui se propagent le long d’un canal rectangulaire horizontal, en communiquant au liquide contenu dans ce canal des vitesses sensiblement pareilles de la surface au fond’, Journal de Mathématiques Pures et Appliquées 17, 55–108. Carvajal, M., Sepúlveda, I., Gubler, A. & Garreaud, R. (2022), ‘Worldwide signature of the 2022 Tonga volcanic tsunami’, Geophysical Research Letters 49(6), e2022GL098153. Devolder, B., Rauwoens, P. & Troch, P. (2017), ‘Application of a buoyancy-modified k-ω SST turbulence model to simulate wave run-up around a monopile subjected to regular waves using OpenFOAM®’, Coastal Engineering 125, 81–94. Geuzaine, C. & Remacle, J.-F. (2009), ‘Gmsh: A 3-D finite element mesh generator with built-in pre-and post-processing facilities’, International Journal for Numerical Methods in Engineering 79(11), 1309–1331. Goring, D. G. (1978), Tsunamis–the propagation of long waves onto a shelf, PhD thesis, California Institute of Technology, Pasadena, CA, USA. Greenshields, C. (2020), OpenFOAM v8 User Guide, The OpenFOAM Foundation, London, UK. URL: https://doc.cfd.direct/openfoam/user-guide-v8 Grilli, S. & Svendsen, I. (1990), ‘Computation of nonlinear wave kinematics during propagation and runup on a slope’, Water Wave Kinematics pp. 387–412. Higuera, P. (2017), ‘olaflow: CFD for waves [Software].’. URL: https://doi.org/10.5281/zenodo.1297013 Hirt, C. W. & Nichols, B. D. (1981), ‘Volume of fluid (VOF) method for the dynamics of free boundaries’, Journal of Computational Physics 39(1), 201–225. Korteweg, D. J. & de Vries, G. (1895), ‘XLI. On the change of form of long waves advancing in a rectangular canal, and on a new type of long stationary waves’, The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science 39(240), 422–443. Lay, T., Kanamori, H., Ammon, C. J., Nettles, M., Ward, S. N., Aster, R. C., Beck, S. L., Bilek, S. L., Brudzinski, M. R., Butler, R. et al. (2005), ‘The great Sumatra-Andaman earthquake of 26 December 2004’, Science 308(5725), 1127–1133. Lima, V. V., Avilez-Valente, P., Baptista, M. A. V. & Miranda, J. M. (2019), ‘Generation of N-waves in laboratory’, Coastal Engineering 148, 1–18. Lo, P. H.-Y., Chen, W.-Y. & Huang, C.-J. (2024), ‘Laboratory investigation on the runup of leading-depression N-waves on a uniform slope’, Coastal Engineering 189, 104479. Mori, N., Takahashi, T., Yasuda, T. & Yanagisawa, H. (2011), ‘Survey of 2011 Tohoku earthquake tsunami inundation and run-up’, Geophysical Research Letters 38(7). Ogino, Y., Hirata, Y., Kihana, S. & Nitta, N. (2018), ‘Numerical simulation of free-flight transfer by a 3D metal transfer model’, Quarterly Journal of the Japan Welding Society 36, 94–103. Rodriguez, H., Wachtendorf, T., Kendra, J. & Trainor, J. (2006), ‘A snapshot of the 2004 Indian Ocean tsunami: societal impacts and consequences’, Disaster Prevention and Management: An International Journal 15(1), 163–177. Shuto, N. & Fujima, K. (2009), ‘A short history of tsunami research and countermeasures in Japan’, Proceedings of the Japan Academy, Series B 85(8), 267–275. Svendsen, I. & Justesen, P. (1984), Forces on slender cylinders from very high and spilling breakers, in ‘Symposium on Description and Modelling of Directional Seas’, pp. 18–20. Synolakis, C. E. (1987), ‘The runup of solitary waves’, Journal of Fluid Mechanics 185, 523–545. Tadepalli, S. & Synolakis, C. E. (1994), ‘The run-up of N-waves on sloping beaches’, Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences 445(1923), 99–112. Whitham, G. B. (1974), ‘Linear and nonlinear waves’, John Wiley & Sons . Widiyanto, W., Santoso, P. B., Hsiao, S.-C. & Imananta, R. T. (2019), ‘Post-event field survey of 28 September 2018 Sulawesi earthquake and tsunami’, Natural Hazards and Earth System Sciences 19(12), 2781–2794. Wu, Y.-T., Higuera, P. & Liu, P. L.-F. (2021), ‘On the evolution and runup of a train of solitary waves on a uniform beach’, Coastal Engineering 170, 104015. 中央氣象署地震測報中心,海嘯資訊(2018). 海嘯資訊. URL: https://scweb.cwba.gov.tw/zh-tw/tsunami/taiwan | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/94248 | - |
| dc.description.abstract | 海嘯是一種需要高度防範的自然災害。傳統文獻中常以孤立波作為海嘯替代模型,然而,孤立波僅有單一波峰的特性,許多學者對此提出質疑並提出了新興的N型波海嘯替代模型。N型波的特點在於具有波峰和低於水面的波谷,其中前導下沉N型波 (Leading Depression N-waves, LDNs) 能夠模擬海嘯來臨前的退潮現象。
本研究使用基於計算流體力學軟體OpenFOAM開發的流體力學模擬工具 olaFlow,建立了二維數值水槽,對LDNs與相對應波峰之孤立波的溯升現象進行比較與分析。數值模擬結果量化並證實了Lo et al. (2024)實驗中的假說:破碎劇烈的type A LDNs由於能量損失大,其溯升值小於相應的孤立波;然而,在實驗中type A LDNs非破碎型態則在模擬結果中發現其有輕微破碎導致能量損失。模擬結果中type B LDNs之溯升值則大於相對應孤立波。此外,模擬結果顯示,LDNs沿著斜板的沖刷速度也大於相應的孤立波。因此,若使用孤立波作為海嘯替代模型,可能會低估海嘯對沿岸的影響範圍和沖刷程度。 | zh_TW |
| dc.description.abstract | Tsunamis are natural disasters that require significant preventive measures. Traditionally, solitary waves have been used as substitute models for tsunamis in the literature. However, due to the solitary wave's characteristic of having a single crest, many scholars have raised concerns and proposed the emerging N-wave tsunami substitute model. The distinguishing feature of N-waves is their crest and trough below the water surface, with Leading Depression N-waves (LDNs) capable of simulating the receding tide phenomenon that precedes a tsunami.
This study utilized olaFlow, a computational fluid dynamics simulation tool developed based on OpenFOAM, to establish a two-dimensional numerical wave tank for comparing and analyzing the runup phenomena of LDNs and corresponding solitary waves at wave crests. The numerical simulation results quantified and confirmed the hypothesis from the experiment by Lo et al. (2024): type A LDNs with violent breaking have smaller runup values than the corresponding solitary waves due to significant energy loss. However, the simulation results indicated that non-breaking type A LDNs in the experiment exhibited slight breaking, leading to energy loss. The runup values of type B LDNs in the simulation were found to be greater than those of the corresponding solitary waves. Additionally, the simulation results showed that the swash velocity of LDNs along the slope was also greater than that of the corresponding solitary waves. Therefore, using solitary waves as a substitute model for tsunamis may underestimate the impact range and scouring extent on the coast. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-08-15T16:26:05Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2024-08-15T16:26:05Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 口試委員審定書 i
致謝 iii 摘要 v Abstract vii 目次 ix 圖次 xiii 表次 xvii 符號列表 xix 第一章 緒論 1 1.1 研究背景 1 1.2 文獻回顧 2 1.3 研究動機與目的 4 1.4 研究方法 5 第二章 孤立波與N 型波理論7 2.1 孤立波定義 7 2.2 孤立波造波理論 8 2.3 N 型波定義 8 2.4 N 型波造波理論 10 第三章 OpenFOAM 數值模型 11 3.1 控制方程式 12 3.2 初始條件與邊界條件 12 3.3 紊流模式 15 3.4 自由表面計算方法 16 3.5 能量計算方法 17 3.6 Gmsh 網格繪製 18 3.6.1 繪製方式 19 3.6.2 動態網格控制設置 20 3.6.3 網格名稱定義 21 第四章 數值模型驗證 23 4.1 孤立波網格敏感性測試 24 4.1.1 溯升值 25 4.1.2 水面歷時圖 26 4.2 孤立波溯升值驗證 28 4.3 LDNs 網格敏感性測試 29 4.3.1 溯升值 30 4.3.2 水面歷時圖 32 4.3.3 側面破碎型態 35 4.3.4 能量變化 40 4.4 LDNs 驗證 42 4.4.1 溯升值 42 4.4.2 水面歷時圖 43 4.4.3 側面破碎型態 46 4.4.4 速度場 50 第五章 模擬結果與討論55 5.1 Type A LDNs 57 5.1.1 劇烈破碎型態 57 5.1.2 輕微破碎型態 63 5.2 Type B LDNs 68 第六章 結論與未來展望 73 6.1 結論 73 6.2 未來展望 74 參考文獻 75 附錄A — OpenFOAM 設定 79 A.1 0.org 79 A.2 constant 82 A.3 system 82 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 海嘯 | zh_TW |
| dc.subject | N型波 | zh_TW |
| dc.subject | 孤立波 | zh_TW |
| dc.subject | 溯升 | zh_TW |
| dc.subject | OpenFOAM | zh_TW |
| dc.subject | olaFlow | zh_TW |
| dc.subject | Solitary wave | en |
| dc.subject | Tsunami | en |
| dc.subject | olaFlow | en |
| dc.subject | OpenFOAM | en |
| dc.subject | Runup | en |
| dc.subject | N-wave | en |
| dc.title | 前導下沉N型海嘯波溯升之OpenFOAM數值模擬 | zh_TW |
| dc.title | Numerical Simulation of Leading Depression N-Wave Runup Using OpenFOAM | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 112-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 蔡武廷;詹益齊 | zh_TW |
| dc.contributor.oralexamcommittee | Wu-Ting Tsai;I-Chi Chan | en |
| dc.subject.keyword | 海嘯,N型波,孤立波,溯升,OpenFOAM,olaFlow, | zh_TW |
| dc.subject.keyword | Tsunami,N-wave,Solitary wave,Runup,OpenFOAM,olaFlow, | en |
| dc.relation.page | 88 | - |
| dc.identifier.doi | 10.6342/NTU202403648 | - |
| dc.rights.note | 同意授權(限校園內公開) | - |
| dc.date.accepted | 2024-08-12 | - |
| dc.contributor.author-college | 工學院 | - |
| dc.contributor.author-dept | 工程科學及海洋工程學系 | - |
| 顯示於系所單位: | 工程科學及海洋工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-112-2.pdf 授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務) | 6.84 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
