Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 材料科學與工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/94233
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor白奇峰zh_TW
dc.contributor.advisorChi-Feng Paien
dc.contributor.author林孟頡zh_TW
dc.contributor.authorMeng-Chieh Linen
dc.date.accessioned2024-08-15T16:21:31Z-
dc.date.available2024-08-16-
dc.date.copyright2024-08-15-
dc.date.issued2024-
dc.date.submitted2024-08-07-
dc.identifier.citation[1] Zener, C. and Heikes, R. R. Exchange Interactions. American Physical Society, 1953.
[2] Mahduri Sharon, Goldie Oza, Arvind Gupta and Dr. Sunil Pandey. Superparamagnetic iron oxide nanoparticles (spions) as nano-flotillas for hyperthermia. Advanced nanomaterials: synthesis, properties, and applications. Apple academic press. 2014.
[3] Cusack, N. The electrical and magnetic properties of solids: an introductory textbook. Longmans, 1958.
[4] Jungwirth, T., Marti, X., Wadley, P. et al. Antiferromagnetic spintronics. Nature Nanotech 11, 231–241, 2016.
[5] Arai, Leo & Nadeem, Muhammad & Bhadbhade, Mohan & Stride, John. A 2D cobalt based coordination polymer constructed from benzimidazole and acetate ion exhibiting spin-canted antiferromagnetism. Dalton transactions ,2010.
[6] Han, J., Cheng, R., Liu, L. et al. Coherent antiferromagnetic spintronics. Nat.Mater. 22, 684–695 ,2023.
[7] del-Río, Lucia & Nó, M. & Sota, A. & Perez-Casero, I. & Gómez Cortés, Jose & Pérez Cerrato, Mikel & Veiga, A. & Ruiz-Larrea, I. & Ausejo, Sergio & Burgos, N. & San Juan, Jose. Internal friction associated with ε martensite in shape memory steels produced by casting route and through additive manufacturing: Influence of thermal cycling on the martensitic transformation. Journal of Alloys and Compounds, 2022.
[8] Hall, E. H. On the “Rotational Coefficient”in Nickel and Cobalt. Proceedings of the Physical Society of London, 4(1), 325–342, 1880.
[9] A. Yusuf, T. Adegbija and D. Gajaria, "Domain-Specific STT-MRAM-Based In-Memory Computing: A Survey," in IEEE Access, vol. 12, pp. 28036-28056, 2024.
[10] Hongming Weng, Xi Dai and Zhong Fang. From Anomalous Hall Effect to the Quantum Anomalous Hall Effect. arXiv preprint arXiv:1509.05507, 2015.
[11] Dyakonov, Michel & Perel, V. Possibility of Orienting Electron Spins with Current. Soviet Journal of Experimental and Theoretical Physics Letters. 13. 467, 1971.
[12] J.E.Hirsch. Spin Hall effect. Physical Review Letters, 83(9):1834, 1999.
[13] Y. K. Kato et al., Observation of the Spin Hall Effect in Semicon-ductors. Science306,1910-1913, 2004.
[14] Yongcheng Deng, Meiyin Yang, Yang Ji, Kaiyou Wang, Estimating spin Hall angle in heavy metal/ferromagnet heterostructures, Journal of Magnetism and Magnetic Materials, Volume 496, 2020.
[15] Chi-Feng Pai, Minh-Hai Nguyen, Carina Belvin, Luis Henrique Vilela-Leão, D. C. Ralph and R. A. Buhrman. Enhancement of perpendicular magnetic anisotropy and transmission of spin-Hall-effect-induced spin currents by a Hf spacer layer in W/Hf/CoFeB/MgO layer structures. Applied Physics Letters, 104 (8): 082407.24, 2014.
[16] Liu, Luqiao, Chi-Feng Pai, Y. Li, H. W. Tseng, D. C. Ralph, and R. A. Buhrman. "Spin-torque switching with the giant spin Hall effect of tantalum." Science, 336(6081): 555-558, 2012.
[17] Choi, YG., Jo, D., Ko, KH. et al. Observation of the orbital Hall effect in a light metal Ti. Nature 619, 52–56, 2023.
[18] Igor Lyalin, Sanaz Alikhah, Marco Berritta, Peter M. Oppeneer, and Roland K. Kawakami, Magneto-Optical Detection of the Orbital Hall Effect in Chromium, Physical Review Letters, 131, 156702, 2023.
[19] Sala, Giacomo, and Pietro Gambardella. "Giant orbital Hall effect and orbital-tospin conversion in 3 d, 5 d, and 4 f metallic heterostructures." Physical Review Research, 4(3): 033037, 2022.
[20] Rothschild, Amit, et al. "Generation of spin currents by the orbital Hall effect in Cu and Al and their measurement by a Ferris-wheel ferromagnetic resonance technique at the wafer level." Physical Review B, 106(14): 144415, 2022.
[21] Darby, M., & Isaac, E. Magnetocrystalline anisotropy of ferro-and ferrimagnetics. IEEE Transactions on Magnetics, 10(2), 259-304, 1974.
[22] Wysin, G. M. Demagnetization fields. available on https://www.phys.ksu.edu/personal/wysin/notes/demag. Pdf, 2012.
[23] Krysztofik, A., Özoğlu, S., McMichael, R. D., & Coy, E. Effect of strain-induced anisotropy on magnetization dynamics in Y3Fe5O12 films recrystallized on a lattice-mismatched substrate. Scientific reports, 11(1), 14011, 2021.
[24] Jinnai, B., Igarashi, J., Watanabe, K., Funatsu, T., Sato, H., Fukami, S., & Ohno, H. High-performance shape-anisotropy magnetic tunnel junctions down to 2.3 nm. In 2020 IEEE International Electron Devices Meeting (IEDM) (pp. 24-6). IEEE, 2020.
[25] Tudu, B., Tian, K., & Tiwari, A. Effect of composition and thickness on the perpendicular magnetic anisotropy of (Co/Pd) multilayers. Sensors, 17(12), 2743, 2017.
[26] Bate, G., & Dunn, L. Magnetization in recorded tape. IEEE Transactions on Magnetics, 10(3), 667-669, 1974.
[27] Zhao, Z., Jamali, M., Smith, A. K., & Wang, J. P. Spin Hall switching of the magnetization in Ta/TbFeCo structures with bulk perpendicular anisotropy. Applied Physics Letters, 106(13), 2015.
[28] Zhang, R. Q., Liao, L. Y., Chen, X. Z., Xu, T., Cai, L., Guo, M. H., ... & Song, C. Current-induced magnetization switching in a CoTb amorphous single layer. Physical Review B, 101(21), 214418, 2020.
[29] Yang, T., Soe, W. H., Liu, B. X., & Yamamoto, R. Perpendicular Magnetic Anisotropy and Magneto-Optical Properties of Sputtered Re-Tm (CoGd)/Pd Multilayered Films. MRS Online Proceedings Library (OPL), 458, 369, 1996.
[30] He, P., Ma, L., Shi, Z., Guo, G. Y., Zheng, J. G., Xin, Y., & Zhou, S. M. Chemical Composition Tuning of the Anomalous Hall Effect in Isoelectronic L10 FePd1-xPtx Alloy Films. arXiv preprint arXiv:1112.0834, 2011.
[31] Carcia, P. F., Meinhaldt, A. D., & Suna, A. Perpendicular magnetic anisotropy in Pd/Co thin film layered structures. Applied Physics Letters, 47(2), 178-180, 1985.
[32] Akyol, M. Origin of interfacial magnetic anisotropy in Ta/CoFeB/MgO and Pt/CoFeB/MgO multilayer thin film stacks. Journal of Superconductivity and Novel Magnetism, 32(3), 457-462, 2019.
[33] Landau, L. A. L. E., & Lifshitz, E. On the theory of the dispersion of magnetic permeability in ferromagnetic bodies. In Perspectives in Theoretical Physics (pp.51-65). Pergamonm, 1992.
[34] Gilbert, T. L., & Kelly, J. M. Anomalous rotational damping in ferromagnetic sheets. In Conf. Magnetism and Magnetic Materials, Pittsburgh, PA (pp. 253-263), 1955.
[35] Mahmoud, Abdulqader & Ciubotaru, Florin & Vanderveken, Frederic & Chumak, Andrii & Hamdioui, Said & Adelmann, Christoph & Cotofana, Sorin. An Introduction to Spin Wave Computing. 10.36227/techrxiv.16608430.v1, 2020.
[36] Slonczewski, J. C. Current-driven excitation of magnetic multilayers. Journal of Magnetism and Magnetic Materials, 159(1-2), L1-L7, 1996.
[37] Kawahara, T., Ito, K., Takemura, R., & Ohno, H. Spin-transfer torque RAM technology: Review and prospect. Microelectronics Reliability, 52(4), 613-627, 2012.
[38] Cao, Yi & Xing, Guozhong & Lin, Huai & Zhang, Nan & Zheng, Houzhi & Wang, Kaiyou. Prospect of Spin-Orbitronic Devices and Their Applications. iScience. 23. 101614. 10.1016/j.isci.2020.101614, 2020.
[39] Song, C., Zhang, R., Liao, L., Zhou, Y., Zhou, X., Chen, R., ... & Pan, F. Spin-orbit torques: Materials, mechanisms, performances, and potential applications. Progress in Materials Science, 118, 100761, 2021.
[40] Bihlmayer, G., Rader, O., & Winkler, R. Focus on the Rashba effect. New journal of physics, 17(5), 050202, 2015.
[41] Hvazdouski, D. C., Baranava, M. S., & Stempitsky, V. R. Spin splitting in band structures of BiTeX (X= Cl, Br, I) monolayers. In IOP Conference Series: Materials Science and Engineering (Vol. 347, No. 1, p. 012017). IOP Publishing, 2018.
[42] Yu, G., Upadhyaya, P., Fan, Y., Alzate, J. G., Jiang, W., Wong, K. L., ... & Wang, K. L. Switching of perpendicular magnetization by spin–orbit torques in the absence of external magnetic fields. Nature nanotechnology, 9(7), 548-554, 2014.
[43] Hu, C. Y., Chen, W. D., Liu, Y. T., Huang, C. C., & Pai, C. F. The central role of tilted anisotropy for field-free spin–orbit torque switching of perpendicular magnetization. NPG Asia Materials, 16(1), 1, 2024.
[44] Yu, G., Chang, L. T., Akyol, M., Upadhyaya, P., He, C., Li, X., ... & Wang, K. L. Current-driven perpendicular magnetization switching in Ta/CoFeB/[TaOx or MgO/TaOx] films with lateral structural asymmetry. Applied Physics Letters, 105(10), 2014.
[45] Razavi, A., Wu, H., Shao, Q., Fang, C., Dai, B., Wong, K., ... & Wang, K. L. Deterministic spin–orbit torque switching by a light-metal insertion. Nano letters, 20(5), 3703-3709, 2020.
[46] Fukami, S., Zhang, C., DuttaGupta, S., Kurenkov, A., & Ohno, H. Magnetization switching by spin–orbit torque in an antiferromagnet–ferromagnet bilayer system. Nature materials, 15(5), 535-541, 2016.
[47] Wu, B., Jin, M., Luo, Y., Xu, X., Fan, H., Huang, H., ... & Zhou, T. Enhancement of damping-like field and field-free switching in Pt/(Co/Pt)/PtMn trilayer films prepared in the presence of an in situ magnetic field. ACS Applied Materials & Interfaces, 14(18), 21668-21676, 2022.
[48] Dzyaloshinsky, I. A thermodynamic theory of “weak” ferromagnetism of antiferromagnetics. Journal of physics and chemistry of solids, 4(4), 241-255, 1958.
[49] Wu, H., Zhang, J., Cui, B., Razavi, S. A., Che, X., Pan, Q., ... & Wang, K. L. Fieldfree approaches for deterministic spin–orbit torque switching of the perpendicular magnet. Materials Futures, 1(2), 022201, 2022.
[50] Liu, C., Xu, J., Liu, Z., Ning, X., Jiang, S., & Miao, D. Fabrication of highly electrically conductive Ti/Ag/Ti tri-layer and Ti–Ag alloy thin films on PET fabrics by multi-target magnetron sputtering. Journal of Materials Science: Materials in Electronics, 29, 19578-19587, 2018.
[51] Pai, C. F., Mann, M., Tan, A. J., & Beach, G. S. Determination of spin torque efficiencies in heterostructures with perpendicular magnetic anisotropy. Physical Review B, 93(14), 144409, 2016.
[52] Huang, C. C., Tsai, C. C., Liao, W. B., Chen, T. Y., & Pai, C. F. Deep learning for spin-orbit torque characterizations with a projected vector field magnet. Physical Review Research, 4(3), 033040, 2022.
[53] Huang, Y. H., Han, J. H., Liao, W. B., Hu, C. Y., Liu, Y. T., & Pai, C. F. Tailoring Interlayer Chiral Exchange by Azimuthal Symmetry Engineering. Nano Letters, 24(2), 649-656, 2024.
[54] Parakkat, V. M., Ganesh, K. R. & Kumar, P. S. A. Tailoring Curie temperature and magnetic anisotropy in ultrathin Pt/Co/Pt films. Aip Adv. 6, 056118 , 2016.
[55] Carcia, P. F., Li, Z. G. & Zeper, W. B. Effect of sputter-deposition processes on the microstructure and magnetic-properties of Pt/Co multilayers. J. Magn. Magn. Mater. 121, 452–460, 1993.
[56] Yu, P., Zhao, L., Gao, J., Wang, W., Luo, J., & Yang, M. Annealing effect on the magneto-electric properties of SOT-MTJs from micro to nano-sized dimensions. Japanese Journal of Applied Physics, 62(SH), SH1004, 2023.
[57] Wang, R., Jiang, X., Shelby, R. M., Macfarlane, R. M., Parkin, S. S. P., Bank, S. R., & Harris, J. S. Increase in spin injection efficiency of a CoFe∕MgO (100) tunnel spin injector with thermal annealing. Applied Physics Letters, 86(5), 2005.
[58] Zhang, X., Jevasuwan, W., & Fukata, N. Interfacial intermixing of Ge/Si core–shell nanowires by thermal annealing. Nanoscale, 12(14), 7572-7576, 2020.
[59] Romano, L. T., Bringans, R. D., Knall, J., Biegelsen, D. K., Garcia, A., Northrup, J. E., & O’Keefe, M. A. Atomic rearrangement at the interface of annealed ZnSe films grown on vicinal Si (001) substrates. Physical Review B, 50(7), 4416, 1994.
[60] Yu, J., Wang, X., & Fukuzawa, H. Perpendicular magnetic tunnel junctions with a thin FeTa insertion layer for 400° C thermal stability. Applied Physics Express, 11(1), 013006, 2017.
[61] Hu, C. Y., Chiu, Y. F., Tsai, C. C., Lee, C. M., Song, M. Y., Lin, S. J., ... & Pai, C. F. Interfacial Engineering Strategies for Efficient Spin–Orbit Torque Devices with Pt Alloys. ACS Applied Electronic Materials, 5(2), 968-976, 2023.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/94233-
dc.description.abstract隨著物聯網(IOT)設備與高性能計算(HPC)的需求增加,使得磁性記憶體逐漸受到重視。由於電流注入的幾何結構差異,相較於現今量產主流的自旋轉移矩記憶體(STT-MRAM),自旋軌道矩記憶體(SOT-MRAM)擁有更高的開關速度以及耐用性,但是要實際應用於元件中,我們需要提供外加磁場來打破對稱性以實現磁性的確定性的磁性切換。目前有一種無場翻轉方案是透過在濺鍍過程中將重金屬層斜向生長,以傾斜垂直磁異向性(tilted PMA)。我進一步測試了在鉭/鉑/鈷/鉑/鉭(Ta/Pt/Co/Pt/Ta)不同層之間的斜向生長對於無場翻轉的影響,並且發現了組合不同的斜向生長層可以進一步提高無場翻轉比率並降低翻轉的電流。再經由不同角度的磁滯曲線偏移,可以驗證是由傾斜磁垂直異向性導致的。隨後也探討了退火對於斜向生長鉑晶格結構與無場翻轉的影響,發現退火帶來的原子重新排列與混合會破壞傾斜磁異向性的形成,如何在退火後保留傾斜磁異向性甚至透過退火增強會是一個具有發展潛力的課題。zh_TW
dc.description.abstractWith the increasing demand for Internet of Things (IoT) devices and high-performance computing (HPC), magnetic memory is gaining attention. Due to the differences in the geometry of current injection, Spin Orbit Torque Magnetic Random Access Memory (SOT-MRAM) offers higher switching speeds and durability compared to the mainstream Spin Transfer Torque MRAM (STT-MRAM) currently in mass production. However, for practical application in devices, an external magnetic field is required to break symmetry for deterministic magnetic switching. Currently, a field-free switching scheme involves the oblique growth of the heavy metal layer during sputtering to tilt the perpendicular magnetic anisotropy (tilted PMA). I further tested the effects of oblique growth between different layers of tantalum /platinum /cobalt /platinum /tantalum on field-free switching and found that combining different obliquely grown layers can further improve the field-free switching ratio and reduce the switching current. Shifts in the hysteresis curves at different angles verify that this is caused by the tilted perpendicular magnetic anisotropy. Subsequently, the effects of annealing on the lattice structure of obliquely grown Pt and field-free switching were also investigated. It was found that the atomic rearrangement and mixing caused by annealing disrupt the formation of tilted magnetic anisotropy. How to retain the tilted magnetic anisotropy after annealing, or even enhance it through annealing, will be a promising topic for further development.en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-08-15T16:21:31Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2024-08-15T16:21:31Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents誌謝 ................................................................................................................................... i
摘要 .................................................................................................................................. ii
Abstract ............................................................................................................................ iii
Contents ............................................................................................................................. v
LIST OF FIGURES ........................................................................................................ vii
LIST OF TABLES ........................................................................................................... xi
Chapter 1 Introduction ................................................................................................ 1
1.1 Magnetoresistive Random Access Memory ........................................... 1
1.2 Magnetism ................................................................................................ 3
1.2.1 Paramagetism .................................................................................................. 3
1.2.2 Diamagnetism ................................................................................................. 4
1.2.3 Ferromagnetism .............................................................................................. 4
1.2.4 Antiferromagnetism ........................................................................................ 6
1.3 Hall effect .................................................................................................. 8
1.3.1 Anomalous Hall effect (AHE) ........................................................................ 8
1.3.2 Spin Hall effect (SHE) .................................................................................... 9
1.3.3 Orbital Hall effect (OHE) ............................................................................. 10
1.4 Magnetic anisotropy .............................................................................. 11
1.4.1 In-plane magnetic anisotropy (IMA) ............................................................ 11
1.4.2 Perpendicular magnetic anisotropy (PMA) .................................................. 12
1.5 Landau-Lifshitz-Gilbert equation (LLG equation) ............................ 14
1.6 Spin torques ............................................................................................ 15
1.6.1 Spin-transfer torque (STT) ........................................................................... 15
1.6.2 Spin-orbit torque (SOT) ................................................................................ 18
1.7 Field free switching ................................................................................ 20
1.7.1 Idea of field free switching ........................................................................... 20
1.7.2 Ways to reach field free switching ................................................................ 20
1.8 Motivation of this work ......................................................................... 23
Chapter 2 Experiments ............................................................................................. 24
2.1 Hall bar fabrication ............................................................................... 24
2.1.1 Photolithography........................................................................................... 24
2.1.2 Magnetron sputtering .................................................................................... 25
2.2 Measurement methods ............................................................................................ 26
2.2.1 Loop shift measurement ............................................................................... 26
2.2.2 Current-induced SOT field-free switching measurement ............................. 28
Chapter 3 Result ....................................................................................................... 30
3.1 SOT characterization of control sample .............................................. 31
3.2 Current-induced SOT field-free switching of single wedge layer ...... 32
3.3 Tilted PMA characterizing of single wedge layer ............................... 34
3.4 Parallel and antiparallel wedge Pt layer .............................................. 38
3.5 Annealing effect on tilted PMA ............................................................ 42
3.6 Challenges ............................................................................................... 44
Chapter 4 Conclusion ............................................................................................... 46
References ....................................................................................................................... 48
-
dc.language.isoen-
dc.title傾斜磁異向性在鉑/鈷/鉑異直結構中對自旋軌道矩無場翻轉的影響zh_TW
dc.titleThe Effect of Tilted Magnetic Anisotropy on Field-Free Spin-Orbit Torque Switching in Pt/Co/Pt Heterostructuresen
dc.typeThesis-
dc.date.schoolyear112-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee魏拯華;薛文証zh_TW
dc.contributor.oralexamcommitteeJen-Hua Wei;Wen-Jeng Hsuehen
dc.subject.keyword自旋軌道矩,自旋霍爾效應,無場翻轉,傾斜磁異向性,磁性材料,磁性記憶體,zh_TW
dc.subject.keywordSpin Orbit Torque,Spin Hall Effect,Field-Free Switching,Tilted Magnetic Anisotropy,Magnetic Materials,Magnetic Memory,en
dc.relation.page55-
dc.identifier.doi10.6342/NTU202403259-
dc.rights.note同意授權(全球公開)-
dc.date.accepted2024-08-10-
dc.contributor.author-college工學院-
dc.contributor.author-dept材料科學與工程學系-
顯示於系所單位:材料科學與工程學系

文件中的檔案:
檔案 大小格式 
ntu-112-2.pdf3.77 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved